
Supercomputing
Frontiers

and Innovations
2016, Vol. 3, No. 2

Scope

• Enabling technologies for high performance computing

• Future generation supercomputer architectures

• Extreme-scale concepts beyond conventional practices including exascale

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Distributed operating systems, kernels, supervisors, and virtualization for highly scalable

computing

• Scalable runtime systems software

• Methods and means of supercomputer system management, administration, and monitoring

• Mass storage systems, protocols, and allocation

• Energy and power minimization for very large deployed computers

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Parallel performance and correctness debugging

• Scientific visualization for massive data and computing both external and in situ

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA



• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany
• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• Victor Gergel, University of Nizhni Novgorod, Russia
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Alex Porozov, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia



Contents

Foreword to the Special Issue of International Journal of Supercomputing Frontiers
and Innovations
M. Michalewicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A Dynamic Congestion Management System for InfiniBand Networks
F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Many-Core Approaches to Combinatorial Problems: case of theLangford problem
M. Krajecki, J. Loiseau, F. Alin, C. Jaillet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A Radical Approach to Computation with Real Numbers
J. Gustafson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

InfiniCloud 2.0: Distributing High Performance Computingacross Continents
J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan, K. Ban . . . . . . . . 54

Making Large-Scale Systems Observable — Another Inescapable Step Towards Exas-
cale
D. Nikitenko, S. Zhumatiy, P. Shvets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Application of CUDA technology to calculation of ground statesof few-body nuclei by
Feynman’s continual integrals method
M. Naumenko, V. Samarin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.



Foreword to the Special Issue

of International Journal of Supercomputing Frontiers
and Innovations

This special issue of International Journal of Supercomputing Frontiers and Innovations

contains selected papers from the second conference Supercomputing Frontiers 2016 which took

place in Singapore on March 1518, 2016 (http://supercomputingfrontiers.com/2016/).

This year we continued with the goal set for the first conference in 2015: “to bring some of

the most highly recognized Supercomputing authorities to our community of users to expose our

community to the past achievements and to the visionary ideas of those exceptional trendset-

ters”. But gradually we also wish to give back to the supercomputing community with quality

contributions from the local researchers based in Singapore. An example of this local content

are the two papers in the current issue: the one by K. Ban et. al. on InfiniCloud 2.0, and the

second by John Gustafson entitled: “A Radical Approach to Computation with Real Numbers”.

There was also a special session on the global InfiniCortex project which was initiated and is

being run from A*CRC in Singapore. The remaining papers in this issue were contributed by

authors from the USA, France and Russia.

The conference program featured an exciting line-up of speakersand included sessions on:

1. Supercomputing applications in domains of critical impact and especially those requiring

computer resources approaching Exascale;

2. Efforts to build exascale supercomputers;

3. Exascale storage and file systems;

4. New, non-standard processor architectures including neuromorphic processors and automata

processors;

5. Convolution of supercomputing, artificial intelligence and the biological brain;

6. Languages for exascale and for human-computer interactivity;

7. InfiniCortex session; and

8. The country reports from India, Japan, China and Singapore.

The keynote speakers at this years Supercomputing Frontiers 2016 were: Srinivas Aluru

(Georgia Tech, USA), Baroness Susan Greenfield (Oxford Univeristy, UK), Horst Simon

(Lawrence Berkeley National Laboratory , USA) and Bronis de Supinski (Lawrence Livermore

National Laboratory, USA). The meeting brought together over 330 participants, featured 17

invited speakers and 27 contributed talks. There were also 8 workshops attended by over 200

participants. I encourage the reader to consult the 2016 conference program for the full line up

of the speakers and topics of all talks, since only a small selection is presented here.

Finally, let me rephrase what I said in my foreword to Vol.2 No.3 special issue of IJSF&I:

Supercomputing Frontiers 2017 will be held on March 1317, 2017, in Singapore for its third

edition. We promise a truly outstanding program with excellent scientific content. We welcome

your participation!

Marek Michalewicz

Chairman of the Scientific Programme Committee

and Chairman of the Organising Committee

4 Supercomputing Frontiers and Innovations



A Dynamic Congestion Management System for InfiniBand

Networks

Fabrice Mizero1, Malathi Veeraraghavan1, Qian Liu2, Robert D. Russell2,

John M. Dennis3

c© The Authors 2017. This paper is published with open access at SuperFri.org

While the InfiniBand link-by-link flow control helps avoid packet loss, it unfortunately causes

the effects of congestion to spread through a network. Even flows that do not pass through con-

gested ports can suffer from reduced throughput. We propose a Dynamic Congestion Management

System (DCMS) to address this problem. Without per-flow information, the DCMS leverages per-

formance counters of switch ports to detect onset of congestion and determines whether-or-not

victim flows are present. The DCMS then takes actions to cause an aggressive reduction in the

sending rates of congestion-causing (contributor) flows, if victim flows are present. On the other

hand, if there are no victim flows, the DCMS allows the contributor to maintain high sending

rates and finish as quickly as possible. The value of dynamic management of a switch congestion-

control parameter called Marking Rate, which is responsible for how quickly contributor flows can

be throttled, is evaluated in an experimental testbed. Our results show that dynamic congestion

management can enable a network to serve both contributor flows and victim flows effectively.

The DCMS solution operates within the constraints of the InfiniBand Standard.

Keywords: InfiniBand, Congestion control, Link-by-link flow control, Cascading rate reduc-

tions, Dynamic parameter setting.

Introduction

InfiniBand (IB) is widely used in high performance computing (HPC) systems. Among other

factors, InfiniBand owes its growing adaptation to its high link rates, low latency and low packet

loss. The InfiniBand protocol specification supports a credit-based link-by-link flow control to

avoid packet loss and a congestion control system based on explicit congestion notifications.

As noted in prior work [1], the presence of link-by-link flow control causes the effects of con-

gestion to spread backwards in the network. When an output port P1 of a switch becomes con-

gested, the input-side buffer of another port P2 on the same switch, through which a congestion-

causing (contributor) flow enters the switch, will fill up causing a reduction in the rate at which

flow-control credits are granted by port P2 to port P3 of an upstream switch. This causes a

reduction in the effective rate of port P3. Such a rate reduction could cascade backwards and

reduce the effective rates of many ports. Bulk-data flows passing through victim ports (ports

with reduced effective rates) become victim flows (suffer reduced throughput), even though their

own paths do not traverse the congested port. The problem statement of this work is to address

the spreading effects of congestion.

We propose a dynamic Congestion Management System (DCMS) that (a) monitors switch-

port counters to determine if victim flows have been created by a congestion event, and (b) if

there are victim flows, the DCMS dynamically modifies a switch congestion-control parameter to

dissipate the congestion event rapidly. A key consideration is the tradeoff between the creation

of victim flows vs. a reduction in the throughput of contributor flows.

Experiments were conducted on a two-switch, multi-host InfiniBand testbed. First, the

impact of switch congestion-control parameters were studied to determine the default settings

1University of Virginia, Charlottesville, USA; {fm9ab, mv5g}@virginia.edu
2University of New Hampshire, Durham, USA; {qga2, rdr}@unh.edu
3National Center for Atmospheric Research, Boulder, USA; {dennis}@ucar.edu

DOI: 10.14529/jsfi160201

2016, Vol. 3, No. 2 5



that would allow contributor flows to enjoy high throughput as long as no victim flows are

created. Next, our DCMS proof-of-concept prototype was executed and a switch congestion-

control parameter was modified dynamically in a manner that caused senders of contributor flows

to reduce their packet injection rates if the DCMS detected the presence of victim flows. When

victim flows and/or contributor flows that created victim ports end, or a duration threshold is

crossed, the DCMS resets the switch congestion-control parameter back to its default setting.

The novelty of this work lies in our proposal of a dynamic congestion management system

(DCMS). The solution is InfiniBand compliant in that the DCMS works in conjunction with

off-the-shelf switches requiring no modifications. The importance of dynamic parameter control

to enable the network to serve both contributor and victim flows is demonstrated through

experiments.

Section 1 offers the reader background on InfiniBand flow control and congestion control.

Section 2 describes the spreading effects of a congestion event using a new approach based

on a concept of cascading rate reductions. Section 3 describes the DCMS algorithm. Section 4

describes our experiments with a DCMS prototype. Related work is reviewed in Section 5, and

Section 5 presents our conclusions.

1. Background

The InfiniBand protocols [2] include link-layer flow control and transport-layer congestion

control. Link-layer flow control is used to ensure 0 packet loss due to buffer overflows. A trans-

mitter is permitted to send packets onto a link only when it has received sufficient credits to do

so from the receiving end of the link. A Flow Control Packet (FCP) is sent from the receiving

side to the transmitting side of a link to explicitly provide information on the amount of space

left in the receive buffer.

The transport-layer congestion control is based on Explicit Congestion Notification (ECN),

wherein once congestion is detected at a switch, the contributing sources are notified to reduce

their packet injection rates. Coordinated actions are required at the (i) switch that detects

congestion on one of its ports, (ii) destination Host Channel Adapters (HCAs) of flows that

traverse the congested port, and (iii) source HCAs of those flows.

Specific details of how a switch decides that one of its ports is congested are left to vendor

implementation. In one approach described by Gran and Reinemo [3], when the fill-ratios of

input-port buffers holding packets destined to a particular output port exceed a set threshold,

the switch will consider the output port to be congested. A parameter called Threshold controls

how quickly a switch reacts to congestion, with a value 15 indicating the fastest reaction to

congestion onset, and a value 0 for disabled congestion control. The switch then sets a bit called

Forward ECN (FECN) in the transport-layer header to 1 for a fraction of the packets transmitted

onto the output port. The value of the fraction is determined by a configurable switch parameter

called Marking Rate. The Marking Rate is the mean number of unmarked packets sent between

consecutive marked packets, where “marking” refers to the setting of the FECN bit. Therefore,

the higher the Marking Rate, the lower the rate of generation of FECNs.

When a destination HCA receives a marked packet, the HCA sets the Backward ECN bit

(BECN) in an Acknowledgment (ACK) or a data-carrying packet sent from the destination to

the source, or the destination HCA generates an explicit Congestion Notification Packet (CNP)

to the source of the flow.

A Dynamic Congestion Management System for InfiniBand Networks

6 Supercomputing Frontiers and Innovations



Figure 1. Illustrative InfiniBand network

When a source HCA receives a BECN-marked or CNP for a flow, the source HCA reduces

the packet injection rate for that particular flow in the following manner. One Congestion Control

Table (CCT) is maintained per port, and one CCT Index (CCTI) can be maintained per flow

(queue-pair) or Service Level (SL). A queue-pair is comparable to TCP source and destination

port numbers, while SL is a parameter that allows applications to indicate the desired service

type. Each entry in the CCT specifies a packet injection delay number, which means that the

injection delay between packets for a flow is determined by the CCTI associated with the flow.

The HCA maintains two configurable parameters, CCTI Increase and CCTI Timer, per port

per SL. When a source HCA receives a BECN-marked packet or CNP from the destination

for a particular flow, it increases the CCTI of the flow by the CCTI Increase value for the

corresponding port/SL. On every reset of the CCTI Timer, the CCTI of all flows associated with

that port/SL are decreased by 1.

In summary, multiple configurable parameters in switches and in HCAs jointly determine

how quickly congestion is detected, and how quickly the sending rates of contributor flows are

throttled or restored. Throttling contributor flows could have a positive impact on victim flows.

On the other hand, throttling contributor flows could have the negative impact of lowering the

throughput of these flows.

The purpose of this work is to develop and evaluate schemes that can manage the above-

described tradeoff through dynamic modifications to the Congestion-Control (CC) parameters

at switches. The only HCA CC parameter that is set on a per-flow basis is CCTI, and therefore

it could potentially be modified dynamically. However, it is complex to deploy an external man-

agement server that can determine per-flow characteristics and then take actions to dynamically

modify the CCTI of a flow at its source. In IP networks, NetFlow and other similar mechanisms

are built into routers to reconstruct flow characteristics from sampled or unsampled packets.

To our knowledge, there is no comparable feature in InfiniBand switches, which makes it more

complex to develop external solutions for flow reassembly.

2. Causes, modes, and effects of congestion

This section describes the causes of congestion, two different modes of congestion, and the

effects of congestion.

Congestion occurs at a port p of a switch s when the aggregate arrival rate of packets

destined to port p exceeds its capacity. This is the main cause of congestion, and port p of

switch s is referred to as the root port of a congestion event. For example, consider the network

shown in Fig. 1. If the aggregate rate of packets arriving at ports u, v, and w, and destined to

port p of switch s, exceeds the capacity of port p, then port p will enter a state of congestion.

F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis

2016, Vol. 3, No. 2 7



Formally, we say that port p of switch s is congested at time t if

∑

v∈Ps

fsvp(t) > Csp, (1)

where fsvp(t) is the rate of arrival of packets at port v of switch s that are destined to port

p of switch s, Ps is the set of all ports of switch s, and Csp is the link capacity of port p of

switch s. When congestion occurs at port p of switch s, input-side buffers of ports with incoming

packets that are destined to port p will start filling up. If the configured thresholds are crossed

the switch will detect the congestion event and take the actions described in Section 1.

There are two modes of congestion as illustrated by an example in the network of Fig. 1.

Assume that the port p of switch s enters the state of congestion. If there is a flow that traverses

ports j and q of switch r and ports v and p of switch s, then the buffer on the incoming side of

port v of switch s will start to fill up, if the instantaneous arrival rate of packets on this flow

exceeds the share of the congested-port p bandwidth available to this flow. When this buffer fills

up, the rate at which FCPs are generated by port v of switch s to port q of switch r to offer

the latter credits for packet transmission will decrease. Effectively, the rate of port q of switch

r becomes reduced.

Formally, if port p of switch s enters congestion at time t, then at time t + ε, where ε is a

small interval (on the order of nanoseconds in high-rate InfiniBand links),

Rrq(t+ ε) < Crq, (2)

where Rrq(t + ε) is the rate at which data is sent by the transmitter at port r of switch q at

time (t+ ε), and port q of switch r is connected to some port v of switch s. Thus, in our usage,

“rate” of a port is time-variant, while “capacity” of a port is time-invariant.

A reduction in the sending rate of a switch port can have cascading effects at neighboring

switches. In the above example, the presence of a flow traversing port q of switch r and the

congested port p of switch s is the cause of rate reduction of port q of switch r. Further, if a flow

enters switch r at port l and is destined for port q, then packets from this flow will be served

at a lowered rate by port q. Consequently, the input buffer at port l could fill up, causing FCPs

to grant credits at a lowered rate to port a of switch d. This causes a rate reduction of port a

of switch d. Events that cause these types of “Cascading Rate Reductions” are referred to as

CRR congestion events. Ironically, this kind of cascading rate reductions occurs because of IB’s

zero-packet loss policy, which is enforced by the link-by-link flow control. In Ethernet networks,

as there is no link-by-link flow control, a transmitter can simply send packets. If a switch buffer

is full, packets will simply be dropped. Therefore, a congestion event is handled locally, and its

effects do not spread to other switches, as with cascading rate reductions in InfiniBand networks.

On the other hand, if there was no flow passing through neighboring switch ports that also

pass through the congested port, then the congestion event could be localized in that all rate

reductions are limited to HCA ports. If switch ports are not affected, CRRs will not occur. For

example, assume that three hosts are connected to ports u, w, and p of switch s. If the hosts

connected to u and w initiate flows destined to the host connected to port p, then port p could

get congested. This may in turn cause FCPs to limit credits to the HCAs at hosts connected

to ports u and w. However, the rate reductions of these HCA ports cannot propagate to other

ports, and therefore, we refer to this mode of congestion as localized.

A Dynamic Congestion Management System for InfiniBand Networks

8 Supercomputing Frontiers and Innovations



The main effect of congestion is the creation of victim flows. A “victim flow” is a flow whose

path does not traverse a congested port, and yet (i) does not enjoy the full spare capacity on

its path, or (ii) its packets are subject to additional delays. Flows that share one or more links

with contributor flows can become victim flows. Consider a flow V in our above example that

traverses ports k and q of switch r and ports v and w of switch s. Assuming all links in our

example network are Single Data Rate (SDR) links (i.e., 10 Gbps), but the inter-switch link is

a Quad Data Rate (QDR) link (i.e., 40 Gbps), the flow V should enjoy SDR rate, if there are

no other flows sharing its links. However, because the rate of the QDR inter-switch link will be

determined by the rate at which FCPs grant credit to port q of switch r to send packets, the

rate of flow V will be limited to this FCP-dictated rate rather than the spare capacity on its

path. Hence flow V could become a victim flow.

In summary, congestion is caused by a packet arrival rate that exceeds link capacity. There

are two modes of congestion: CRR and localized congestion. Both modes of congestion could

have the effect of creating victim flows, which could be delay-sensitive flows or bulk-data flows.

3. Dynamic Congestion Management Solution (DCMS)

Table 1. Notation
Symbol Meaning

s switch index

p port index

S and Ps Set of all switches, and all ports on switch s ∈ S, respectively

H and Ph Set of all hosts, and all HCA ports on host h ∈ H, respectively

I and J Set of all switch ports I =
⋃
s∈S

Ps and set of all host ports J =
⋃

h∈H
Ph

N : (S × I) → {(S ×
I) ∪ (H× J)} ∪ ∅

Mapping function that shows the neighbor switch/host and port

to which each switch’s port is connected, if present;

N(s, p) = null if p /∈ Ps

W (s, p, t) PortXmitWait counter value of port p ∈ Ps at time t

D(s, p, t) PortXmitData counter value of port p ∈ Ps at time t

C(s, p, t) PortXmitCongTime counter value of port p ∈ Ps at time t

∆X(s, p, t) X(s, p, t)−X(s, p, (t− τ)), where X ∈ {W,D,C}, where τ

is the inter-sweep interval

V(s, p) Set of victim ports (r, q) for which {(s, p), (r, q)} ∈ O1

M(s, p) Marking Rate of port p ∈ Ps of switch s; {Low, Default, High}
S(s, p) State of p ∈ Ps of switch s ∈ S; {Low-MR, Default-MR}
I(s, p) Interval count for low value of M(s, p)

TC Congestion threshold

TW Rate-reduction threshold

TD Utilization-change threshold

TI Low-MR (Marking Rate) duration threshold

We propose a Dynamic Congestion Management System (DCMS) to modify the

Marking Rate parameter in switches to cause reductions in the sending rates of contributor

flows if there are victim flows. If there are no victim flows, contributor flows are allowed to send

at high rates so that they can finish their transfers quickly to avoid creating victim flows.

F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis

2016, Vol. 3, No. 2 9



The DCMS determines whether-or-not victim flows have been created by a congestion

event by reading values of three types of switch port counters, namely, PortXmitCongTime,

PortXmitWait, and PortXmitData. PortXmitCongTime is the amount of time a port has spent

in a congested state. PortXmitWait indicates the amount of time a port has data to send but

lacks flow-control credits. PortXmitData is the amount of data transmitted on the port (in 32-bit

words). Specifically, DCMS uses the perfquery tool to gather values of above stated counters.

