LLM for Semantic Role Labeling of Emotion Predicates in Russian

Authors

DOI:

https://doi.org/10.14529/jsfi250303

Keywords:

semantic role labeling, llm, russian language, deep learning, neural networks

Abstract

Semantic role labeling (SRL) for morphologically rich languages, such as Russian, faces significant challenges due to complex case marking systems, free word order, and limited annotated resources. These challenges are particularly acute for emotion predicates, which require specialized linguistic expertise to capture distinctions between roles denoting those who feel, causes and objects of feelings. We propose a novel approach that leverages large language models to address SRL for Russian emotion predicates through few-shot in-context learning combined with predicate-specific instructions. Our method was evaluated on a manually annotated dataset of 169 sentences containing six emotion predicate groups extracted from Russian social media texts. We compared three state-of-the-art LLMs (Claude 3.7 Sonnet, GPT-5 Mini, and DeepSeek V3) against a RuELECTRA-based trained sequence labelling baseline using both exact and partial matching criteria. Claude 3.7 achieved the highest performance with 74.85% F1 score on partial matching, substantially outperforming the baseline (22.67%). For general predicates on FrameBank, our adapted method with GPT-5 Mini reached 85.0% F1 compared to the previous state-of-the-art of 80.1%. The LLM-based approach successfully handles complex linguistic phenomena, including syntactic zeros and multi-word arguments, while requiring minimal manually annotated training data. We demonstrate that LLM-based methods can significantly advance SRL for Russian by reducing dependency on large-scale annotated corpora while achieving competitive performance.

References

Claude 3.7 Sonnet System Card. https://api.semanticscholar.org/CorpusID:276612236

Arkhipov, M., Trofimova, M., Kuratov, Y., Sorokin, A.: Tuning Multilingual Transformers for Language-Specific Named Entity Recognition. In: Erjavec, T., Marcińczuk, M., Nakov, P., et al. (eds.) Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing. pp. 89–93. Association for Computational Linguistics, Florence, Italy (Aug 2019). https://doi.org/10.18653/v1/W19-3712

Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 1. pp. 86–90. Association for Computational Linguistics, Montreal, Quebec, Canada (Aug 1998). https://doi.org/10.3115/980845.980860

Bakker, R., Schoevers, A., van Drie, R., et al.: Semantic role extraction in law texts: a comparative analysis of language models for legal information extraction. Artificial Intelligence and Law. P. 1–35 (03 2025). https://doi.org/10.1007/s10506-025-09437-x

Bulygina, T.V.: Ya (I), ty (you) and others in the Russian grammar. Res philologica. Philological researches pp. 111–126 (1990)

Bulygina, T.V., Shmelev, A.D.: Language conceptualization of the world (based on the material of Russian grammar). Shkola "Jazyki russkoj kul’tury", Moscow (1997)

Campagnano, C., Conia, S., Navigli, R.: SRL4E – Semantic Role Labeling for Emotions: A unified evaluation framework. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 4586–4601. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-long.314

Chen, H., Zhang, M., Li, J., et al.: Semantic role labeling: A systematical survey (2025). https://doi.org/10.48550/arXiv.2502.08660

Cheng, N., Yan, Z., Wang, Z., et al.: Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL. In: Advanced Intelligent Computing Technology and Applications: 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part I. pp. 50–61. Springer-Verlag (2024). https://doi.org/10.1007/978-981-97-5663-6_5

Kuznetsov, I.: Semantic Role Labeling for Russian Language Based on Russian FrameBank. In: Khachay, M.Y., Konstantinova, N., Panchenko, A., et al. (eds.) Analysis of Images, Social Networks and Texts. pp. 333–338. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-26123-2_32

Larionov, D., Shelmanov, A., Chistova, E., Smirnov, I.: Semantic Role Labeling with Pretrained Language Models for Known and Unknown Predicates. In: Mitkov, R., Angelova, G. (eds.) Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019). pp. 619–628. INCOMA Ltd., Varna, Bulgaria (Sep 2019). https://doi.org/10.26615/978-954-452-056-4_073