Since perfquery uses General Management Packets (GMPs) that are subjected to flow control,

DCMS uses a separate SL for these packets so that they are given higher priority than user-data

packets, and not subject to congestion control.

The default settings for switch CC parameters are presented first, and then an algorithm

for making dynamic modifications is described.

3.1. Default values for switch parameters

To begin with, we recommend that the CC Threshold in all switches be set to 15 [4], so

that even at the slightest hint of congestion on one of its ports, a switch will start increasing

the corresponding PortXmitCongTime counter, allowing the DCMS to react in a manner that

prevents or mitigates the problem of cascading rate reductions.

We recommend setting the switch Marking Rate to a high value so that few FECNs and

corresponding BECNs are sent when a congestion event occurs. The fewer the BECNs, the

smaller the injection rate reduction at the sending HCA. In other words, when Marking Rate

is high, contributor flows will continue to send data at high rates. The rationale is that the

DCMS will determine whether a congestion event has created victim flows using the algorithm

described in the next section, and if there are victim flows, the DCMS will reduce Marking Rate

to create more FECNs and BECNs, which in turn will cause contributor flows to throttle their

injection rates. On the other hand, if the congestion event does not cause any victim flows,

then the DCMS will allow the contributor flows to enjoy high throughput by not changing the

Marking Rate from its default high setting. The sooner a contributor flow ends, the lower the

probability of it causing a victim flow.

3.2. Algorithm for dynamic modification of Marking Rate

Algorithm 1 Dynamic Congestion Management

1: Read switch counters and compute ∆W (s, p, t),∆C(s, p, t),∆D(s, p, t), ∀s ∈ S, and p ∈ Ps

in each sweep

2: Call Algorithm 2

3: Call Algorithm 3

4: Sleep until sweep timer τ expires; go to 1

The basic concept of the algorithm is as follows. If a congestion event causes a rate reduc-

tion in a neighboring switch port, the Marking Rate parameter of the congested (root) port is

lowered significantly so that the senders of contributor flows throttle their sending rates aggres-

sively and congestion dissipates quickly. The DCMS monitors the affected neighboring switch

port(s) to check if their link rates recovered after the lowering of the root-port Marking Rate.

If such a recovery is in evidence on even one affected neighboring switch port, the root-port

Marking Rate is kept low. A count is maintained for the number of inter-sweep intervals for

A Dynamic Congestion Management System for InfiniBand Networks

10 Supercomputing Frontiers and Innovations



Algorithm 2 Check for newly congested ports and new victim ports

for each port (s, p) where s ∈ S, p ∈ Ps do,

2: if (∆C(s, p, t) > TC) ∨ ((N(s, p) ∈ J) ∧ (∆W (s, p, t) > TW )) then . Is the port

congested?

for each port (r, q) where (r ∈ S, q ∈ Pr, N(r, q) = (s, v), v ∈ Ps) s.t. (r, q) /∈ V(s, p)

do

4: if ∆W (r, q, t) > TW then . Is there a victim port?

Add (r, q) to set V(s, p) . Add port to set of victim ports for the congested

port

6: if S(s, p) 6=Low-MR then

. Another victim port could have previously caused this state change

8: M(s, p)← Low . A low setting will lead to a reduction in sending rates of

congestion-causing flows

S(s, p) =Low-MR

10: I(s, p)← 1 . Interval count to limit maximum duration for low

Marking Rate setting

end if

12: end if

end for

14: end if

end for

Algorithm 3 Monitor ongoing CRR congestion events and restore default operation

for each port (s, p) for which (|V(s, p)| 6= 0) ∧ (I(s, p) 6= 1) do

Increment I(s, p) by 1

3: if (I(s, p) ≤ TI) then . Low-marking-rate maximum duration not yet reached

for each port (r, q) ∈ V(s, p) do

if (∆D(r, q, t− τ)−∆D(r, q, t)) > TD then

6: . Link utilization dropped signaling absence or completion of victim flows

Remove port (r, q) from V(s, p)

end if

9: end for

end if

if (|V(s, p)| == 0) ∨ (I(s, p) == TI) then

12: . No more victim ports, or Low-marking-rate duration threshold is reached

M(s, p)← Default

S(s, p) =Default-MR

15: end if

end for

F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis

2016, Vol. 3, No. 2 11



which the Marking Rate is kept low, and a low-MR (Marking Rate) duration threshold is used

to limit the maximum number of intervals for which the congested-port Marking Rate is kept

low. Given the dynamic nature of flows, the DCMS cannot know for certain whether-or-not all

victim flows have ended, and therefore it restores the root-port Marking Rate to its high de-

fault value when the Low-MR duration threshold is crossed. If some of the victim flows are still

ongoing, a second cycle of low Marking Rate and congestion-event monitoring will be started.

The cycle will be repeated multiple times if needed.

The DCMS procedure is described in pseudode in Algo. 1. Periodically, the DCMS reads

the three types of switch-port counters described earlier. This operation is referred to as a

“sweep.” For simplicity, Line 1 states that the counters are read for all ports of all switches (see

Table 1 for notation), but in practice, the DCMS can build up historical information on ports

that experience congestion, and limit its reading of the PortXmitCongTime to just those ports

that suffer from congestion. Line 1 of Algo. 1 shows that changes in PortXmitCongTime (∆C),

PortXmitWait (∆W ), and PortXmitData (∆D) counters are computed by the DCMS. Algo. 1

then calls Algo. 2 and Algo. 3 as shown in the pseudocode. Algo. 1 is executed after each sweep,

which is conducted at time intervals of τ , a configurable parameter.

Algo. 2 identifies congested ports, and then examines the PortXmitWait counter of ports in

neighboring switches to determine if the congestion event is localized or a CRR event. Multiple

ports in neighboring switches could suffer from a rate reduction due to a congestion event, i.e.,

there could be multiple victim ports for a single congestion event. Therefore a set V(s, p) is

created to store the identifiers of the victim ports caused by congestion of root port p of switch

s (henceforth the notation (s, p) will be used to denote this port). As soon as the first victim

port is identified, the Marking Rate M(s, p) is immediately set to Low, so that the senders of

contributor flows decrease their injection rates rapidly. A state variable S(s, p) is used in the

DCMS to track the Marking Rate value set for the port in order to avoid sending unnecessary

messages from the DCMS to a switch. An interval count I(s, p) tracks the number of inter-

sweep intervals since the Marking Rate of port (s, p) was set to Low. Details are provided in the

pseudo-code of Algo. 2.

The purpose of Algo. 3 is to monitor counter values during ongoing CRR congestion events,

and to restore the Marking Rate of a congested port. The challenge lies in determining when to

increase the Marking Rate of a congested port back to its Default value. The key point is that

a victim port may or may not have victim flows. A contributor flow, i.e., a flow that traverses

the congested port, could make a neighboring switch port through which it passes a victim port

because of link-by-link flow control as explained in Section 2. Therefore, a victim port does

not necessarily need to have a victim flow. If there is no victim flow, the Marking Rate of the

congested port should be rapidly restored to its Default value. On the other hand, if there is a

victim flow through a victim port, the Marking Rate of the congested port should be held Low.

Since the DCMS does not have per-flow information, it makes conjectures about the presence

or absence of victim flows through victim ports. Our solution is based on an observation that

when the Marking Rate of a congested port is set to Low, the contributor flows will suffer from

a rapid rate reduction, which in turn will cause the neighboring victim port to return to its

full-capacity state, allowing bulk-data victim flows to enjoy a rapid increase in throughput.

Therefore, the DCMS observes the changes in the PortXmitData counter of victim ports for

an ongoing CRR congestion event. An increase in the observed utilization of a victim port

is assumed to indicate the presence of a victim flow, because if only contributor flows passed

A Dynamic Congestion Management System for InfiniBand Networks

12 Supercomputing Frontiers and Innovations



through the victim port, dropping the Marking Rate of the congested port to Low would cause

a rate reduction in the contributor flows, and correspondingly in the utilization of the victim

port. On the other hand, a decrease in the observed utilization of a victim port is interpreted

by the DCMS as an absence or completion of victim flows passing through the victim port.

The DCMS will reset the Marking Rate of congested ports back to the high Default value

if there are no more victim ports or if the duration for which a port’s Marking Rate was held

low exceeds a threshold TI , which is the Low-MR duration threshold (see Table 1). Details are

provided in the pseudo-code of Algo. 3.

In summary, the default setting of switch Marking Rate is chosen to be a high value so that

if a congestion event is localized, the contributor flows are allowed to enjoy high throughput so

that they end quickly. If, on the other-hand, the congestion causes CRRs in neighboring switch

port rates, then the DCMS reduces the Marking Rate of the congested (root) port to reduce the

impact of contributor flows on victim flows. The DCMS then plays a guessing game of whether-

or-not victim flows are passing through victim ports, when victim flows end, when ports in

neighboring switches stop being victim ports, and when a congestion event ends. The DCMS

needs to trade off the negative impact of a congestion event on victim flows, while simultaneously

ensuring that contributor flows are provided with the opportunity to send data at high rates

and thus end quickly.

A limitation of this solution is sweep overhead, as was noted in the dFtree solution [5]. To

reduce sweep overhead, the DCMS could rely on historical data to limit its reading of switch

counters to just those ports that typically suffer from congestion (e.g., ports connected to disk

subsystems). Further the DCMS could be configured to use two inter-sweep intervals, a longer

interval until a congestion event is detected, and a shorter interval while a congestion is in

progress. A short interval is required for an effective assessment by the DCMS about whether-

or-not victim flows exist after a Marking Rate reduction. The initial longer interval would most

likely cause the DCMS to miss short-duration congestion events. But we reason that if a con-

gestion event is of short duration, its impact on other flows is necessarily limited, which could

justify no DCMS action. On the other hand, long-lasting contributor flows should be throttled

as they have more time in which to adversely affect other flows, and therein lies the value of

DCMS.

4. Experiments

Figure 2. Experimental testbed; All HCA links are SDR

Two experiments were conducted to study CRR congestion events. Experiment I was used to

study the impact of the default setting of Marking Rate. In Experiment II, our DCMS prototype

was executed to dynamically modify the Marking Rate, and results were collected to study the

impact of low-MR duration threshold in the DCMS solution.

F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis

2016, Vol. 3, No. 2 13



Section 4.1 describes the testbed setup used for the experiments. Section 4.2 describes the

execution and results of Experiment I. Section 4.3 describes the execution and evaluation of

Experiment II.

4.1. Experimental configuration

The experimental setup consists of 6 hosts interconnected by two InfiniBand switches as

shown in Fig. 2. Each host has an Intel Xeon E5/Core i7 CPU, 64 GB RAM, PCIe-2 bus, and

a Mellanox MT4099 HCA. All hosts run OFA OFED-3.5-2 on top on Scientific Linux v6. In all

experiments, OpenSM v3.3.18 runs on one of the hosts.

Each node’s HCA was configured to operate at 4xSDR rate (approx. 8 Gbps). The inter-

switch link rate was set to 4xQDR rate (approx. 32 Gbps). For simplicity, we refer to 4xSDR as

SDR and 4xQDR as QDR in the rest of the paper.

A custom software program called blast was used to create high-throughput, memory-to-

memory transfers. Each flow sent 140 messages, each of size 128 MiB.

4.2. Experiment I: Default setting

The goal of this experiment was to determine a default value for switch Marking Rate. Since

reassembling packets into flows to identify senders of contributor flows inside the network is a

compute-intensive operation, the DCMS does not know the senders of contributor flows and

hence cannot modify the HCA CC parameters. Nevertheless, the values of these HCA CC pa-

rameters will influence congestion-recovery time. Therefore we study the impact of CCTI Timer.

Our main finding is that for the testbed used, if CCTI Timer is set to values in the 75-300

range at the HCAs, then a default value of 64 or 128 for switch Marking Rate is sufficient to

allow contributor flows to enjoy high throughput if the congestion event is localized.

The Marking Rate was varied from 0 to 2048, and the CCTI Timer was set to 75, 150,

and 300. The other CC parameters were set as follows (i) At each HCA: CCTI Increase: 1,

CCTI Limit: 0, and (ii) At each switch: Threshold: 15.

Blast flows were started sequentially as follows: (i) X-Y flow, (ii) B-D flow at 8s, (iii) C-D

flow at 13s, and (iv) A-D flow at 28s (See Fig. 2). Ideally, the X-Y flow should not be affected

by the other flows, and the remaining flows should each receive a one-third share of the SDR

rate of port (S2, 23). The (s, p) notation is used to identify port p of switch s, and the reader

is referred to Fig. 2 for switch and port numbers. The X-Y flow did enjoy throughput close to

SDR (which was the rate of the HCAs) under some values of Marking Rate but not others, as

seen in our discussion of the results below.

Fig. 3 shows graphs corresponding to three settings of the CCTI Timer and Marking Rate:

(i) 75 and 0, respectively, (ii) 300 and 0, respectively, and (iii) 75 and 2048, respectively. We

use the shorthand notation 75-0, 300-0, and 75-2048 for these three cases. In the first two cases,

where Marking Rate was 0, the X-Y flow enjoyed unhindered SDR throughput; however, in the

third case, the X-Y flow was limited to one-third SDR. This finding is explained below.

Fig. 3a shows that the sum total of the throughput values for the B-D, C-D and A-D flows

was only 3.1 Gbps from time 40.32 s to 301.8 s in the 75-0 case. This number is even lower at

1.98 Gbps for the 300-0 case as seen in Fig. 3b. At the higher value (300) of the CCTI Timer,

the CCTI of flows will be decreased at a lower rate, and therefore inter-packet injection times

stay high leading to a lower sending rate. This behavior explains why the total throughput for

A Dynamic Congestion Management System for InfiniBand Networks

14 Supercomputing Frontiers and Innovations



the three flows is lower in the 300-0 case. In these two cases, 75-0 and 300-0, the X-to-Y flow

ran unhindered at 7.9 Gbps (close to SDR), and completed its transfer in 40.32 s. Since the

aggregate throughput of the B-D, C-D and A-D flows was less than the 8 Gbps rate of port

(S2, 23), the congestion dissipated quickly. Since the inter-switch link was QDR, the sum total

throughput of the X-Y and A-D flows was less than the inter-switch link rate. No congestion

was recorded in the PortXmitCongTime counter of port (S1, 15). This is because the sum total

of the input-flow rates destined for port (S1, 15) was less than the QDR rate of this port.

In the third case, 75-2048, only 1 in 2048 packets were marked by switch S2 in the contributor

flows (A-D, B-D, C-D). This results in a low BECN arrival rate at the senders, A, B and C,

causing these senders to maintain fairly high sending rates. Therefore, the sum total throughput

of the B-D, C-D, and A-D flows was close to the SDR theoretical maximum rate of 8 Gbps, as

seen in Fig. 3c. On the other hand, the X-Y flow was impacted when the A-D flow was initiated

at 28 s. The X-Y flow throughput dropped from 7.9 Gbps to 2.6 Gbps at time 29.5 s, as seen in

Fig. 3c, and stayed at this rate until the X-Y flow ended at 65 s. In this case, the X-Y flow is a

victim flow.

An explanation of why the X-Y flow received only 2.6 Gbps (one-third SDR) lies in the

rate-reduction of port (S1, 15) caused due to a lack of flow-control credits from port (S2, 20)

(see Fig. 2). Unlike in the 75-0 and 300-0 cases, when the PortXmitWait counter at port (S1,

15) was 0, in the 75-2048 case, the PortXmitWait counter recorded 2.5× 109 ticks at the end of

the flows. As a tick was 22ns in the testbed network, and the duration of the test was 130 s, the

transmitter was not allowed to send data for 55 s out of the 130 s duration, which means that

the effective link rate was lowered to 13.54 Gbps from the original 32 Gbps QDR link capacity.

Hence this rate reduction at port (S1, 15) would have caused the input-side buffers at ports

11 and 12 to fill up, causing these ports to send FCPs with limited credits to the HCAs at X

and A, respectively. The PortXmitWait at HCAs X and A also built up to 1.9 × 108 ticks and

4.8× 108 ticks, respectively. The packet scheduler at port (S1, 15) would have served packets of

the X-Y and A-D flows from ports 11 and 12, respectively, in round-robin mode, and therefore

both these flows get the same 2.6 Gbps throughput. To determine a suitable default setting, we

repeated the experiment for other settings of Marking Rate besides 0 and 2048. Fig. 4 shows

the results for Marking Rate values in powers of 2, i.e., 8, 16, · · · , 128. As seen earlier, when

the marking rate was 0, the X-Y flow duration was 40.32 sec under all three settings of the

CCTI Timer (75, 150, and 300), which is the same duration as that of an unhindered X-Y flow.

When Marking Rate was 0, the PortXmitCongTime of (S2, 23) reached only 330K, 216K, and

130K, for the three values of CCTI Timer, 75, 150, and 300, respectively. However, for other

values of Marking Rate, starting from 8 to 128, the PortXmitCongTime of (S2, 23) reached

approximately 850K. In other words, when Marking Rate is set to 0, the congestion dissipates

faster. The completion time of the X-Y flow was close to 65 for higher Marking Rate values,

reaching this level sooner for the smaller 75 setting of the CCTI Timer as seen in Fig. 4a.

Fig. 4b shows that when the marking rate was 0, the total throughput of the A-D, B-D,

C-D flows added up to only 3.18, 2.46, and 2.1 Gbps with CCTI Timer values of 75, 150 and

300, respectively, all of which are well below the SDR rate. This illustrates that a marking

rate of 0 is needed to avoid the effects of congestion on victim flows, but that this advantage

is achieved by sacrificing throughput of contributor flows. With a Marking Rate of 64, the

aggregate throughput of the three contributor flows was 8 Gbps for all three values of CCTI Timer

at a cost to the victim flow.

F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis

2016, Vol. 3, No. 2 15



In summary, this experiment shows us that a default value of 64 or 128 can be used for

switch Marking Rate if HCAs CCTI Timer values lie in the range 75-300. Further, it showed

that the Low value of the Marking Rate used by DCMS should be 0.

(a) 75-0 (b) 300-0 (c) 75-2048

Figure 3. Per-flow throughput as a function of time; CCTI Timer-Marking Rate is shown below
each graph

4.3. Experiment II: DCMS

(a) X-Y victim flow duration (b) Aggregate throughput of contributor flows

Figure 4. Illustrates tradeoff between victim-flow and contributor-flow performance

In this experiment, our DCMS prototype was executed to dynamically modify the

Marking Rate, and the results were collected to study the impact of low-MR duration threshold

in the DCMS solution. Flows were started sequentially in the following order: B-D, X-Y at 2s,

(a) Flow throughput vs. time (b) Port counter values

Figure 5. Scenario 1: Longer Low-MR duration threshold (12 sec)

A Dynamic Congestion Management System for InfiniBand Networks

16 Supercomputing Frontiers and Innovations



C-D at 5s, and A-D at 7s. The CCTI Timer was set to 75, and a default value of 128 was used

for the Marking Rate. The thresholds TW and TC were set to 27.4M and 8M, respectively. Two

scenarios were created by varying the Low-MR duration threshold. In the first scenario, the

victim flow ended before the threshold was reached, while in the second scenario, the contrib-

utor and victim flows continued past the threshold, and therefore, the second reduction in the

Marking Rate followed by congestion-event monitoring was required.

Fig. 5a shows the results for Scenario 1. The B-D flow enjoyed 8 Gbps when it started, as

did the X-Y flow when it started. At 4.5s, when the C-D flow was started, the B-D and C-D

flows each got roughly 4 Gbps, while the X-Y flow got 8 Gbps. As the aggregate rate of the B-D

and C-D flows exceeded (S2, 23) port capacity, the rate of increase of PortXmitCongTime of port

(S2, 23) increased at 4.8s from small values to 6.0 × 106 ticks/s, as seen in Fig. 5b. However,

PortXmitWait of port (S1, 15) remained unchanged (i.e., rate of increase, as seen in Fig. 5b, was

0) as the A-D flow had not yet started. Meanwhile, PortXmitData of port (S1, 15) registered a

growth rate of 2.7× 108 words/s as seen in Fig. 5b, which means X-Y flow was sending packets

at a high rate. Despite the increase in PortXmitCongTime of port (S2, 23), the controller took

no action as the congestion was localized, i.e., there were no victim ports. In other words, the

condition of Line 4 in Algo. 2 was not met.

When the A-D flow was started, the throughput of each flow destined to D was one-third of

the port (S2, 23) rate (roughly 2.67 Gbps) as seen in Fig. 5a. In addition, the throughput of the

X-Y flow also dropped from 8 Gbps to 2.67 Gbps. Fig. 5b shows that the PortXmitWait of port

(S1, 15) started increasing at 2.8×107 ticks/s. Simultaneously, the growth-rate of PortXmitData

of port (S1, 15) dropped from 2.7×108 words/s to 1.8×108 words/s. Together, these port counters

illustrate the effect of rate reduction at port (S1, 15) caused by the congestion at port (S2, 23).

At 7s, the TC threshold and the TW threshold were crossed (Lines 2 and 4 of Algo. 2), which

caused the DCMS to lower Marking Rate of port (S2, 23) to 0 (Line 8 of Algo. 2). The crossing

of both thresholds was an indication that congestion at port (S2, 23) created a victim port (S1,

15).

At 8.5s, as a result of setting Marking Rate to Low, the sending rates of flows B-D, C-D,

and A-D decreased causing their throughput to drop from 2.67 Gbps to 1.23 Gbps. This action

relieved congestion, and the throughput of the victim X-Y flow rebounded from 2.67 to roughly

8 Gbps as seen in Fig. 5a. Fig. 5b shows that at this point, the growth-rate of PortXmitData of

port (S1, 15) grew to 3.1×108 words/s, while the growth rates of PortXmitCongTime at port (S2,

23) and PortXmitWait at port (S1, 15) dropped back down. From 8.5s to 23s, the controller did

not reset the port (S2, 23) Marking Rate to Default because the Low-MR duration threshold

(12 s) was not crossed. During this time interval, the condition of Line 5 of Algo. 3 was not met,

and therefore the Marking Rate of port (S2, 23) was held at 0. This allowed the X-Y flow to

complete at 22 s as seen in Fig. 5a.

Soon after, when the Low-MR duration threshold was crossed, the DCMS reconfigured the

Marking Rate of port (S2, 23) to 128 (its default value), which allowed the contributor flows to

recover. As a result, each of A-D, B-D, C-D flows recovered throughput from 1.23 Gbps to 2.67

Gbps (aggregate of 8 Gbps shown in Fig. 5a). The growth rate of PortXmitData of port (S1, 15)

remained at 0.91 × 108 words/s until B-D flow ended, at which point the rate of the A-D flow

increased, causing the growth rate of PortXmitData of port (S1, 15) to increase to 1.37 × 108

words/s. When C-D ended and the A-D flow started enjoying 8 Gbps as seen in Fig. 5a, the

growth rate of PortXmitData of port (S1, 15) increased to 2.6× 108 words/s as seen in Fig. 5b.

F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis

2016, Vol. 3, No. 2 17



Figure 6. Scenario 2: Shorter Low-MR duration threshold (6 sec)

Finally, when A-D ended and there were no more flows passing through port (S1, 15), the growth

rate of PortXmitData dropped back to 0.

Fig. 6 shows Scenario 2 results in which the Low-MR duration threshold was set to 6 sec,

which caused the DCMS to reset the Marking Rate of port (S2, 23) to its default value at 17

sec. This operation caused the X-Y victim flow to suffer another drop in its throughput. The

DCMS observed a similar build-up of the port counters resulting in a second reduction in the

Marking Rate of port (S2, 23), which allowed the X-Y victim flow to recover its throughput.

This example illustrates that the DCMS can protect victim flows from the effects of congestion

even with no knowledge of flows.

In summary, the above experiments demonstrated the feasibility of deploying a DCMS to

manage CC parameters in a dynamic manner such that both victim flows and contributor flows

can be served effectively.

5. Related Work

Prior work on InfiniBand congestion control includes simulation and experimental studies

[1, 3, 6, 7], recommendations for setting CC parameters [4, 8], and new methods to combat the

effects of congestion [9–14].

Our work builds on the above-cited literature by extending our understanding of the effects

of link-by-link flow control on congestion in InfiniBand networks. While terms such as congestion

spreading [8], and forests of congestion trees [1], capture the effects of link-by-link flow control,

in Section 2, we offered a new term cascading rate-reductions to describe the idea that as such

links that are behind a congestion point do not themselves suffer from congestion, but rather a

reduction in rate as explained in Section 4.2.

With regards to setting CC parameters, our contribution is to determine default values for

switch Marking Rate, a parameter that was not considered in the work by Pfister, et al. [8].

The work by Gran, et al. [6] considered switch Marking Rate and HCA CCTI Timer as we did,

but stated that the question of how to set CC parameters was a “subject of ongoing research.”

Our contribution to this subject, which is a dynamic modification of Marking Rate, is a new

advance. An adaptive marking rate solution was patented [15], but it requires knowledge about

flows.

Of the work on new methods to combat the effects of congestion, Regional Explicit Conges-

tion Notification (RECN) [9, 11] and Destination-Based Buffer Management [12] are effective

A Dynamic Congestion Management System for InfiniBand Networks

18 Supercomputing Frontiers and Innovations



but require modifications of the switches as they redirect contributor flow packets to separate

queues. Our objective is to improve congestion management in deployed InfiniBand networks

and hence a design goal was to require no modifications to InfiniBand switches.

The VOQsw methodology [10], vFtree [13], Flow2SL [14] have the same objective of offering

a solution that does not require switch modifications, and leverage InfiniBand’s service lane (SL)

and virtual lane (VL) features. Our DCMS solution is complementary to these methodologies

as it would handle the intra-VL hogging problem.

Our work is the most similar to the dFtree solution proposed by Guay et al. [5] in that the

dFtree solution also uses performance counters. However, our congestion recovery uses modifi-

cations to switch Marking Rate, while the dFtree solution reassigns hot flows to a slow virtual

lane. This paper was written in 2011, and states that since congestion control was newly intro-

duced, it was not available in all switches and HCAs, and therefore, the dFtree solution was

designed to work without congestion control.

Conclusions

This work has demonstrated the feasibility of dynamically modifying a switch congestion-

control parameter called Marking Rate to enable flows victimized by a congestion event to

recover their throughput rapidly. We conclude that even without per-flow information, it is

feasible for a Dynamic Congestion Management System (DCMS), which is software running on

an external server, to use just the information in switch port counters to make educated guesses

about the presence or absence of victim flows during a congestion event. Our experimental

work has demonstrated that if the Marking Rate is kept too low, flows that cause congestion

would experience severe rate reductions, which would prolong the congestion-event duration

and correspondingly increase the probability of creating victim flows. But without a dynamic

management system, Marking Rate cannot be kept high because if a congestion event occurs,

such a setting could create many victim flows. Thus, the value and feasibility of a dynamic

congestion management system has been demonstrated in this work.

Acknowledgments

This work was supported by NSF grants CNS-1116081, OCI-1127340, ACI-1340910, CNS-

1405171, ACI-0958998, OCI-1127228, and OCI-1127341. The authors also thank Patrick

MacArthur, David Wyman, and Chuck Valenza, University of New Hampshire, for testbed

support.

References

1. Gran EG, Reinemo SA, Lysne O, Skeie T, Zahavi E, Shainer G. Exploring the Scope of the

InfiniBand Congestion Control Mechanism. In: Parallel Distributed Processing Symposium

(IPDPS), 2012 IEEE 26th International; 2012. p. 1131–1143.

2. InfiniBand Trade Association. InfiniBand Architecture Specification Volume 1, Release 1.3;

2015. Available from: http://infinibandta.org.

3. Gran EG, Reinemo SA. InfiniBand Congestion Control: Modelling and Validation. In:

Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques.

F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis

2016, Vol. 3, No. 2 19



SIMUTools ’11. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering); 2011. p. 390–397.

4. Gran EG, Eimot M, Reinemo SA, Skeie T, Lysne O, Huse LP, et al. First experiences with

congestion control in InfiniBand hardware. In: Parallel Distributed Processing (IPDPS),

2010 IEEE International Symposium on; 2010. p. 1–12.

5. Guay WL, Reinemo SA, Lysne O, Skeie T. dFtree: A Fat-tree Routing Algorithm Us-

ing Dynamic Allocation of Virtual Lanes to Alleviate Congestion in InfiniBand Networks.

In: Proceedings of the First International Workshop on Network-aware Data Management.

NDM ’11. New York, NY, USA: ACM; 2011. p. 1–10.

6. Gran EG, Zahavi E, Reinemo SA, Skeie T, Shainer G, Lysne O. On the Relation between

Congestion Control, Switch Arbitration and Fairness. In: Cluster, Cloud and Grid Com-

puting (CCGrid), 2011 11th IEEE/ACM International Symposium on; 2011. p. 342–351.

7. Santos JR, Turner Y, Janakiraman G. End-to-end congestion control for InfiniBand. In:

INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Com-

munications. IEEE Societies. vol. 2; 2003. p. 1123–1133 vol.2.

8. Pfister G, Gusat M, Denzel W, Craddock D, Ni N, Rooney W, et al. Solving hot spot

contention using InfiniBand architecture congestion control. In: Proceedings In High Per-

formance Interconnects for Distributed Computing, Research Triangle Park, NC; 2005. .

9. Duato J, Johnson I, Flich J, Naven F, Garcia P, Nachiondo T. A new scalable and cost-

effective congestion management strategy for lossless multistage interconnection networks.

In: High-Performance Computer Architecture, 2005. HPCA-11. 11th International Sympo-

sium on. IEEE; 2005. p. 108–119.

10. Gomez ME, Flich J, Robles A, Lopez P, Duato J. VOQSW: a methodology to reduce HOL

blocking in InfiniBand networks. In: Parallel and Distributed Processing Symposium, 2003.

Proceedings. International; 2003. p. 10 pp.–.

11. Garcia PJ, Quiles FJ, Flich J, Duato J, Johnson I, Naven F. Efficient, Scalable Congestion

Management for Interconnection Networks. Micro, IEEE. 2006 Sept;26(5):52–66.

12. Nachiondo T, Flich J, Duato J. Buffer Management Strategies to Reduce HoL Blocking.

Parallel and Distributed Systems, IEEE Transactions on. 2010 June;21(6):739–753.

13. Guay WL, Bogdanski B, Reinemo SA, Lysne O, Skeie T. vFtree - A Fat-Tree Routing

Algorithm Using Virtual Lanes to Alleviate Congestion. In: Parallel Distributed Processing

Symposium (IPDPS), 2011 IEEE International; 2011. p. 197–208.

14. Escudero-Sahuquillo J, Garcia PJ, Quiles FJ, Reinemo SA, Skeie T, Lysne O, et al. A

new proposal to deal with congestion in InfiniBand-based fat-trees. Journal of Parallel and

Distributed Computing. 2014;74(1):1802 – 1819.

15. Zahavi E. InfiniBand adaptive congestion control adaptive marking rate. Google Patents;

2010. US Patent App. 12/245,814.

A Dynamic Congestion Management System for InfiniBand Networks

20 Supercomputing Frontiers and Innovations



Many-Core Approaches to Combinatorial Problems: case of the

Langford problem

M. Krajecki1, J. Loiseau1, F. Alin1, C. Jaillet1

c© The Author 2017. This paper is published with open access at SuperFri.org

As observed from the last TOP5002 list - November 2015 -, GPUs-accelerated clusters emerge

as clear evidence. But exploiting such architectures for combinatorial problem resolution remains

a challenge.

In this context, this paper focuses on the resolution of an academic combinatorial problem, known

as the Langford pairing problem, which can be solved using several approaches. We first focus on a

general solving scheme based on CSP (Constraint Satisfaction Problem) formalism and backtrack

called the Miller algorithm. This method enables us to compute instances up to L(2, 21) using

both CPU and GPU computational power with load balancing.

As dedicated algorithms may still have better computation efficiency we took advantage of

Godfrey’s algebraic method to solve the Langford problem and implemented it using our multiGPU

approach. This allowed us to recompute the last open instances, L(2, 27) and L(2, 28), respectively

in less than 2 days and 23 days using best-effort computation on the ROMEO3 supercomputer

with up to 500,000 GPU cores.

Keywords: Combinatorial problems, parallel algorithm, GPU accelerators, CUDA, Langford

problem.

Introduction

For many years now, GPUs usage has increased in the field of High Performance Computing.

The TOP500 list of the world’s most powerful supercomputers contains more than 52 systems

powered by NVIDIA Kepler GPUs. In the latest list a number of hybrid machines increased

compared fourfold with the previous list.

Since 2007, NVIDIA has offered a general GPUs programming interface: Compute Unified De-

vice Architecture (CUDA). This study is based on this physical and logical architecture which

requires massively parallel programming and a new vision for the implementation of resolution

algorithms.

The Langford pairing problem is a very irregular combinatorial problem and thus is a bad

candidate for GPU computation which requires vectorized and regularized tasks. Hopefully there

are many ways to regularize the computation in order to take advantage of the multiGPU cluster

architectures.

This paper is structured as follows: we first present the background with the Langford

problem and multiGPU cluster. The next section describes our method concerning the Miller

algorithm on such architectures. Then we expose our multiGPU solution to solve the Langford

problem based on the Godfrey algorithm. Finally, we present some concluding remarks and

perspectives.

1University of Reims Champagne-Ardenne, Reims, France
2http://www.top500.org
3https://romeo.univ-reims.fr/pages/aboutUs

DOI: 10.14529/jsfi160202

2016, Vol. 3, No. 2 21



Table 1. Solutions and time with differents methods

Instance Solutions Method Computation time

L(2,3) 1 Miller algorithm -

L(2,4) 1 -

... ... ...

L(2,16) 326,721,800 120 hours

L(2,19) 256,814,891,280 2.5 years (1999) DEC Alpha

L(2,20) 2,636,337,861,200 Godfrey algorithm 1 week

L(2,23) 3,799,455,942,515,488 4 days with CONFIIT

L(2,24) 46,845,158,056,515,936 3 months with CONFIIT

L(2,27) 111,683,611,098,764,903,232 -

L(2,28) 1,607,383,260,609,382,393,152 -

1. Background

1.1. Langford problem

C. Dudley Langford gave his name to a classic permutation problem [1, 2]. While observing

his son manipulating blocks of different colors, he noticed that it was possible to arrange three

pairs of different colored blocks (yellow, red, blue) in such a way that only one block separates

the red pair - noted as pair 1 - , two blocks separate the blue pair - noted as pair 2 - and finally

three blocks separate the yellow one - noted as pair 3 - , see Fig. 1.

Yellow
(3)

Red
(1)

Blue
(2)

Red
(1)

Yellow
(3)

Blue
(2)

Figure 1. L(2,3) arrangement

This problem has been generalized to any number n of colors and any number s of blocks

having the same color. L(s, n) consists in searching for the number of solutions to the Langford

problem, up to a symmetry. In November 1967, Martin Gardner presented L(2, 4) (two cubes

and four colors) as being part of a collection of small mathematical games and he stated that

L(2, n) has solutions for all n such that n = 4k or n = 4k − 1 (k ∈ N \ {0}). The central

resolution method consists in placing the pairs of cubes, one after the other, on free places and

backtracking if no place is available (see Fig. 3 for a detailed algorithm).

The Langford problem has been approached in different ways: discrete mathematics re-

sults, specific algorithms, specific encoding, constraint satisfaction problem (CSP), inclusion-

exclusion . . . [3–6]. In 2004, the last solved instance, L(2, 24), was computed by our team using

a specific algorithm. (see Table 1); L(2, 27) and L(2, 28) have just been computed but no details

were given.

The main efficient known algorithms are the following: the Miller backtrack method, the

Godfrey algebraic method and the Larsen inclusion-exclusion method. The Miller technique is

based on backtracking and can be modeled as a CSP; it allowed us to move the limit of explicits

solutions building up to L(2, 21) but combinatorial explosion did not allow us to go further.

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

22 Supercomputing Frontiers and Innovations



Then, we use the Godfrey method to achieve L(2, 24) more quickly and then recompute L(2, 27)

and L(2, 28), presently known as the last instances. The Larsen method is based on inclusion-

exclusion [6]; although this method is effective, practically the Godfrey technique is better. The

lastest known work on the Langford Problem is a GPU implementation proposed in [7] in 2015.

Unfortunately this study does not provide any performance considerations but just gives the

number of solutions of L(2, 27) and L(2, 28).

1.2. MultiGPU clusters and the ROMEO supercomputer

GPUs always come with CPUs which delegate them part of their computation. Let us

consider a cluster as a set of one CPU and one or more GPU(s), which we call machines. We

see these clusters as 3-level parallelism structures (as described in 2.1.4), with communications

between nodes and/or machines, CPUs that prepare computation and finally delegate part

of it to the GPUs. When the problem can be split into a finite number of independent

tasks, it is possible to distribute them over the machines. That permits to make an efficient

use of the cluster hardware. Depending on the way of computation submission we can

use either a static multinode reservation with one job including MPI client-server tasks dis-

tribution, or a best-effort dynamic reservation using several one-node jobs for independent tasks.

As the execution model of GPUs is based on SIMT (Single Instruction Multiple Threads),

the same instruction flow is shared by all the threads that execute synchronously by warp

teams [8, 9]. The divergences in this flow are handled by the NVIDIA GPUs scheduler, but lead

to synchronization between threads and an efficiency loss. This is the reason why we intend to

provide regular resolution algorithms for an efficient use of the GPU capabilities and, moreover,

with multiGPU clusters.

ROMEO supercomputer - All the tests below were led on the ROMEO cluster available at

the University of Reims Champagne-Ardenne (France). It provides 130 nodes, each composed

of 2 Ivy Bridge CPUs (8 cores), 2.6GHz and 2 Tesla K20Xm GPUs.

We use the nodes as two independent machines with one eight core CPU and one GPU

attached, linked by PCIe-v3. This allows having 260 machines for computation, each containing

32GB RAM memory. A K20Xm GPU has 6GB memory, 250GB/s of bandwidth, 2688 CUDA

cores including 896 double precision cores.