Li, X., Chen, H., Liu, C., et al.: LLMs Can Also Do Well! Breaking Barriers in Semantic Role Labeling via Large Language Models. In: Che, W., Nabende, J., Shutova, E., Pilehvar, M.T. (eds.) Findings of the Association for Computational Linguistics: ACL 2025. pp. 23162–23180. Association for Computational Linguistics, Vienna, Austria (Jul 2025). https://doi.org/10.18653/v1/2025.findings-acl.1189

Liu, A., Feng, B., Xue, B., et al.: Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437 (2024). https://doi.org/10.48550/arXiv.2412.19437

Lyashevskaya, O., Kashkin, E.: FrameBank: a database of Russian lexical constructions. In: International Conference on Analysis of Images, Social Networks and Texts. Communications in Computer and Information Science, vol. 542, pp. 350–360. Springer (2015). https://doi.org/10.1007/978-3-319-26123-2_34

Mel’chuk, I.A.: About the syntactic zero. Typology of passive constructions, diatheses and voices pp. 343–360 (1974)

Nikitina, E.N., Onipenko, N.K.: Semantics and pragmatics of statements with psych verbs. Siberian Journal of Philology (2), 271–285 (2022). https://doi.org/10.17223/18137083/79/19

Nikitina, E.N., Smirnov, I.V.: Predicate-argument structure for intelligent text analysis of social media content. Speech Technology (1-2) (2020), https://api.semanticscholar.org/CorpusID:256224132

Oberländer, L.A.M., Klinger, R.: Token sequence labeling vs. clause classification for English emotion stimulus detection. In: Gurevych, I., Apidianaki, M., Faruqui, M. (eds.) Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics. pp. 58–70. Association for Computational Linguistics, Barcelona, Spain (Online) (Dec 2020), https://aclanthology.org/2020.starsem-1.7/

Oberländer, L.A.M., Reich, K., Klinger, R.: Experiencers, stimuli, or targets: Which semantic roles enable machine learning to infer the emotions? In: Proceedings of the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media. pp. 119–128 (2020)

Onipenko, N.K.: The model of the perspective of subjects (persons) and the problem of classification of egocentric elements. In: The problems of functional grammar: The principle of natural classification, pp. 92–121. Jazyki slavyanskoy kul’tury, Moscow (2013)

Paducheva, E.V.: Egocentric units of language and the modes of interpretation. In: Computational linguistics and intellectual technologies. Papers from the Annual International Conference "Dialogue". vol. 1, pp. 486–503. RGGU, Moscow (2013)

Senator, F., Lakhfif, A., Zenbout, I., et al.: Leveraging ChatGPT for Enhancing Arabic NLP: Application for Semantic Role Labeling and Cross-Lingual Annotation Projection. IEEE Access 13, 3707–3725 (2025). https://doi.org/10.1109/ACCESS.2025.3525493

Shelmanov, A., Devyatkin, D.: Semantic role labeling with neural networks for texts in Russian. In: Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference "Dialogue". vol. 1, pp. 245–256. RGGU, Moscow (2017)

Testelec, Ja. G.: Introduction to General Syntax. RGGU, Moscow (2001)

Troiano, E., Klinger, R., Padó, S.: On the relationship between frames and emotionality in text. Northern European Journal of Language Technology 9(1) (2023). https://doi.org/10.3384/nejlt.2000-1533.2023.4361

Voloshinov, V.N.: Marxism and the philosophy of language. Priboy, Leningrad (1930)

Zhou, Y., Fan, J., Zhang, Q., et al.: Modeling semantic-aware prompt-based argument extractor in documents. Applied Sciences 15(10) (2025). https://doi.org/10.3390/app15105279

Downloads

Published

2025-12-25

How to Cite

Smirnov, I. V., Larionov, D. S., Nikitina, E. N., & Kazachonok, G. A. (2025). LLM for Semantic Role Labeling of Emotion Predicates in Russian. Supercomputing Frontiers and Innovations, 12(3), 31–46. https://doi.org/10.14529/jsfi250303