2. Miller algorithm

In this part we present our multiGPU cluster implementation of the Miller’s algorithm.

First, we introduce the backtrack method. Then we present our implementation in order to fit

the GPUs architecture. The last section presents our results.

2.1. Backtrack resolution

As presented above, the Langford problem is known to be a highly irregular combinatorial

problem. We first present here the general tree representation and the ways we regularize the

computation for GPUs. Then we show how to parallelize the resolution over a multiGPU cluster.

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 23



2.1.1. Langford’s problem tree representation

In [10], we propose to formalize the Langford problem as a CSP (Constraint Satisfaction

Problem), first introduced by Montanari in [11], and show that an efficient parallel resolution is

possible. CSP formalized problems can be transformed into tree evaluations. In order to solve

L(2, n), we consider the following tree of height n: see example of L(2, 3) in Fig. 2.

color  1  cubes
positions  of  both  

positions  of  both  
color  3  cubes

color  2  cubes
positions  of  both  

(1,3)(2,4)(3,5)(4,6)(1,3)(2,4) ...

...

(1,5) (2,6)
...

(1,4) (2,5) (3,6)

Figure 2. Search tree for L(2, 3)

• Every level of the tree corresponds to a color.

• Each node of the tree corresponds to the placement of a pair of cubes without worrying

about the other colors. Color p is represented at depth n − p + 1, where the first node

corresponds to the first possible placement (positions 1 and p+2) and ith node corresponds

to the placement of the first cube of color p in position i, i ∈ [1, 2n− 1− p].

• Solutions are leaves generated without any placement conflict.

There are many ways to browse the tree and find the solutions: backtracking, forward-

checking, backjumping, etc [12]. We limit our study to the naive backtrack resolution and choose

to evaluate the variables and their values in a static order; in a depth-first manner, the solutions

are built incrementally and if a partial assignment can be aborted, the branch is cut. A solution

is found each time a leaf is reached.

The recommendation for performance on GPU accelerators is to use non test-based pro-

grams. Due to its irregularity, the basic backtracking algorithm, presented on Fig. 3, is not

supposed to suit the GPU architecture. Thus a vectorized version is given when evaluating the

assignments at the leaves’ level, with one of the two following ways: assignments can be pre-

pared on each tree node or totally set on final leaves before testing the satisfiability of the built

solution (Fig. 4).

while not done do

test pair <- test

if successful then

if max depth then

count solution

higher pair

else

lower pair <- remove

else

higher pair <- add

Figure 3. Backtrack algorithm

for pair 1 positions

assignment <- add

for pair 2 positions

assignment <- add

for ...

for pair n positions

assignment <- add

if final test ok then

count solution

Figure 4. Regularized algorithm

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

24 Supercomputing Frontiers and Innovations



2.1.2. Data representation

In order to count every Langford problem solution, we first identify all possible combinations

for one color without worrying about the other ones. Each possible combination is coded within

an interger, one bit to 1 corresponding to a cube presence, a 0 to its absence. This is what we

called a mask. This way Fig. 5 presents the possible combinations to place the one, two and

three weight cubes for the L(2, 3) Langford instance.

Furthermore, the masks can be used to evaluate the partial placements of a chosen set of

colors: all the 1s correspond to occupied positions; the assignment is consistent iff there are as

many 1s as the number of cubes set for the assignment.

With the aim to find solutions, we just have to go all over the tree and sum one combination

of each of the colors: a solution is found iff all the bits of the sum are set to 1.

Each route on the tree can be evaluated individually and independently; then it can be

evaluated as a thread on the GPU. This way the problem is massively parallel and can be,

indeed, computed on GPU. Fig. 6 represents the tree masks’ representation.

0 0 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 1 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

0 1 0 0 0 1

1 0 0 0 1 0

pair 1 pair 2 pair 3

1

2

3

4

Figure 5. Bitwise representation of

pairs positions in L(2, 3)

... ...

0 0 0 0 ]

...

0 000 0 0

00 0

0 1 1 1

1

0

1 1111 011

0 0 0 0 [1 1

1 111

11

111

11 11 1 1

   

Figure 6. Bitwise representation of the Langford

L(2, 3) placement tree

2.1.3. Specific operations and algorithms

Three main operations are required in order to perform the tree search. The first one, used for

both backtrack and regularized methods, aims to add a pair to a given assignment. The second

one, allowing to check if a pair can be added to a given partial assignment, is only necessary

for the original backtrack scheme. The last one is used for testing if a global assignment is an

available solution: it is involved in the regularized version of the Miller algorithm.

Add a pair - Top of Fig. 7 presents the way to add a pair to a given assignment. With a

binary or, the new mask contains the combination of the original mask and of the added pair.

This operation can be performed even if the position is not available for the pair (however the

resulting mask is inconsistent).

Test a pair position - On the bottom part of the same figure, we test the positioning of

a pair on a given mask. For this, it is necessary to perform a binary and between the mask and

the pair.

= 0: success, the pair can be placed here

6= 0: error, try another position

Final validity test - The last operation is for a posteriori checking. For example the

mask 101111, corresponding to a leaf of the tree, is inconsistent and should not be counted

among the solutions. The final placement mask corresponds to a solution iff all the places are

occupied, which can be tested as ¬mask = 0.

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 25



Using this data representation, we implemented both backtrack and regularized versions of

the Miller algorithm, as presented in Fig. 3 and 4.

The next section presents the way we hybridize these two schemes in order to get an efficient

parallel implementation of the Miller algorithm.

2.1.4. Hybrid parallel implementation

This part presents our methodology to implement Miller’s method on a multiGPU cluster.

Tasks generation - In order to parallelize the resolution we have to generate tasks. Con-

sidering the tree representation, we construct tasks by fixing the different values of a first set of

variables [pairs] up to a given level. Choosing the development level allows to generate as many

tasks as necessary. This leads to a Finite number of Irregular and Independent Tasks (FIIT

applications [13]).

Cluster parallelization - The generated tasks are independent and we spread them in

a client-server manner: a server generates them and makes them available for clients. As we

consider the cluster as a set of CPU-GPU(s) machines, the clients are these machines. At the

machine level, the role of the CPU is, first, to generate work for the GPU(s): it has to generate

sub-tasks, by continuing the tree development as if it were a second-level server, and the GPU(s)

can be considered as a second-level client(s).

The sub-tasks generation, at the CPU level, can be made in parallel by the CPU cores. Depend-

ing on the GPUs number and their computation power the sub-tasks generation rhythm may be

adapted to maintain a regular workload both for the CPU cores and GPU threads: some CPU

cores, not involved in the sub-tasks generation, could be made available for sub-tasks computing.

This leads to the 3-level parallelism scheme presented in Fig. 8, where p, q and r respectively

correspond to: (p) the server-level tasks generation depth, (q) the client-level sub-tasks genera-

tion one, (r) the remaining depth in the tree evaluation, i.e. the number of remaining variables

to be set before reaching the leaves.

Backtrack and regularized methods hybridization - The Backtrack version of the

Miller algorithm suits CPU execution and allows to cut branches during the tree evaluation,

reducing the search space and limiting the combinatorial explosion effects. A regularized version

must be developed, since GPUs execution requires synchronous execution of the threads, with as

few branching divergence as possible; however, this method imposes to browse the entire search

space and is too time-consuming.

We propose to hybridize two methods in order to take advantage of both of them for the

multiGPU parallel execution: for tasks and sub-tasks generated at sever and client levels, the

tree development by the CPU cores is made using the backtrack method, cutting branches as

soon as possible [and generating only possible tasks]; when computing the sub-tasks generated

at client-level, the CPU cores involved in the sub-tasks resolution use the backtrack method and

the GPU threads the regularized one.

2.2. Experiments tuning

In order to take advantage of all the computing power of the GPU we have to refine the way

we use them: this section presents the experimental study required to choose optimal settings.

This tuning allowed us to prove our proposal on significant instances of the Langford problem.

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

26 Supercomputing Frontiers and Innovations



b) testing a pair

mask

pair
and

1 0 1 0 1 1

0 1 0 1 0 0

= 0

and
1 0 1 0 1 1

0 0 0 1 0 1

= 1

a) adding a pair

mask

pair
or

1 0 1 0 1 1

0 1 0 1 0 0

1 1 1 1 1 1

or
1 0 1 0 1 1

0 0 0 1 0 1

1 0 1 1 1 1

Figure 7. Testing and adding position

Client

Server

GPUs

CPUs

masks generated on the server

masks generated by clients

p

q

r

Figure 8. Server client distribution

Figure 9. Time depending on grid and block size on n = 15

2.2.1. Registers, blocks and grid

In order to use all GPUs capabilities, the first way was to fill the blocks and a grid. To

maximize occupancy (ratio between active warps and the total number of warps) NVIDIA

suggests to use 1024 threads per block to improve GPU performances and proposes a CUDA

occupancy calculator4. But, confirmed by the Volkov’s results [14], we experimented that better

performances may be obtained using lower occupancy. Indeed, another critical criterion is the

inner GPU registers occupation. The optimal number of registers (57 registers) is obtained by

setting 9 pairs placed on the client for L(2, 15), thus 6 pairs are remaining for GPU computation.

In order to tune the blocks and grid sizes, we performed tests on the ROMEO architecture.

Fig. 9 represents the time in relation with a number of blocks per grid and a number of threads

per block. The most relevant result, observed as a local minimum on the 3D surface, is obtained

near 64 or 96 threads per block; for the grid size, the limitation is relative to the GPU global

memory size. It can be noted that we do not need shared memory because their are no data

exchanges between threads. This allows us to use the total available memory for the L1 cache

for each thread.

4http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 27



2.2.2. Streams

A client has to prepare work for GPU. There are four main steps: generate tasks, load them

into the device memory, process the task on the GPU and then get results.

CPU-GPU memory transfers cause huge time penalties (about 400 cycles latency for trans-

fers between CPU memory and GPU device memory). At first, we had no overlapping between

memory transfer and kernel computation because the tasks generation on CPU was too long

compared to the kernel computation. To reduce the tasks generation time we used OpenMP in

order to use eight available CPU cores. Thus, CPU computation was totally hidden by memory

transfers and GPU kernel computation. We tried using up to 7 streams; as shown by Fig. 10,

using only two simultaneous streams did not improve efficiency, because the four steps did not

overlap completely; the best performances were obtained with three streams; the slow increase

in the next values is caused by synchronization overhead and CUDA streams management.

Figure 10. Computing time depending on

streams number

1 2 3 4 5 6 7 8
100

120

140

160

180

200

220

240

260

280

300
Reference: 100% CPU best performance

100% GPU computing, CPU cores only feeding

CPU+GPU, CPU core feeding GPU (free core 
computing)

Number of CPU cores feeding GPU

Ti
m

e
 (

s)

Figure 11. CPU cores optimal distribution for

GPU feeding

2.2.3. Setting up the server, client and GPU depths

We now have to set the depths of each actor, server (p), client (q) and GPU (r) (see Fig. 8).

First we set the r = 5 for large instances because of the GPU limitation in terms of registers

by threads, exacerbated by the use of numerous 64bits integers. For r ≥ 6, we get too many

registers (64) and for r ≤ 4 the GPU computation is too fast compared to the memory load

overhead.

Clients are the buffers between the server and the GPUs: q = n − p − r. So we have

conducted tests by varying the server depth, p. The best result is obtained for p = 3 and

performance decreases quickly for higher values. This can be explained since more levels on the

server generates smaller tasks; thus GPU use is not long enough to overlap memory exchanges.

2.2.4. CPU: Feed the GPUs and compute

The first work of CPU cores is to prepare tasks for GPU so that we can generate overlapping

between memory load and kernel computation. In this configuration using eight cores to generate

GPU tasks under-uses CPU computation power. It is the reason why we propose to use some

of the CPU cores to take part of the sub-problems treatment. Fig. 11 represents computation

time in relation with different task distributions between CPU and GPU. We experimentally

demonstrated that only 4 or 5 CPU cores are enough to feed GPU, the other ones can be used

to perform backtrack resolution in competition with GPUs.

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

28 Supercomputing Frontiers and Innovations



2.3. Results

2.3.1. Regularized method results

We now can show the results obtained for our massively parallel scheme using the previous

optimizations, comparing the computation times of successive instances of the Langford problem.

These tests were performed on 20 nodes of the ROMEO supercomputer, hence 40 CPU/GPU

machines.

The previous limit with Miller’s algorithm was L(2, 19), obtained in 1999 after 2.5 years

of sequential effort and at the same time after 2 months with a distributed approach [3]. Our

computation scheme allowed us to obtain it in less than 4 hours (Table 2), this being not only

due to Moore law progress.

Note that the computation is 1.6 faster with CPU+GPU together than using 8 CPU cores. In

addition, the GPUs compute 200000× more nodes of the search tree than the CPUs, with a

faster time.

Table 2. Regularized method (seconds)

n CPU (8c) GPU (4c) + CPU (4c)

15 2.5 1.5

16 21.2 14.3

17 200.3 120.5

18 1971.0 1178.2

19 22594.2 13960.8

Table 3. Backtrack (seconds)

n CPU (8c) GPU (4c) + CPU (4c)

17 29.8 7.3

18 290.0 73.6

19 3197.5 803.5

20 – 9436.9

21 – 118512.4

The computation time between two different consecutive instances being multiplied by 10

approximately, this could allow us to obtain L(2, 20) in a reasonable time.

2.3.2. Backtracking on GPUs

It appears at first sight that using backtracking on GPUs without any regularization is a bad

idea due to threads synchronization issues. But in order to compare CPU and GPU computation

power in the same conditions we decide to implement the original backtrack method on GPU (see

Fig. 3) with only minor modifications. In these conditions we observe very efficient work of the

NVIDIA scheduler, which perfectly handles threads desynchronization. Thus we use the same

server-client distribution as in 2.1.4, each client generates masks for both CPU and GPU cores.

The workload is then statically distributed on GPU and CPU cores. Executing the backtrack

algorithm on a randomly chosen set of sub-problems allowed us to set the GPU/CPU distribution

ratio experimentally to 80/20%,

The experiments were performed on 129 nodes of the ROMEO supercomputer, hence 258

CPU/GPU machines and one node for the server. Table 3 shows the results with this config-

uration. This method first allowed us to perform the computation of L(2, 19) in less than 15

minutes, 15× faster than with the regularized method; then, we pushed the limitations of the

Miller algorithm up to L(2, 20) in less than 3 hours and even L(2, 21) in about 33 hours5.

5Even if this instance has no interest since it is known to have no solution

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 29



This exhibits the ability of the GPU scheduler to manage highly irregular tasks. It proves

that GPUs are adapted even to solve combinatorial problems, which they were not supposed to

do.

3. Godfrey’s algebraic method

The previous part presents the Miller algorithm for the Langford problem, this method

cannot achieve bigger instances than the L(2, 21).

An algebraic representation of the Langford problem has been proposed by M. Godfrey in 2002.

In order to break the limitation of L(2, 24) we already used this very efficient problem specific

method. In this part we describe this algorithm and optimizations, and our implementation on

multiGPU clusters.

3.1. Method description

Consider L(2, 3) and X = (X1, X2, X3, X4, X5, X6). It proposes to modelize L(2, 3) by

F (X, 3) = (X1X3 + X2X4 + X3X5 + X4X6)× (X1X4 + X2X5 + X3X6)× (X1X5 + X2X6)

In this approach each term represents a position of both cubes of a given color and a solution

to the problem corresponds to a term developed as (X1X2X3X4X5X6); thus the number of

solutions is equal to the coefficient of this monomial in the development. More generally, the

solutions to L(2, n) can be deduced from (X1X2X3X4X5...X2n) terms in the development of

F (X,n).

If G(X,n) = X1...X2nF (X,n) then it has been shown that:∑
(x1,...,x2n)∈{−1,1}2n

G(X,n)(x1,...,x2n) = 22n+1L(2, n)

So
∑

(x1,...,x2n)∈{−1,1}2n

( 2n∏
i=1

xi
) n∏
i=1

2n−i−1∑
k=1

xkxk+i+1 = 22n+1L(2, n)

That allows to get L(2, n) from polynomial evaluations. The computational complexity of L(2, n)

is of O(4n × n2) and an efficient big integer arithmetic is necessary. This principle can be

optimized by taking into account the symmetries of the problem and using the Gray code: these

optimizations are described below.

3.2. Optimizations

Some works focused on finding optimizations for this arithmetic method [15]. Here we explain

the symmetric and computation optimizations used in our algorithm.

3.2.1. Evaluation parity

As [F (−X,n) = F (X,n)], G is not affected by a global sign change. In the same way the

global sign does not change if we change the sign of each pair or impair variable.

Using these optimizations we can set the value of two variables and accordingly divide the

computation time and result size by four.

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

30 Supercomputing Frontiers and Innovations



3.2.2. Symmetry summing

In this problem we have to count each solution up to a symmetry; thus for the first pair of

cubes we can stop the computation at half of the available positions considering

S′1(x) =
∑n−1

k=1 xkxk+2 instead of S1(x) =
∑2n−2

k=1 xkxk+2. The result is divided by 2.

3.2.3. Sums order

Each evaluation of Si(x) =
∑2n−i−1

k=1 xkxk+i+1, before multiplying might be very important

regarding to the computation time for this sum. Changing only one value of xi at a time, we

can recompute the sum using the previous one without global recomputation. Indeed, we order

the evaluations of the outer sum using Gray code sequence. Then the computation time is

considerably reduced.

Based on all these improvements and optimizations we can use the Godfrey method in order

to solve huge instances of the Langford problem. The next section develops the main issues of

our multiGPU architecture implementation.

3.3. Implementation details

In this part we present specific adaptations required to implement the Godfrey method on

a multiGPU architecture.

3.3.1. Optimized big integer arithmetic

In each step of computation, the value of each Si can reach 2n− i− 1 in absolute value, and

their product can reach (2n−2)!
(n−2)! . As we have to sum the Si product on 22n values, in the worst

case we have to store a value up to 22n (2n−2)!
(n−2)! , which corresponds to 1061 for n = 28, with about

200 bits.

So we need few big integer arithmetic functions. After testing existing libraries like GMP for

CPU or CUMP for GPU, we have come to the conclusion that they implement a huge number

of functionalities and are not really optimized for our specific problem implementation: product

of ”small” values and sum of ”huge” values.

Finally, we developed a light CPU and GPU library adapted to our needs. In the sum for

example, as maintaining carries has an important time penalty, we have chosen to delay the

spread of carries by using buffers: carries are accumulated and spread only when useful (for

example when the buffer is full). Fig. 12 represents this big integer handling.

nbWords

�����
�����
�����

�����
�����
�����

03163

buffer

(carries) standard
nbBits

(on all used words)

nbWordsUsed

   

       

Figure 12. Big integer representation, 64 bits words

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 31



3.3.2. Gray sequence in memory

The Gray sequence cannot be stored in an array, because it would be too large (it would

contain 22n byte values). This is the reason why only one part of the Gray code sequence is stored

in memory and the missing terms are directly computed from the known ones using arithmetic

considerations. The size of the stored part of the Gray code sequence is chosen to be as large as

possible to be contained in the processor’s cache memory, the L1 cache for the GPUs threads:

so the accesses are fastened and the computation of the Gray code is optimized. For an efficient

use of the E5-2650 v2 ROMEO’s CPUs, which disposes of 20 MB of level-3 cache, the CPU

Gray code sequence is developed recursively up to depth 25. For the K20Xm ROMEO’s GPUs,

which dispose of 8 KB of constant memory, the sequence is developed up to depth 15. The rest

of the memory is used for the computation itself.

3.3.3. Tasks generation and computation

In order to perform the computation of the polynomial, two variables can be set among the

2n available. For the tasks generation we choose a number p of variables to generate 2p tasks

by developing the evaluation tree to depth p.

The tasks are spread over the cluster, either synchronously or asynchronously.

Synchronous computation - The first experiment was carried out with an MPI distribu-

tion of tasks of the previous model. Each MPI process finds its tasks list based on its process id ;

then converting each task number into binary gives the task’s initialization. The processes work

independently; finally the root process (id = 0) gathers all the computed numbers of solutions

and sums them.

Asynchronous computation - In this case the tasks can be computed independently. As

with the synchronous computation, the tasks’ initializations are retrieved from their number.

Each machine can get a task, compute it, and then store its result; then when all the tasks have

been computed, the partial sums are added together and the total result is provided.

3.4. Experimental settings

This part presents the experimental context and methodology, and the way experiments

were carried out. This study has similar goals as for the Miller’s resolution experiments.

3.4.1. Experimental methodology

We present here the way the experimental settings were chosen. Firstly, we define the tasks

distribution, secondly, we set the number of threads per GPU block; finally, we set the CPU/GPU

distribution.

Tasks distribution depth - This value being set it is important to get a high number of

blocks to maintain sufficient GPU load. Thus, we have to determine the best number of tasks

for the distribution. As presented in part 3.3.3, the number p of bits determines 2p tasks. On

the one hand, too many tasks are a limitation for the GPU that cannot store all the tasks in

its 6GB memory. On the other hand, not enough tasks mean longer tasks and too few blocks

to fill the GPU grid. Fig. 14 shows that for the L(2, 23) instance the best task number is with

generation depth 28.

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

32 Supercomputing Frontiers and Innovations



Number of threads per block - In order to take advantage of the GPU computation

power, we have to determine the threads/block distribution. Inspired by our experiments with

Miller’s algorithm we know that the best value may appear at lower occupancy. We perform

tests on a given tasks set varying the threads/block number and grid size associated. Fig. 13

presents the tests performed on the n = 20 problem: the best distribution is around 128 threads

per block.

64 128 256 512 1024
280

300

320

340

360

380

400

Threads by block

T
im

e
 (

s
)

Figure 13. L(2, 20), number of threads per block

22 23 24 25 26 27 28 29 30 31
15000

15200

15400

15600

15800

16000

16200

16400

server computing depth

L
(2

,2
3

) 
co

m
p

u
tin

g
 ti

m
e

 (
s)

Figure 14. Influence on server generation depth

60 62 64 66 68 70 72
14500

14900

15300

15700

16100

16500

% tasks computed by the GPU

L
(2

,2
3

) 
co

m
p

u
tin

g
 ti

m
e

 (
s)

Figure 15. Influence of tasks repartition

CPU vs GPU distribution - The GPU and CPU computation algorithm will approximately

be the same. In order to take advantage of all the computational power of both components we

have to balance tasks between CPU and GPU. We performed tests by changing the CPU/GPU

distribution based on simulations on a chosen set of tasks. Fig. 15 shows that the best distribution

is obtained when the GPU handles 65% of the tasks. This optimal load repartition directly results

from the intrinsics computational power of each component; this repartition should be adapted

if using a more powerful GPU like Tesla K40 or K80.

3.4.2. Computing context

As presented in part 1.2, we used the ROMEO supercomputer to perform our tests and

computations. On this supercomputer SLURM [16] is used as a reservation and a job queue

manager. This software allows two reservation modes: a static one-job limited reservation or an

opportunity to dynamically submit several jobs in a Best-Effort manner.

Static distribution - In this case we used the synchronous distribution presented in 3.3.3.

We submited a reservation with the number of MPI processes and the number of cores per

process. This method is useful to get the results quickly if we can get at once a large amount of

computation resources. It was used to perform the computation of small problems, and even for

L(2, 23) and L(2, 24).

As an issue, it has to be noted that it is difficult to quickly obtain a very large reservation on

such a shared cluster, since many projects are currently running.

Best effort - SLURM allows to submit tasks in the specific Best-Effort queue, which does

not count in the user fair-share. In this queue, if a node is free and nobody is using it, the

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 33



reservation is set for a job in the best effort queue for a minimum time reservation. If another

user asks for a reservation and requests this node, the best effort job is killed (with, for example,

a SIGTERM signal). This method, based on asynchronous computation, enables a maximal use

of the computational resources without blocking for a long time the entire cluster.

For L(2, 27) and even more for L(2, 28) the total time required is too important to use

the whole machine off a challenge period, thus we chose to compute in a Best-Effort manner.

In order to fit with this submission method we chose a reasonable time-per-task, sufficient to

optimize the treatments with low loading overhead, but not too long so that killed tasks are not

too penalizing for the global computation time. We empirically chose to run 15-20 minute tasks

and thus we considered p = 15 for n = 27 and p = 17 for n = 28.

The best effort based algorithm is presented on Fig. 16. The task handler maintains a

maximum of 256 tasks in the queue; in addition the entire process is designed to be fault-

tolerant since killed tasks have to be launched again. When finished, the tasks generate an

ouput containing the number of solutions and computation time, that is stored as a file or

database entry. At the end the outputs of the different tasks are merged and the global result

can be provided.

Ok

!Ok

Job
256 

max active 
Tasks

Tasks 
queue

Task 
handler

32768 
tasks

Finite 
tasks queue

Queue feeding

Job

Job

Figure 16. Best-effort distribution

3.5. Results

After these optimizations and implementation tuning steps, we conducted tests on the

ROMEO supercomputer using best-effort queue to solve L(2, 27) and L(2, 28). We started the

experiment after an update of the supercomputer, that implied a cluster shutdown. Then the

machine was restarted and was about 50% idle for the duration of our challenge. The com-

putation lasted less than 2 days for L(2, 27) and 23 days for L(2, 28). The following describes

performances considerations.

Computing effort - For L(2, 27), the effective computation time of the 32,768 tasks was

about 30 million seconds (345.4 days), and 165,000” elapsed time (1.9 days); the average time

of the tasks was 911”, with a standard deviation of 20%. For the L(2, 28) 131,072 tasks the total

computation time was about 1365 days (117 million seconds), as 23 day elapsed time; the tasks

lasted 1321” on average with a 12% standard deviation.

Best-effort overhead - With L(2, 27) we used a specific database to maintain information

concerning the tasks: 617 tasks were aborted [by regular user jobs] before finishing (1.9%), with

an average computing time of 766” (43% of the maximum requested time for a task). This

consumed 472873”, which overhead represents 1.6% of the effective computing effort.

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

34 Supercomputing Frontiers and Innovations



Cluster occupancy - Fig. 17 presents the tasks resolution over the two computation days

for L(2, 27). The experiment elapse time was 164700” (1.9 days). Compared to the effective

computation time, we used an average of 181.2 machines (CPU-GPU couples): this represents

69.7% of the entire cluster.

Fig. 18 presents the tasks resolution flow during the 23 days computation for L(2, 28). We

used about 99 machines, which represents 38% of 230 available nodes.

0 500 1000 1500 2000 2500
80

100

120

140

160

180

200

220

240

15 minutes slots

A
ch

ie
ve

 ta
sk

s

Figure 17. L(2, 27) tasks grouped by 15” slots

0 100 200 300 400 500
0

100

200

300

400

500

600

1 hour slots
A

ch
ie

ve
 ta

sk
s

Figure 18. L(2, 28) tasks grouped by 1 hour slots

For L(2, 27), these results confirm that the computation took great advantage of the low

occupancy of the cluster during the experiment. This allowed us to obtain a weak best-effort

overhead, and an important cluster occupancy. Unfortunately, for L(2, 28) on such a long period

we got a lower part of the supercomputer dedicated to our computational project. Thus, we are

confident in good perspectives for the L(2, 31) instance if computed on an even larger cluster or

several distributed clusters.

Conclusion

This paper presents two methods to solve the Langford pairing problem on multiGPU clus-

ters. In its first part the Miller’s algorithm is presented. Then to break the problem limitations

we show optimizations and implementation of Godfrey’s algorithm.

CSP resolution method - As any combinatorial problem can be represented as a CSP, the

Miller algorithm can be seen as a general resolution scheme based on the backtrack tree browsing.

A three-level tasks generation allows to fit the multiGPU architecture. MPI or Best-Effort are

used to spread tasks over the cluster, OpenMP for the CPU cores distribution and then CUDA

to take advantage of the GPU computation power. We were able to compute L(2, 20) with this

regularized method and to get an even better time with the basic backtrack. This proves the

proposed approach and also exhibits that the GPU scheduler is very efficient at managing highly

divergent threads.

MultiGPU clusters and best-effort - In addition and with the aim to beat the Langford

limit we present a new implementation of the Godfrey method using GPUs as accelerators. In

order to use the supercomputer ROMEO, which is shared by a large scientific community, we

have implemented a distribution that does not affect the machine load, using a best-effort queue.

The computation is fault-tolerant and totally asynchronous.

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 35



Langford problem results - This study enabled us to compute L(2, 27) and (L2, 28) in

respectively less than 2 days and 23 days on the University of Reims ROMEO supercomputer.

The total number of solutions is:

L(2,27) = 111,683,611,098,764,903,232

L(2,28) = 1,607,383,260,609,382,393,152

Perspectives - This study shows the benefit of using GPUs as accelerators for combinatorial

problems. In Miller’s algorithm they handle 80% of the computation effort and 65% in Godfrey’s.

As a near-term prospect, we want to scale and show that it is possible to use the order of 1000

or more GPUs for pure combinatorial problems.

The next step of this work is to generalize the method to optimization problems. This adds an

order of complexity since shared information has to be maintained over a multiGPU cluster.

This work was supported by the High Performance Computing Center of the University of

Reims Champagne-Ardenne, ROMEO.

References

1. Gardner M. Mathematics, magic and mystery. Dover publication; 1956.

2. Simpson JE. Langford Sequences: perfect and hooked. Discrete Math. 1983;44(1):97–104.

3. Miller JE. Langford’s Problem: http://dialectrix.com/langford.html; 1999. Available from:

http://www.lclark.edu/~miller/langford.html.

4. Walsh T. Permutation Problems and Channelling Constraints. APES Research Group;

2001. APES-26-2001. Available from: http://www.dcs.st-and.ac.uk/~apes/reports/

apes-26-2001.ps.gz.

5. Smith B. Modelling a Permutation Problem. In: Proceedings of ECAI’2000, Workshop

on Modelling and Solving Problems with Constraints, RR 2000.18. Berlin; 2000. Available

from: http://www.dcs.st-and.ac.uk/~apes/2000.html.

6. Larsen J. Counting the number of Skolem sequences using inclusion exclusion. 2009;.

7. Assarpour A, Barnoy A, Liu O. Counting the Number of Langford Skolem Pairings; 2015. .

8. Nvidia C. Compute unified device architecture programming guide. 2007;.

9. Kirk DB, Wen-mei WH. Programming massively parallel processors: a hands-on approach.

Newnes; 2012.

10. Habbas Z, Krajecki M, Singer D. Parallelizing Combinatorial Search in Shared Memory. In:

Proceedings of the fourth European Workshop on OpenMP. Roma, Italy; 2002. .

11. Montanari U. Networks of Constraints: Fundamental Properties and Applications to Pic-

tures Processing. Information Sciences. 1974;7:95–132.

12. Prosser P. Hybrid algorithms for the constraint satisfaction problem. Computational intel-

ligence. 1993;9(3):268–299.

13. Krajecki M. An object oriented environment to manage the parallelism of the FIIT appli-

cations. In: Parallel Computing Technologies. Springer; 1999. p. 229–235.

Many-Core Approaches to Combinatorial Problems: case of theLangford problem

36 Supercomputing Frontiers and Innovations



14. Volkov V. Better performance at lower occupancy. In: Proceedings of the GPU Technology

Conference, GTC. vol. 10. San Jose, CA; 2010. p. 16.

15. Jaillet C. In french: Résolution parallèle des problèmes combinatoires [PhD]. Université de

Reims Champagne-Ardenne, France; 2005.

16. Jette M, Grondona M. SLURM : Simple Linux Utility for Resource Management; June 23,

2003.

M. Krajecki, J. Loiseau, F. Alin, C. Jaillet

2016, Vol. 3, No. 2 37



A Radical Approach to Computation with Real Numbers

John L. Gustafson1

If we are willing to give up compatibility with IEEE 754 floats and design a number format

with goals appropriate for 2016, we can achieve several goals simultaneously: Extremely high

energy efficiency and information-per-bit, no penalty for decimal operations instead of binary,

rigorous bounds on answers without the overly pessimistic bounds produced by interval methods,

and unprecedented high speed up to some precision. This approach extends the ideas of unum

arithmetic introduced two years ago by breaking completely from the IEEE float-type format,

resulting in fixed bit size values, fixed execution time, no exception values or “gradual underflow”

issues, no wasted bit patterns, and no redundant representations (like “negative zero”). As an

example of the power of this format, a difficult 12-dimensional nonlinear robotic kinematics prob-

lem that has defied solvers to date is quickly solvable with absolute bounds. Also unlike interval

methods, it becomes possible to operate on arbitrary disconnected subsets of the real number line

with the same speed as operating on a simple bound.

Keywords: Floating point, Unum computing, Computer arithmetic, Energy efficiency, Valid

arithmetic.

1. A Quick Overview of “Type 1 unums”

The unum (universal number) arithmetic system was presented publicly in 2013, and

a text describing the approach was published in 2015 [2]. As originally defined, a unum is a

superset of IEEE 754 floating-point format [6] that tracks whether a number is an exact float or

lies in the open interval one Unit of Least Precision (ULP) wide, between two exact floats. While

the meaning of the sign, exponent, and fraction bit fields take their definition from the IEEE

754 standard, the bit lengths of the exponent and fraction are allowed to vary, from as small as

a single bit up to some maximum that is set in the environment. The formats are contrasted in

fig. 1.

010001001101111111110000101010011110100010101111110101000010011

IEEE 754 Standard Float representing 6.022x1023 (64 bits, double precision)

01100110111111110000111111011

Unum representing 6.022x1023 (29 bits in this case)

sign exponent fraction

sign exponent fraction ubit esize fsize
utag

The number of bits in esize and fsize is
set in the environment, and can be as

small as zero bits. 

Figure 1. Comparison of IEEE 754 64-bit float and a Type 1 unum representing the same value

The inclusion of the “uncertainty bit” (ubit) at the end of the fraction eliminates rounding,

overflow, and underflow by instead tracking when a result lands between representable floats.

Instead of underflow, the ubit marks it as lying in the open interval between zero and the smallest

nonzero number. Instead of overflow, the ubit marks it as lying in the open interval between the

maximum finite float value and infinity.

Flexible dynamic range and precision eliminates the pressure for a programmer to choose

a “one size fits all” data type. Programmers typically choose double precision (64-bit) as over-

1A*STAR Computational Resources Center and National University of Singapore, Singapore (joint appointment)

DOI: 10.14529/jsfi160203

38 Supercomputing Frontiers and Innovations



insurance against numerical problems; however, this typically wastes storage and bandwidth by

about a factor of two or more since the maximum precision is only needed for some fraction

of the calculations. Furthermore, high precision is no guarantee against catastrophic errors [5].

As fig. 1 shows, adding self-descriptive bits (the “utag”) to the float format can actually save

total bit count, much the same way that having an exponent field in a float saves bits compared

to an integer or fixed-point representation.

The unum definition in [2] also fixes some problems with the IEEE 754 Standard, such as

negative zero, the wasting of trillions of unique bit patterns for representing “Not-a-Number”

(NaN), and the failure to guarantee bit-identical results from different computer systems. How-

ever, the original “Type 1 unums” have drawbacks, particularly for hardware implementation:

• They either use variable storage size or must be unpacked into a fixed storage size that

includes some unused bits, much like managing variable file sizes in mass storage.

• The utag adds a level of indirection; it must be read first to reference the other fields.

• The logic involves more conditional branches than floats.

• Some values can be expressed in more than one way, and some bit patterns are not used.

2. The Ideal Format

The current IEEE 754 format evolved from historical formats and years of committee

discussions selecting compromises between speed and correctness. What if we abandon ties to

the past and ask what would be an ideal representation of real number values? Here are some

goals, some of which are similar to mathematical goals defined in [3]

• All arithmetic operations would be equally fast.

• There would be no performance penalty for using decimal representation.

• It would be easy to build using current processor technology.

• There would be no exceptions like subnormal numbers, NaN, or “negative zero.”

• Accuracy could be managed automatically by the computer.

• No real numbers would be overlooked; there might be limited accuracy, but no omissions.

• The system would be mathematically sound, with no rounding errors.

The last three goals are achieved by Type 1 unums, so we want to preserve those advantages.

A value like π can be represented honestly as 3.14⋯ where the “⋯” indicates that the value lies

in the open interval between two exact numbers, (3.14, 3.15). The error of non-unum number

systems is in restricting representations to exact values sampled from the real number line; when

an algorithm exposes the mathematical omission, the strategy to date has been to demand more

exact points to fill in the gaps, a futile chase that ignores inherent properties of the real number

line. Once a system embraces the idea that finite-state representations can represent exact

values and the open ranges between exact values, there is hope of creating a bijection: that is,

a mapping from bit strings to sets of real numbers that is one-to-one and onto. Furthermore,

it may happen that a surprisingly low-precision bit string has more expressive power than a

high-precision format that can represent only a set of exact values.

J. Gustafson

2016, Vol. 3, No. 2 39



3. A Mapping to the Projective Real Line, and its Power Set

3.1. The projective reals resemble modern signed (two’s complement)

integers

One representation of the real line bends the two infinite extremes into a circle. The distinc-

tion between positive and negative infinity is lost, replaced by a single “point at infinity.” We

can label it ±∞ for now, and think of it as the reciprocal of zero. A mapping of the projective

reals to two-bit integer strings is shown in fig. 2.

±∞

0

11 01

00

10

Negative
reals

Positive
reals

Figure 2. Projective real number line and two-bit two’s complement integers

As signed integers, the four strings around the circle 00, 01, 10 and 11 correspond to

two’s complement integers 0,1,−2,−1. They “wrap” from positive to negative at exactly the

point where the projective reals wrap from positive to negative. We call these two-bit strings

unum values because they represent either exact quantities or the open interval between exact

quantities. For our purposes, we choose to treat ±∞ as if it were an exact quantity.

3.2. SORNs and the elimination of “indeterminate forms”

Imagine another bit string now, one that expresses the absence (0) or presence (1) of each of

the sets shown in fig. 2. That is, the power set of the four subsets of the projective real numbers,±∞, (−∞,0), 0 and (0,∞). Such a bit string allows us to operate on subsets of the reals using

bit-level arithmetic, as opposed to symbol manipulation. For example, the bit vector 0011 means

the absence of ±∞ and (−∞,0) and the presence of 0 and (0,∞) in the set, which we could write

in more conventional notation as the interval [0,∞). Call this bit string a SORN, for Sets Of

Real Numbers. To make them easier to distinguish from the binary numbers that use positional

notation to represent integers, we can use the following shapes: . A circle represents

an open interval and a thin rectangle represents an exact value. They are filled if present and

hollow if absent. If we have access to color display, then it further helps read SORNs if negative

values are red and positive values are blue; the or shapes for values 0 and ±∞ remain black

since they have no sign. Here is a table of the 16 possible SORN values for the unum set shown

in fig. 2:

A Radical Approach to Computation with Real Numbers

40 Supercomputing Frontiers and Innovations



Table 1. Four-bit SORN values

SORN notation English description Math notation

The empty set { } or ∅
All positive reals (0,∞)

Zero 0

All nonnegative reals [0,∞)
All negative reals (−∞,0)
All nonzero reals (−∞,0) ∪ (0,∞)

All nonpositive reals (−∞,0]
All reals (−∞,∞) or R

The point at infinity ±∞
The extended positive reals (0,∞]

The unsigned values 0 ∪ ±∞
The extended nonnegative reals [0,∞]

The extended negative reals [−∞,0)
All nonzero extended reals [−∞,0) ∪ (0,∞]

The extended nonpositive reals [−∞,0]
All extended reals [−∞,∞] or R+

Because we have the reals on a circle instead of a line, it is possible to notate the nonzero

extended reals, for example, as the interval “(0,0)” instead of having to write [−∞,0) ∪ (0,∞].
Usually, an interval is written as a closed interval [x, y] where x ≤ y, or one with open endpoints(x, y], [x, y), (x, y) where x < y. Any contiguous set can be written as a simple interval, where

numbers increase from the left endpoint until they reach the right endpoint, even if it means

passing through ±∞. This is similar to the idea of “outer intervals” [4]. Also, for the reader

who is already missing the values −∞ and +∞ that IEEE floats provide, notice that we still

have them, in the form of unbounded intervals flanking ±∞. For example, we could take the

logarithm of (0,∞) and obtain (−∞,∞). The square of that result would be [0,∞), and so on.

If a SORN shows the presence of ±∞ and one of the two unbounded unums (1,∞) or (−∞,−1),
we treat it as a closed endpoint, “∞]” on the right, or ”[−∞” on the left.

The arithmetic tables for + − × ÷ on these SORN values look at first like a hellish collection

of all the things you are never supposed to do: zero divided by zero, infinity minus

infinity, and other so-called indeterminate forms. They are called indeterminate because they

do not produce single numbers. There is usually some wringing of hands about dividing nonzero

numbers by zero as well; is the answer +∞ or −∞? We have no such difficulties here. If we take

the limit of, say, x − y as x →∞ and y →∞, we find it can be any value, and there is a SORN

for that: . Similarly, divide any positive number by x as x→ 0 and the result is ∞ or −∞
depending on whether the limit is from the left or the right. However, we have just the thing for

that situation: ±∞, represented by . There is no reason to wish for a NaN representation.

Looking ahead a bit, we can imagine taking the square root of the negative reals, .

With conventional floats we would certainly have to throw up our hands and return a NaN.

With SORNs, the answer is the empty set, . We can even take care of indeterminate

forms like 1∞, using limits of xy as x → 1 (from above or below) and x → ∞. It is simply the

nonnegative extended reals, . There is nothing wrong with the result of a calculation being

J. Gustafson

2016, Vol. 3, No. 2 41



a set, including the empty set. We do not need to admit defeat by declaring something NaN,

and in fact can continue calculating. Even if it appears that all information has been lost and

the answer can be anything, that is, , if the next operation were to square the SORN it

would result in the nonnegative extended reals , which has some information about the

answer.

3.3. Fast calculation of SORNs with bitwise OR operations

Imagine that we have filled out the addition table for the four unum values ±∞, (−∞,0), 0

and (0,∞). We can express each unum as a SORN with just one of the four shapes filled in. As

tab. 2 shows, addition sometimes produces a SORN with more than one shape filled in.

Table 2. The addition table for two-bit unum

inputs and SORN outputs

+

The highlighted parts of the table indicate information loss; three of the entries “blur” in

that they do not produce a single unum output from two unum inputs. In some systems, this

would entail recording a variable amount of data for table entries. With SORNs, all entries are

the same number of bits, facilitating table look-up in a computer.

Furthermore, they lend themselves to very fast and simple evaluation of SORN operations

with logic OR gates and a bit of parallelism, as shown in fig. 3.

▯●▯●

▯●▮●

▯○▯●
▯●▮●
▯●▯○
▯●▯○

▯●▮○

Parallel (independent) bitwise OR operations

Parallel (or pipelined) table look-up
of each presence bit pair

Figure 3. Fast SORN operation using parallel table look-up followed by parallel bitwise OR

The logic gate delay time at current 14 nm technology is about 10 picoseconds. A table

lookup involves three gate delays and the parallel OR operation adds another 10 picoseconds,

depending on the fan-in design rules. This suggests that scalar operations on the real number

line at this ultra-low accuracy level can be done at around 25 GHz. Fig. 4 shows how simple a

ROM is for table look-up; the black dots are wired connections requiring no transistors. If the

table were stored in DRAM, it would require 3.2 times as many transistors (not counting refresh

circuitry) with one transistor per bit. SRAM requires six transistors per bit, which would take

14 times as many transistors.

A Radical Approach to Computation with Real Numbers

42 Supercomputing Frontiers and Innovations



SORN for x + y

x
unum

y
unum

CMOS cost estimates:

Using ROM: 
Using DRAM: 
Using SRAM: 

 

88 transistors
280 transistors

1,240 transistors

Figure 4. ROM circuit example for the table look-up of the preceding SORN addition

The next step is to start ramping up the accuracy of the unum lattice and the SORNs that

go with that lattice.

3.4. The start of a useful number system: a kinematics application

Append another bit to the unum so that we can represent +1 and −1, and the open intervals

surrounding those exact numbers. The annotated circle of real values and some examples of

SORN representations are shown in fig. 5. When assigned to binary strings, the first bit resembles

a sign bit like that of IEEE floats, though we ignore it for values 0 and ±∞. The last bit serves

as the “uncertainty bit” or ubit, exactly as it did with the IEEE-compatible Type 1 unums

definition. The ubit is 0 for exact unums, 1 for open ranges between exact numbers (“inexact”

unums, for short). Hence, we color-code those two bits the same way as the original unums [2],

with the sign bit in red and the ubit in magenta.

Example SORN representations:
±∞

0

110 010

000

001

011101

111

100

–1 1

(1, ∞)

(0, 1)

(–∞, –1)

(–1, 0)

▯○▮○▯○▮○  Values satisfying x2 = 1, the set {–1, 1}

▮●▮●▮●▮●  Everything, [–∞, ∞]

▯○▯○▯○▯○  Empty set, ∅

Figure 5. Three-bit unum representation with −1 and +1, and examples of SORNs

Such low precision can be surprisingly useful, since it is often helpful in the early stages

of solving a problem to know at least a little bit about where to look for a solution. Are the

solutions of bounded magnitude? Are they known to be positive? For example, a classic problem

J. Gustafson

2016, Vol. 3, No. 2 43



in robotics is to solve the inverse kinematics of an elbow manipulator [1]. Such a problem and

the twelve nonlinear equations in twelve unknowns that it gives rise to are shown in fig. 6.

s2c5s6 – s3c5s6 – s4c5s6 + c2c6 + c3c6 + c4c6 = 0.4077
c1c2s5 + c1c3s5 – c1c4s5 + s1c5 = 1.9115
s2s5 + s3s5 + s4s5 = 1.9791
c1c2 + c1c3 + c1c4 + c1c2 + c1c3 + c1c2  = 4.0616
s1c2 + s1c3 + s1c4 + s1c2 + s1c3 + s1c2  = 1.7172
s2 + s3 + s4 + s2 + s3 + s2  = 3.9701
ci

2 + si
2 = 1 (1 ≤ i ≤ 6)

𝜃1

𝜃5

𝜃4 𝜃6

𝜃2 𝜃3

Figure 6. Inverse kinematics problem: a constrained elbow manipulator

The classic approach to such a set of equations is to guess a starting value for the twelve

unknowns and iterate toward a solution, if a solution even exists. There might be multiple

solutions, but such an approach will find at most one of them. With our ultra-low precision

SORNs in fig. 5, it becomes feasible to test the entire 12-dimensional space for regions where

solutions can or cannot exist. Unums of magnitude greater than 1 are ruled out by the c2i +s2i = 1

equations; the c and s variables are cosines and sines of the six angles, though we do not need

that knowledge for the unum approach to converge quickly. If we split all twelve dimensions

into two possible open unums (−1,0) or (0,1), there are 212 = 4096 regions of the space of

solutions, which can be examined in parallel in a few nanoseconds using the SORN set shown

in fig. 5. The result is the exclusion of 4000 of the spaces as infeasible solution regions, leaving

only 96 possibilities for further examination. While this sort of approach has been used with

interval arithmetic in the past, those computing environments involve 128 bits per variable (two

double-precision endpoints), and very slow, energy-intensive arithmetic compared to the fast

table lookup of 3-bit unums to populate 8-bit SORNs. With dedicated hardware for the low

precision approach, the unum approach should reduce energy use and execution time by over a

hundredfold, based on the number of exercised gates and the logic delay times.

If it is important to minimize the total number of constraint function evaluations, another

approach is to split each of the twelve dimensions at a time, moving to the next dimension only

when a split does not create a new excludable region. After six million low-precision calculations

(requiring milliseconds to evaluate), the set of ci-si pairs form arcs specific enough that a robotic

control system would be able to make a decision, as shown in fig. 7.

A Radical Approach to Computation with Real Numbers

44 Supercomputing Frontiers and Innovations



Figure 7. Proved feasible set for robotics inverse kinematics problem

4. Selecting the u-lattice and populating the number system

4.1. The u-lattice

Define the u-lattice as an ordered set of 1 followed by exact positive real numbers in the

interval (1, ∞). This set is then made closed under both negation and reciprocation, by including

negatives and reciprocals of the u-lattice in the set of exact unums. For a fixed-size unum of

length m bits, the u-lattice should have 2m−3 values, that is, 1/8 of 2m, since 2m is the total

number of bit patterns possible with m bits. The reason is that combining the u-lattice with its

reciprocal almost doubles the number of exact values (1 is already in the set), and combining

with the negative of that set doubles it again; finally, representing the open intervals between

exact values doubles the number of exact values a third time. Including the values 0 and ±∞
brings the total count up to exactly 2m, so no bit patterns are wasted and no bit patterns are

redundant.

4.2. Example for 4-bit unums

Four bits for each unum means 24 = 16 bit patterns, and 24−3 = 2 values in the u-lattice. A

simple example is to select {1, 2} as the u-lattice. There is nothing special about the number 2;

we could have used {1, 10}, or even {1, π} as the exact numbers on which to base the number

system. Some people are surprised that π can be represented as an exact number, but of course

it can, which is one reason for the term “universal number.”

The set {1, 2} united with its reciprocals {1/2, 1} becomes {1/2, 1, 2}. Uniting

with negatives of the set and the set {0, ±∞} gives the eight possible exact unums{±∞, −2, −1, −1/2, 0, 1/2, 1, 2}. The last step is to include the open intervals between each of

these, such as (−1/2, 0), so there are also eight possible inexact unums, as shown in fig. 8.

J. Gustafson

2016, Vol. 3, No. 2 45



±∞

0

1100

1101

0100

0100

0000
0001

0010

0010

0110

0110

1010

1011

1110

1111

1000
1001

–1 1

To negate, rotate about vertical axis
(flip all bits and add 1, ignoring
integer overflow).

2

½
(0, ½)(–½, 0)

(½, 1)(–1, –½)

(1, 2)(–2, –1)

(2, ∞)(–∞, –2)
–2

–½

To reciprocate,
rotate about horizontal axis
(flip all but first bit and add 1,
ignoring integer overflow).

Figure 8. Four-bit unums and geometrical analogies for negating and reciprocating

This system places the arithmetic operations + − × ÷ on equal footing. With floats, it is

dangerous to replace the operation x ÷ y with x × (1/y) because there are two rounding oper-

ations; float math seldom calculates the reciprocal 1/y without rounding error, so for example,

3 ÷ 3 may evaluate to 1 exactly, but 3 × (1/3) will result in something like 0.9999⋯. On

the other hand, it has long been safe to treat x − y as identical to x + (−y). Addition and

subtraction share hardware. With the system described here, multiplication and division can

share hardware as well.

It may be time to revive an old idea: “/” as a unary prefix operator. Just as unary “−”

can be put before x to mean 0 − x, unary “/” can be put before x to mean 1/x. Pronounce it

“over,” so /x would be pronounced “over x.” Just as −(−x) = x, //x = x. Compiler writers and

language designers certainly should be up to the task of parsing the unary “/” operator as they

have with unary “−”.

4.3. Freedom from division-by-zero hazards

What is f(x) = 1/(1/x + 1/2) for x = 0? Most number systems balk at this and throw an

exception because the 1/x step divides by zero. With the projective real approach used here,

1/0 = ±∞; adding 1/2 to ±∞ leaves ±∞ unchanged, and then the final reciprocal operation turns±∞ back into zero. The expression can be rewritten as f(x) = 2x/(2 + x), revealing that the

singularity at x = 0 is perfectly removable, but that requires someone to do the algebra.

Suppose the input were a SORN, such as one representing the half-open interval −1 < x ≤ 2.

With the 4-bit unums defined in the previous section, the computation can be performed without

any loss of information. The SORN sets remain contiguous sets through every operation, and

provide the correct result, −1/2 < f(x) ≤ 1, as shown in fig. 9. The figure saves space by using

the unary “/” notation, and we will use that notation from now on.

A Radical Approach to Computation with Real Numbers

46 Supercomputing Frontiers and Innovations



/0

x = (–1, 2] /x = [/2, –1) /x + /2 = [1, –/2) /(/x + /2) = (–2, 1]

1

/2

2

–/2

–2

–1

0

/0

1

/2

2

–/2

–2

–1

0

/0

1

/2

2

–/2

–2

–1

0

/0

1

/2

2

–/2

–2

–1

0

Flip vertically
to reciprocate

Flip vertically
to reciprocate

Rotate range
to add one-half

Figure 9. Tight bounding of 1/(1/x + 1/2) despite intermediate division by zero

Notice that if we had we rewritten the expression as 2x/(2 + x) and attempted traditional

interval arithmetic with x = [−1,2] (since we have no way to express open endpoints, we have to

use a closed one at the −1 endpoint), f(x) would evaluate to the loose bound [−2,4] because of

the dependency problem: x now appears twice in the expression, and the calculation ignores the

dependency between them. The interval arithmetic result thus unnecessarily includes the value−2 and the range (1, 4], and is twice as wide a bound as the tight bound shown in fig. 9.

4.4. Strategies for an 8-bit unum set

Since IEEE 754 specifies decimal floats only for 32-, 64-, and 128-bit sizes, it will be in-

teresting to see if we can create a useful decimal system with as few as 8 bits. The choice of

u-lattice depends on the application. If a large dynamic range is important, we could use this

u-lattice: {1,2,5,10,20,50, . . . ,109,2×109}. The reciprocals of that set are also expressible with

a single decimal times a power of 10, and that u-lattice provides over 18 orders of magnitude

(from 5 × 10−10 to 2 × 109) of dynamic range, but less than one decimal digit of accuracy.

If we prefer to have every counting number from 1 to 10 represented, then we could start with

the set {0.1,0.2, . . . ,0.9,1,2, . . . ,9} as “must have” values. This is what IEEE decimal floats do,

and one of the drawbacks is “wobbling accuracy” when the slope changes suddenly. Deviation

from a true exponential curve means that the relative error is too low in some places and too

high in others, indicating information-inefficient use of bit patterns to represent real numbers.

The left graph in fig. 10 shows this effect, where the slope suddenly increases.

Value represented

Set member

Relative accuracy
drops tenfold,

suddenly

Constant relative
accuracy

10

8

6

4

2

Value represented

Set member

Reciprocal closure
almost eliminates

wobbling accuracy

Constant relative
accuracy

10

8

6

4

2

Figure 10. IEEE-style decimals versus decimal unums with reciprocal closure

J. Gustafson

2016, Vol. 3, No. 2 47



Creating closure under reciprocation has the added benefit of dramatically reducing the

wobbling accuracy in the selection of exact values. The width of uncertainty, divided by the

magnitude of the value, is almost flat. The set of numbers may look peculiar since we are

probably not yet used to reading the unary “/” operator, but from smallest to largest it sorts

as follows:

{0.1, /9,0.125, /7, /6,0.2,0.25,0.3, /3,0.4,0.5,0.6,0.7,0.8,0.9,
1, /0.9,1.25, /0.7, /0.6,2,2.5,3, /0.3,4,5,6,7,8,9,10}

Wherever a reciprocal has an equivalent traditional finite decimal, we show the finite decimal;

instead of writing “/8” for one-eighth, we write the familiar “0.125” for now, even though it

takes five characters to express instead of two. This u-lattice has 15 exact values per decade of

magnitude. That means an 8-bit unum lattice could range from 0.009 to /0.009, slightly more

than four orders of magnitude. Compared to the {1, 2, 5, 10, . . .} u-lattice, we have less dynamic

range but a solid decimal of accuracy while preserving closure under reciprocation.

There is an intermediate between these u-lattices that merits attention, even if it has no

obvious way to scale to more decimals of accuracy: Powers of 2 ranging from −4 to +4, scaled

to fit into the 1 to 10 range. That is, start with the following set:

{0.0625,0.125,0.25,0.5,1,2,4,8,16},
then scale each entry to fit into the 1 to 10 range:

{1,1.25,1.6,2,2.5,4,5,6.25,8,10}.
This is a wonderful basis for a u-lattice, for those concerned with closure under multiplication

and division. It looks like a nearly exponential spacing of points from 1 to 10, except for the

relatively large gap between 2.5 and 4. Plug that gap with
√

10 and an amazing thing happens:

the u-lattice produces a very close match to ten exponentially spaced points, as shown in tab. 3.

Engineers will recognize the bottom row as the definition of decibel ratios, from 0 dB to 10 dB.

Table 3. A new way to count from 1 to 10

Exact
1 1.25 1.6 2 2.5

√
10 4 5 6.25 8 10

unum

10k/10,
1 1.25⋯ 1.58⋯ 1.99⋯ 2.51⋯ √

10 3.98⋯ 5.01⋯ 6.30⋯ 7.94⋯ 10
k = 0 to 10

By crafting the u-lattice this way, we obtain even less wobbling accuracy than binary floats,

for which relative accuracy wobbles by a factor of 2. Some may balk at
√

10 being treated as a

counting number, if for no other reason than it being difficult to type, but if written as “r10”

then it should present no problem for computer input as a character string. The set of positive

exact unum values gives over six orders of magnitude:

{0.0008,0.001,0.00125,0.002,0.0025,0.001r10,0.004, . . . ,100r10,400,500,625,800,1250}.
It is worth looking at the multiplication and addition tables for a decade’s worth of values, to see

how often a result is expressible as another exact unum (cyan) versus lying between two exact

unums (red). The table leaves out input arguments 1 and 10 as trivial, and we write “⋯” after

A Radical Approach to Computation with Real Numbers

48 Supercomputing Frontiers and Innovations



an exact unum as the shorthand for “in the open interval beyond this exact unum,” indicating

information loss.

Table 4. Multiplication table within a decade

× 1.25 1.6 2 2.5 r10 4 5 6.25 8

1.25 1.25⋯ 2 2.5 2.5⋯ r10⋯ 5 6.25 6.25⋯ 10

1.6 2.5⋯ r10⋯ 4 5⋯ 6.25⋯ 8 10 12.5⋯
2 4 5 6.25⋯ 8 10 12.5 16

2.5 6.25 6.25⋯ 10 12.5 12.5⋯ 20

r10 10 12.5⋯ 12.5⋯ 16⋯ 25⋯
4 16 20 25 10r10⋯
5 25 25⋯ 40

6.25 10r10⋯ 50

8 62.5⋯
A remarkable 25 of the 45 entries shown are exact. A desirable property of a u-lattice is that

there not be too much “blurring” of results from the basic operations. The product of an exact

unum and an inexact one should not require more than three contiguous unums: an inexact, an

exact, and an inexact. The product of two inexact unums should not spread out to more than

five contiguous unums. Having a nearly exponential spacing of u-lattice values helps achieve this

goal.

There is obvious symmetry about the diagonal from upper left to lower right, since multi-

plication is commutative. There is a less-obvious symmetry about the orange cells shown from

the top right to the center of the table; numbers reflected over those cells become the reciprocal

(times 10) of the value, since we have closure under reciprocation. We could omit those, just as

the table omits negative values. While a näıve table of all possible 128 by 128 multiplications

(16 384 entries) could be maintained if memory is cheap and logic expensive, a little bit of logic

can go a long way to reduce the number of necessary table entries to as few as 45.

4.5. Other strategies worth considering

Rational arithmetic has some advocates, where the numbers are of the form ±p/q where p

and q are positive integers up to some limit, together with some accommodation for zero and

infinity cases. (Without ubit support, rational arithmetic suffers the same rounding problems

as floats since most operation results will not be exactly expressible.) The u-lattice provides

excellent scaffolding for the creation of a rational number system. For example, we could find

all p/q such that 1 ≤ q ≤ p ≤ 10 to populate one decade of a u-lattice:

1,10/9,9/8,8/7,7/6,6/5,5/4,9/7,4/3,7/5,10/7,3/2,8/5,5/3,
7/4,9/5,2,9/4,7/3,5/2,8/3,3,10/3,7/2,4,9/2,5,6,7,8,9,10

This could be simplified by requiring that p + q ≤ 11:

1,6/5,5/4,4/3,3/2,5/3,7/4,2,7/3,5/2,3,7/2,4,9/2,5,6,7,8,9,10

In either case, it is easy to obtain closure under reciprocation, and a fair number of mul-

tiplications and divisions land on exact values. The percentage of the time an exact result is

J. Gustafson

2016, Vol. 3, No. 2 49



produced, however, is not as high as it is for the “decibel” number set, and because there are

twice as many exact values per decade, the dynamic range will be half as large. However, if an

application demands many ratios of small integers, this approach may have its uses.

Finally, we have been showing flat accuracy systems where the spacing of the logarithm of

values is approximately constant from smallest to largest positive lattice point. Another approach

is to use tapered accuracy where there is more accuracy near 1 but less accuracy for very large

and very small values. For example, with 8-bit unums we could still populate the decade between

1 and 10 as shown in the right-hand graph of fig. 10:

1, /0.9,1.25, /0.7, /0.6,2,2.5,3, /0.3,4,5,6,7,8,9,
but then increase the spacing for the next decade:

10,12.5,20,25,40,50,80,

still wider spacing in the next decade,

100,200,500,

and finally allow the exponent to grow so rapidly that it becomes very unlikely for a product to

land in the (maxreal, /0) open interval:

1000,10 000,106,1010,1020,1050,10100.

These 32 exact values, united with their reciprocals, negatives, 0 and /0, and the open intervals

between those values, form a byte-sized unum that is decimal-based with slightly more than

one digit of accuracy near unity and a dynamic range of 200 orders of magnitude. The main

drawback to tapered accuracy is that it is harder to compress the look-up tables by exploiting

patterns that repeat for every decade.

5. Why unums are not like interval arithmetic

Perhaps the most succinct form of the interval arithmetic “dependency problem” is this:

Assign x to an interval, and compute x − x. Obviously the correct answer is zero, but that’s

not what interval arithmetic gives you. Suppose x is the interval [2, 4]. If we assign x ← x − x
repeatedly you will get the following interval ranges after a few iterations:

x = [−2,2]
x = [−4,4]
x = [−8,8]
x = [−16,16]
x = [−32,32]

The bounds grow exponentially. The interval method takes (maxx) − (minx) for the up-

per bound and (minx) − (maxx) for the lower bound. The uncertainty feeds on itself. In

contrast, a SORN with the 8-bit unums shown in tab. 3 produces the following sequence:

A Radical Approach to Computation with Real Numbers

50 Supercomputing Frontiers and Innovations



x = (−1,1) {(−1,−0.8),−0.8, (−0.8,−0.625), . . . , (0.625,0.8),0.8, (0.8,1)}
x = (−0.2,0.2) {(−0.2,−0.16),−0.16, . . . ,0.16, (0.16,0.2)}
. . .

x = (−0.0008,0.0008) {(−0.0008,0),0, (0,0.0008)}
The sequence actually decreases in width and is stable. Similarly, x ← x/x blows up

very rapidly if iterated similarly using interval arithmetic:

x = [1/2,2]
x = [1/4,4]
x = [1/16,16]
x = [1/256,256]
x = [1/65 536,65 536]

whereas the SORN set converges to a stable interval containing 1, with some loss of in-

formation caused by the limited (single-digit) accuracy. Because arguments to arithmetic

operators are never more than one ULP wide, the expansion of the bounds cannot feed on

itself. An n-body simulation written using with unums shows only linear growth in the bounds

of the positions and velocities, but interval arithmetic quickly produces bounds of meaningless

large size [2].

6. Higher precision, and table look-up issues

6.1. 16-bit unums and a comparison with half-precision floats

As we increase the unum size to 16 bits and larger, we start to notice the need for techniques

to reduce the size of SORN representation and the size of look-up tables. If we start with a

contiguous set of unums and only use + − × ÷ operations, the unums remain contiguous. This

property means that for an n-bit unum, the SORN can be represented with two n-bit integers,

the first indicating the position of the first 1 bit and the second indicating the length of the

string of 1 values. The pair of integers 0, 0 is reserved to represent the empty set, and any other

identical pair is reserved to represent a SORN with all presence bits set, that is, [−/0, /0] or R+.

IEEE half-precision binary floats have slightly more than 3-decimal accuracy, and the nor-

malized numbers range from about 6 × 10−5 to 6 × 104, or nine orders of magnitude dynamic

range. Many bit patterns are wasted on redundant NaN representations and negative zero. Can

a 16-bit unum do as well, and actually express three-digit decimals exactly?

The surprising answer is that 16-bit unums cover more than nine orders of magnitude, from/0.389 × 10−5 to 3.89 × 104, despite the cost of reciprocal closure and the ubit to track inexact

results. Sometimes, an answer known accurate to three decimals is preferable to a (64-bit) 15-

decimal answer of completely unknown accuracy. It is also possible to represent all the 2-decimal

values with 16-bit unums, which allows a dynamic range of more than 93 orders of magnitude.

In general, to store decimals from 1.00 . . .0 (k digits) to 9.99 . . .9 (k digits) requires almost

3.6 × 10k distinct unum values, including the exact reciprocals and the values between exact

unums. For example, a decimal unum equivalent to an IEEE 32-bit binary float might have 7

decimal digits of accuracy, and over 59 orders of magnitude dynamic range. If representation of

physical constants like Avogadro’s number and Planck’s constant are important, we could settle

for 6 decimals of accuracy and then be able to represent almost 600 orders of magnitude.

J. Gustafson

2016, Vol. 3, No. 2 51



6.2. Table look-up issues and future directions

Arithmetic tables are rich in symmetries that can be used to reduce their size, at the cost

of some conditional tests and some integer divides. For example, do we need both positive and

negative entries in the multiplication table, or should we test the sign of each argument, make

them positive if necessary, and then set the sign as appropriate? That tiny bit of logic cuts the

table size by a factor of four, yet for extremely low-precision unums it may not be worth it! As

the unum precision increases, we find ourselves wanting more logic and smaller tables.

Suppose we did a very näıve set of tables for + − × ÷ for 16-bit unums, by fully pop-

ulating all four tables and ignoring symmetry and repeating patterns. That would require 32

gigabytes. But a small amount of obvious logic easily reduces that to a few megabytes. A more

sophisticated approach notices that the smoothly exponential spacing of a flat-accuracy u-lattice

means that the unum bit strings can be added or subtracted to perform a close approximation

to multiplication or division, and the table need only hold small integer correction factors.

The next research direction is to find a practical set of techniques for fast table look-up and

for table size minimization, and determine tradeoffs between speed and table size. While the table

sizes for higher precision unums may look daunting, it is possible to put many billions of bits of

ROM storage in an integrated circuit without ruining the power budget or the area demands.

It may turn out that the new formulation of unums is primarily practical for low-accuracy but

high-validity applications, thereby complementing float arithmetic instead of replacing it.

7. Summary: Software-Defined Arithmetic

The approach described here could be called software-defined arithmetic since it can adjust

to the needs of a particular application. In fact, an application could alter its number system

from one stage to the next by pointing to alternative look-up tables; perhaps the early stages

of a calculation must test a large dynamic range, but once the right range is found, bits in

the representation are put to better use improving accuracy. Little is needed in the way of

specialized hardware for “Type 2 unums” since all processors are well equipped with the machine

instructions look up values in tables. Perhaps a processor could dedicate ROM to a standard set

of u-lattice values, but allow the user to define other u-lattices in RAM, at the cost of slightly

more energy and execution time. The processor instructions for processing SORNs would not

need to change.

The compiler could select the u-lattice, especially if the compiler has information (provided

by the user or by historical data from the application runs) regarding the maximum dynamic

range needed, say, or the amount of accuracy needed. Perhaps the greatest savings in time would

be for the compiler to populate look-up tables for unary functions needed in any particular

program. Imagine a program that repeatedly computes, say, an expression like cos (x + e−3x2).

The compiler could discover the common sub-expression, then provide a table that looks up the

value in only one clock cycle and is mathematically perfect to the unum accuracy level. (The

“Table Maker’s Dilemma” disappears since there is no requirement of constant-time evaluation

at run time.)

The energy savings and speed of such customized arithmetic might well be one or two orders

of magnitude better than IEEE floats, while providing automatic control of accuracy loss in a

way that resists the shortcomings of interval arithmetic. Type 2 unums may well provide a

shortcut to achieving exascale computing.

A Radical Approach to Computation with Real Numbers

52 Supercomputing Frontiers and Innovations



References

1. Yousif Ismaill Al-Mashhadany. Inverse kinematics problem (IKP) of 6-DOF Manipulator by

Locally Recurrent Neural Networks (LRNNs). In Management and Service Science (MASS),

2010 International Conference on, pages 1–5. IEEE, 2010.

2. John L. Gustafson. The End of Error: Unum Computing. CRC Press, 2015.

3. Timothy Hickey, Qun Ju, and Maarten H. Van Emden. Interval arithmetic: From principles

to implementation. Journal of the ACM (JACM), 48(5):1038–1068, 2001.

4. William M. Kahan. A more complete interval arithmetic. Lecture notes for a summer course

at the University of Michigan, 1968.

5. Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jeannerod, Vin-

cent Lefevre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. Hand-

book of floating-point arithmetic. Springer Science & Business Media, 2009.

6. Dan Zuras, Mike Cowlishaw, Alex Aiken, Matthew Applegate, David Bailey, Steve Bass,

Dileep Bhandarkar, Mahesh Bhat, David Bindel, Sylvie Boldo, et al. IEEE standard for

floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

J. Gustafson

2016, Vol. 3, No. 2 53



InfiniCloud 2.0: Distributing High Performance Computing

across Continents

Jakub Chrzeszczyk1, Andrew Howard1, Andrzej Chrzeszczyk2, Ben Swift1,

Peter Davis1 Jonathan Low3, Tin Wee Tan45, Kenneth Ban5

c© The Author 2017. This paper is published with open access at SuperFri.org

InfiniCloud 2.0 is the world’s first native InfiniBand High Performance Cloud distributed

across four continents, spanning Asia, Australia, Europe and North America. The project pro-

vides researchers with instant access to computational, storage and network resources distributed

around the globe. These resources are then used to build a geographically distributed, virtual su-

percomputer, complete with globally-accessible parallel file system and job scheduling. This paper

describes the high level design and the implementation details of InfiniCloud 2.0. Two example

applications types, a gene sequencing pipeline and plasma physics simulation code were chosen to

demonstrate the system’s capabilities.

Introduction

The original InfiniCloud system, presented at Supercomputing Frontiers Singapore in March

2015, enabled researchers to quickly and efficiently copy large volumes of data between Singapore

and Australia, as well as to process that data using two discrete, native InfiniBand High Perfor-

mance Clouds [8]. It also provided an opportunity to establish a detailed baseline of compute,

memory, storage and network performance of native Infiniband High Performance Cloud [11].

While the unique capabilities of InfiniCloud enabled new ways of processing data, it also

inspired a whole new range of research questions: Can the entire capacity of the system be

aggregated? Do entire data collections need to be copied for processing (even with a 99% effective

circuit efficiency delivered using extended InfiniBand), or can data be accessed in place? How

does the InfiniCloud design scale to an arbitrary number of sites? How we ensure a consistent

state of all InfiniCloud clusters? And finally, can the resources across four continents be joined

together using the InfiniCortex fabric to create a Galaxy of Supercomputers [14]?

In this paper we aim to explore these research questions and propose new ways of utilizing

distributed computation, storage and network resources, using a variety of novel tools and

techniques. We aim to provide a unified interface allowing users to transparently access resources

at each and every site using a standardized set of CLI, GUI and API tools. We also take advantage

of the expansion and enhancement of the InfiniCortex fabric which took place in 2015 [12], which

includes full support for InfiniBand subnets and routing, greater available bandwidth and last

but not least the growing number of participating sites. Finally, we demonstrate new and unique

capabilities of the system by deploying example scientific applications across geographically

distant sites.

1The Australian National University, Canberra, Australia
2Jan Kochanowski University, Kielce, Poland
3A*STAR Computational Resource Centre (ACRC), Singapore
4National Supercomputing Centre (NSCC), Singapore
5Dept. of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

DOI: 10.14529/jsfi160204

54 Supercomputing Frontiers and Innovations



1. The Network

The InfiniCortex network, which is crucial to the existence of InfiniCloud, has expanded

from an experimental service connecting Australia and Singapore, through a cycle of significant

extension, improvement in operational stability and enhancement of fabric isolation throughout

2015 to create for a time an InfiniBand Ring Around the World.

The underlying physical network is constructed using interconnected Advanced Layer 2

Services (AL2S) provided by National Research and Education networks to deliver a set of loss-

less 10Gbs Layer 2 channels reaching around the globe. Each presenting a fixed latency and data

rate. To date, the network has been instantiated on-demand to support ISC and SC, during 2016

a permanent InfiniCortex core will be created linking Europe, Asia and the Americas.

A significant characteristic of the InfiniCortex network is the optimised presentation of both

high bandwidth and fixed latency using InfiniBand as the underlying transport protocol. When

compared to traditional IPv4 as the transport protocol the deterministic nature of InfiniBand

delivers a direct improvement of large data set transfer data rates. While we have demonstrated

this capability at an international scale we believe that it provides greater advantages at a

Campus, Metro or Regional scale with lower inter-site latency to scale transparently beyond a

single data centre or facility. (Figure 1, Figure 2)

1.1. Connecting to Europe and additional US based facilities

The most significant change to the InfiniCortex in 2015 was the establishment of native

InfiniBand connectivity to Europe, thanks to help and support from many National Research

and Education Networks including AARNet, Internet2, TEIN*CC, SingAREN and Geant. This

enabled InfiniCortex sites to connect to Warsaw and Poznan in Poland as well as Reims in France,

allowing the University of Reims to become a new InfiniCloud node (Figure. 2). Connectivity to

the East Coast USA has been maintained and also been significantly enhanced, enabling Stony

Brook University in New York to also join InfiniCloud project.

1.2. Transition to 100Gbit/s Networks and InfiniBand

The second significant change to the InfiniCortex 2015 was the phase change from 10G and

40G to 100G as an advanced research network service. This allowed additional virtual circuits

to be created between Asia and sites located in North America, allowing higher data transfer

performance, supporting a greater level of concurrency for the increased volume of network

traffic.

We anticipate in 2016 as 100G network capabilities become more prevalent and affordable

and the implementation of 100G EDR based InfiniBand fabrics more widespread, that the

capabilities of the InfiniBand Extension and Routing devices underlying the InfiniCortex will

follow, allowing the removal of the current bandwidth impedance mismatch of a 10G network

connecting FDR 56G or EDR 100G InfiniBand fabrics and supporting line rate 100G inter-fabric

communication in the near future.

This will provide the opportunity to exploit the deterministic nature of data access in

RDMA capable applications operating in this environment. We have begun exploring the use

of a distributed file system layer which is tuneable for the InfiniCortex network characteristics.

Allowing a change in the conventional paradigm of staging large data set into and out of a remote

facility for processing to one of data access in place using the underlying opportunistic caching

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 55



Figure 1. InfiniCortex 2014 network diagram

Figure 2. InfiniCortex 2015 network diagram.

capability of the filesystem to optimise inter-facility traffic. Our initial investigation has shown

that gene alignment, sequencing and annotation applications with a primarily serial data access

pattern perform well in this environment. Analysis and characterisation of the performance

of additional classes of applications at both a metro scale and global scale environment are

underway.

1.3. Routable InfiniBand

The third key change was transition from a single, centrally managed InfiniBand fabric

to a interconnected pool of independent InfiniBand subnets, connecting to each other using

the Obsidian Strategics R400 InfiniBand Router. This transition has significantly enhanced

InfiniCortex operational stability - by eliminating crosstalk between local subnets, reducing

latency in Subnet Manager communication by orders of magnitude and containing any network

issues within a single site, minimizing the impact on other sites. All this was achieved without

any impact on network performance and the ability to efficiently and securely transfer data. All

the key components of the InfiniCortex network implementation are listed in (Table 1)

Progressive enhancements and improvements to the InfiniCortex have laid a foundation

for building the next generation of geographically distributed High Performance Computing and

Clouds. As the network matures from an experimental platform to a operational service, ongoing

performance characterisation is being undertaken and the findings will be presented in a future

paper, the main focus of this paper however is on the Cloud infrastructure.

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

56 Supercomputing Frontiers and Innovations



Table 1. InfiniCortex long-range InfiniBand equipment

InfiniBand extenders Obsidian Strategics LongbowTM E100

InfiniBand routers Obsidian Strategics CrossbowTM R400

Layer 2 connectivity Multiple loss-less, QoS-enabled 10GE circuits

1.4. Private, software-defined networks

With the latest versions of the OpenStack and Obsidian products, it is now fully supported

to implement a number of private, secure, software-defined InfiniBand networks. Each project

described in this paper was contained within a dedicated InfiniBand subnet, with the option of

reliable, secure, high-performance external connectivity if required.

2. The Cloud

The founding requirements of InfiniCloud 2.0 were i) simplifying and standardizing access

to the resources provided by the distributed system, ii) enabling new ways of using the network

capabilities for interacting with data iii) enabling easy scaling to more than two sites.

2.1. InfiniCloud rationale and the existing solutions

The original motivation behind exploring the novel topics of long-range, routable InfiniBand,

as well as connecting it to the Cloud was solving one of the ultimate challanges underlying

Cloud Computing - the ability to work with large volumes of data in a geographically distributed

context. While Public Cloud resources are available on demand and at low cost to users anywhere

in the World, the easy access to computational and storage resources becomes much more difficult

as soon as we add the requirement of accessing large quantities of data from outside any of the

popular Public Clouds.

One issue with Public Cloud data transfer is performance - from our experience, copying a

typical genomics sample of 300GB out of a Cloud hosted on the East Coast US to Singapore

can take as long as 24 hours. This itself makes it impossible to enable real-time aggregation

of compute and storage to achieve HPC-grade performance - where the boundary is previous-

generation interconnect performance - 10Gbit/s or 1GB/s. Also significant the cost of data

transfer out of Public Clouds is several orders of magnitude higher than the cost of compute

within those Clouds.

To provide an example - Amazon EC2 instances compute instances are priced from 0.01$/hr

for t2.micro to 1.68$/hr for c3.8xlarge. At the same time, data transfer rates are from 0.02$/GB

for inter-region transfers within Amazon to 0.09$/GB for data transfers to the Internet [1]. With

these rates, even if we were to hypothetically run transfers at the speed we’re aiming for (1GB/s)

which we weren’t able to achieve, this would amount to 72$/hr for inter-region transfers or to

324$/hr for transfers to the Internet.

In any possible case, the comparison of the cost of compute and network traffic (out by two

orders of magnitude) clearly states that the use case discussed in this paper is not possible to

implement efficiently using today’s Public Cloud model.

The use cases typical to most cloud users do not involve moving such huge volumes of data

on a regular basis hence this is not a major focus for the Public Cloud operators. However, from

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 57



our experience, organizations such as genomic consortium’s and large multi-national companies

do have such requirements.

The advantage that InfiniCloud 2.0 is proposing is a mechanism which can enable virtual

aggregation of geographically distant data centres - in a secure and energy efficient way utilising

the next generation of metro, regional and global networks. This is done by connecting Cloud

to a global-range, routable Infiniband fabric for the first time.

As no such capability is currently available from any of the Public Cloud providers, we envi-

sion that just like dial-up was replaced by broadband links supporting unlimited data transfer,

inefficient and expensive data transfer rates charged per gigabyte will ultimately be replaced

with solutions similar to those explored by this collaboration using Research and Education

networks and described in this paper.

2.2. Cloud Architecture

In order to fulfill some of these requirements, a significant re-design of the system was

required. The underlying model of independently operated, site-contained clusters which leverage

the InfiniCortex fabric for high performance, efficient data transfer between cloud instances

was replaced with a more tightly coupled, experimental architecture, utilising a central Cloud

Controller with Compute Nodes distributed around the globe.

This change implemented the first requirement: a uniform user interface with a single CLI

/ GUI / API interface accessible to users. It also removed the necessity to manually synchronize

state between different clusters which was a requirement in the previous, loosely-coupled design.

With the architecture described above, it is crucial to carefully consider the characteristics

of the network, especially in terms of latency, in order to make optimal component placement

decisions. It is highly recommended that consideration of placement of the critical components

(Cloud Controller, Subnet Manager, and at later stage - also parallel file system instances and

the job scheduling instance) occurs in a way to ensure that the latency between all nodes is

consistent.

In the scenario presented in this paper, Singapore provided the best location for these

services. A consistent, 300ms round-trip latency from Canberra, Reims and New York as well

as access to 100Gbit/s connectivity made the South-East Asian city-state the optimal location

for the Cloud Controller and the Master Subnet Manager.

Two distinct pools of compute nodes were also hosted in Singapore, joined by more nodes

hosted in Canberra, New York and Reims, all connected with high performance RDMA and

IPoIB connectivity provided by the InfiniCortex.

The last but not the least, given the nature of the system, users needed to be able to

have fine-grained control over scheduling of the resources requested, be it compute or storage.

Some applications might be suitable to be distributed around the world in a round-robin fashion,

while others may require user-defined, role, facility, regional, sovereign territory or geographically

based scheduling.

2.3. Cloud implementation

All InfiniCloud systems run the following hardware (Table 3) and software stack (Table 2).

The deployment of the system begins with building the Cloud Controller in Singapore.

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

58 Supercomputing Frontiers and Innovations



Table 2. InfiniCloud 2.0 software stack

Operating System CentOS 7.1 x86 64

InfiniBand drivers Mellanox OFED

OpenStack version Kilo (customized)

Table 3. InfiniCloud 2.0 hardware configuration

CPUs Intel Haswell (Singapore), Sandy Bridge and Ivy Bridge (other sites)

Memory 64GB-256GB

Interconnect Mellanox FDR

Local storage Intel DCS family SSDs (Singapore), SAS HDDs (other sites)

2.3.1. Cloud Controller

Due to the complexity of this component, it is performed in a multi-step process, starting

with a kickstart build and then switching to a puppet configuration management solution based

on widely adopted PuppetForge OpenStack modules [5] [6] . After the base installation is com-

pleted, the custom, out-of-tree InfiniCloud2.0 specific patches are applied, which completes the

Cloud Controller installation.

2.3.2. Compute Nodes

InfiniCloud 2.0 Compute nodes are much simpler than the controller node and as such can

be kickstart-built. As soon as the freshly-built nodes report to the Cloud controller using the

InfiniCortex fabric, their configuration is pushed and they become ready for operation.

Two compute nodes are build in each of the InfiniCloud 2.0 locations. Additional capacity

is available in Singapore for infrastructure services, such as a virtual parallel file system.

2.4. Resource scheduling

The default behaviour of the OpenStack scheduler is to allocate virtual instances to compute

nodes in a round robin fashion. While this is a reasonable approach for a homogeneous cluster

hosted in one location, it is unsuitable for a globally distributed system, where - as discussed

in the previous sections - the locations of particular components have to be carefully optimized

for consistent latency.

2.4.1. Availability zones

For the above reason, a separate availability zone was created for each location. Each zone

(Australia, Asia, Europe, USA) corresponds to a physical location (Canberra, Reims, Singapore,

New York) and holds all the compute resources that are hosted in this location.

On top of these, two additional availability zones were added: local and distributed. The

local zone is reserved for infrastructure use (such as Sun Grid Engine head node or BeeGFS

parallel file system nodes) and instances allocated to this zone will always be launched in Sin-

gapore. The distributed zone stripes across all the locations and provides a simple mechanism

to distribute workloads across the remote nodes. This is illustrated in (Listing 2.4.1 and Listing

1). Remark: For the purpose of this paper and for clarity let us assume that host aggregates

and availability zones are synonyms.

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 59



# availability zone example

[root@ics111 ~( keystone_admin )]# nova aggregate -list

+----+-------------+---------------------+

| Id | Name | AvailabilityZone |

+----+-------------+---------------------+

| 1 | local | - |

| 7 | distributed | - |

| 8 | singapore | singapore |

| 9 | australia | australia |

| 10 | europe | europe |

| 11 | america | america |

+----+-------------+---------------------+

Listing 1. InfiniCloud 2.0 availability zones

# zone to host mapping example

[root@ics111 ~( keystone_admin )]# nova aggregate -details 7

+----+-------------+------------------------------------+-------------------+

| Id | Name | Hosts | Metadata |

+----+-------------+------------------------------------+-------------------+

| 7 | distributed |’ica120.infinicloud.nci.org.au ’, | ’distributed=true ’|

| | |’ica121.infinicloud.nci.org.au ’, | |

| | |’ics130.infinicloud.a-star.edu.sg ’, | |

| | |’ics131.infinicloud.a-star.edu.sg ’, | |

| | |’icu143.infinicloud.stonybrook.edu ’,| |

| | |’icu144.infinicloud.stonybrook.edu ’,| |

| | |’icf157.infinicloud.univ -reims.fr ’, | |

| | |’icf158.infinicloud.univ -reims.fr ’ | |

+----+-------------+------------------------------------+-------------------+

Listing 2. InfiniCloud 2.0 host to availability zone mappings

2.4.2. Instance types

While launching Cloud instances, the user has an ability to explicitly specify the intended

availability zone. However, to enable a high degree of automation, it is recommended to create

dedicated instance types which are linked to a particular availability zone and/or a scheduling

pattern. This can be implemented using instance type metadata. This is illustrated in Listing 5.

After the metadata is set, when instance types such as ”local.2c.8m.170d” (local storage) or

”geo.8c16m20d” (distributed compute) are requested, instances will be scheduled in the cor-

responding locations. These instance types can be referenced directly in applications such as

ElastiCluster which is described in the next section. Examples of creating instances in a specific

location or across all locations is demonstrated in Listing 3 and Listing 4.

[root@ics111 ~( keystone_admin )]# nova boot --flavor geo.2 c2m20d --key -name oskey

--image BioPipeline_v0 .8.6.7 --num -instances =4

--availability -zone singapore|australia|america|france singlezone

Listing 3. Creating cloud instances on a particular continent

[root@ics111 ~( keystone_admin )]# nova boot --flavor geo.2 c2m20d --key -name oskey

--image BioPipeline_v0 .8.6.7 --num -instances =4 distributed

Listing 4. Creating cloud instances across all continents

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

60 Supercomputing Frontiers and Innovations



# instance types

[root@ics111 ~( keystone_admin )]# nova flavour -list --all e x t r a -specs

+---------+---------------+------+----+---------+----+------+---------------+

| ID | Name |Memory|Disk|VCPU|Public|extra_specs |

+---------+---------------+------+----+----+------+-------------------------+

| 0e...db | local.2 c8m170d| 8192 | 20 | 2 | True |{u’local ’: u’true ’} |

| 3a...5e | geo.8 c16m20d |16384 | 20 | 8 | True |{u’distributed ’: u’true ’}|

| 60...7f | local.2 c8m120d| 8192 | 20 | 2 | True |{u’local ’: u’true ’} |

| 83...52 | geo.4 c8m20d | 8192 | 20 | 4 | True |{u’distributed ’: u’true ’}|

+---------+---------------+------+----+----+------+-------------------------+

Listing 5. InfiniCloud2.0 host to availability zone mappings

2.5. Communication patterns

There are three main types of network traffic which are relevant to operating a geographically

distributed OpenStack cluster: Message queue traffic (AMQP), cloud endpoint traffic (HTTP),

and downloading images (HTTP). All these protocols are native to IP, so IPoIB is used to carry

the relevant traffic.

2.5.1. Bandwidth and latency considerations

Both message queue and endpoint traffic is only minimally bandwidth intensive and tolerant

to large latency, so no tuning was required. In the case of images, while underlying HTTP

protocol is robust and built-in auto-tuning mechanisms are useful, it is not able to fully utilize

the available bandwidth over a 10Gbit/s connection with a 300ms round-trip latency. While

the default configuration is usable, initial image caching can take several minutes (in case of

the processing method described in this paper, this is a one off operation, so this delay is

acceptable). This could be addressed with additional network tuning or the use of a custom

image transport mechanism, ideally using native RDMA communications. Implementing such a

mechanism, however is outside of the scope of this paper.

The amount of bandwidth consumed by the Cloud itself is minimal, and nearly all the bandwidth

can be used by the applications running in virtual instances.

3. The Applications

This section will cover a selection of example applications that can take full advantage of the

geographically distributed, High Performance Cloud: BeeGFS, Geopipeline and Extempore.

3.1. BeeGFS

One of the key advantages of high bandwidth, RDMA-capable interconnect spanning across

continents is providing the ability to efficiently work with data. In our previous work, this

mainly meant high speed data transfers and/or data synchronization. However, in many cases it

might be more efficient to access datasets in-place, without the need to move parts or even the

entirety of the data set. In this experiment, we use a BeeGFS parallel filesystem cluster hosted

in Singapore to export data to consumers in Australia, Europe and the US [2].

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 61



The BeeGFS cluster used in this experiment consisted of three nodes. The first node was running

management (fhgfs-mgmtd), metadata (fhgfs-meta) and storage (fhgfs-storage) processes. The

other two nodes were running solely the fhgfs-storage process. The storage space was presented as

a qcow2 300GB ephemeral drive which was stored on a a single SSD drive. BeeGFS performance

is typically determined by backing store read/write bandwidth - in our case 3xSSD drives, each

capable of 500MB/s read/write, provided a 1500MB/s theoretical maximum I/O capability and

given some overhead in the parallel filesystem layer, 1000MB/s is a typical value delivered. The

network bandwidth needs to match or exceed the storage bandwidth. In our case, 56Gbit/s is

available to local clients and 10Gbit/s is available to remote clients so this requirement is met.

CPU performance and memory allocation have less impact on BeeGFS performance, however

BeeGFS cluster under load manifests medium CPU utilization and sufficient memory is essential

to support high-latency of an intercontinental link due to data buffering. We used 2 CPU cores

and 8GB of RAM per server. All data transfer communications use native RDMA.

While mounting a file system across a link with such a large Bandwidth Delay Product (BDP)

brings a number of technical challenges, we were able to derive the tuning parameters optimized

for such scenario.

3.1.1. BeeGFS configuration for high bandwidth-delay products

This cluster was then specifically tuned for a large Bandwidth Delay Product inherent in high

latency links. The key configuration value are included in (Listing 3.1.1 ). An important remark

is that this results in an increased memory utilization, so the virtual instances need to be created

with sufficient memory allocation to support this requirement. The default client time-out values

were also increased by an order of magnitude.

> connRDMABufSize = 8192

> connRDMABufNum = 128

< connRDMABufSize = 65536

< connRDMABufNum = 260

Listing 6. BeeGFS tuning parameters

3.1.2. Optimizing data access patterns

In order to be able to obtain performance near or matching the local performance, the I/O

patterns in use also need to be optimized. We aim to optimize data access methods to ensure

as much data remains in flight as possible and to ensure that data is striped across all available

network links and servers. In order to achieve this, we used:

• multiple clients,

• multiple threads (10-20),

• large block sizes (10MB and more)

With the sufficient degree of parallelism and sufficient block size, we were able to achieve sat-

isfactory performance, nearly matching what is possible to achieve locally: Write operations

reached 1GB/s, saturating 10Gbit/s link (Figure 3). Read performance was lower, but still very

good, reaching 700MB/s.

The authors consulted BeeGFS support team about write:read disparity. This behavior is often

observed, due to the characteristic that results in write operations being cached and reorganised

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

62 Supercomputing Frontiers and Innovations



Figure 3. Network utilization diagram for Canberra-Singapore link during BeeGFS data access

more efficiently than read operations. Often, this allows the storage back-end to aggregate write

operations in a more efficient manner. When reading data, it is sent out to the clients as quickly

as possible, and more data is streamed read from the disks as it is needed. This doesn’t allow

as much room for optimization as the case of write operations. Such performance profile is not

unique to BeeGFS and is often observed with other parallel filesystems, such as Lustre [4] [15].

3.2. Geopipeline

Geopipeline is a set of tools implementing computational genomics codes on a set of geograph-

ically distributed hardware. It consists of two main components: ElastiCluster and Biopipeline

- and also relies on a parallel file system - in our case BeeGFS

3.2.1. ElastiCluster

ElastiCluster is a software suite implementing on-demand HPC Cluster capability in the Cloud.

By default it uses Ansible configuration management, NFS file sharing and Sun Grid Engine job

scheduler [3]. All these components can be customized as required.

We configure OpenStack and ElastiCluster in a way which supports running a BeeGFS storage

cluster in a central location and then a geographically distributed HPC cluster spanning multiple

locations which connect to the central storage cluster.

After the relevant configuration has occured as detailed in Section 2.2 and Section 2.3, the

geographical location of the compute instances becomes irrelevant. When ElastiCluster is in-

stantiated, it deploys a head node in the central location and a number of virtual compute

nodes spread across continents. The compute nodes then mount the remote BeeGFS parallel file

system and report to the Sun Grid Engine scheduler running on the head node and are ready to

run jobs. Physical distance between the nodes running virtual instances is abstracted away and

the applications run and behave exactly in the same way as if it were running on a local cluster

hosted in a single datacentre rack. (Figure 4) and (Figure 5) represent a state of the virtual

cluster after launch and during processing.

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 63



Figure 4. Ganglia monitoring interface after starting a geographically distributed cluster

Figure 5. Resource utilization across the distributed cluster members

3.2.2. Implementation of variant calling genome analysis pipeline

Next, we demonstrate the on-the-fly provisioning and setup of a virtual machine which can

be used to parallelize a genomic analysis workflow. We selected a clinically relevant workflow,

called variant calling, which takes genomic sequences from cancer samples and detects mutations

in genes that could be used to determine the prognosis of a patient, or to identify potential

chemotherapy drugs that could be used for treatment. Because each cancer sample can be

analysed separately, the workflow is amenable to simple asynchronous parallelization without

any interprocess communication. Each compute node is configured with 12 CPU cores, 24GB

RAM, 20GB system disk and 100GB ephemeral scratch space.

In this workflow, genomic sequences are processed in a pipeline through a series of steps using

different applications to identify and annotate mutations (Figure. 9). We use a pipeline appli-

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

64 Supercomputing Frontiers and Innovations



cation to orchestrate the steps in processing and to distribution the processing to the compute

nodes using the SGE scheduler.

(Figure. 6) and (Figure.7) illustrate typical local CPU and memory utilization on one node

during example run of the above pipeline. These metrics were recorded using Ganglia. Figure

8 captures typical aggregate I/O usage patterns measured against the parallel file system using

sysstat package. These graphs clearly show that these applications are primarily CPU bound and

in certain steps (particularly alignment) storage intensive, both in terms of read and write. All

applications are configured to run a number of threads matching the number of available cores.

Memory utlization is moderate. Network utilization is high at times of heavy storage utilization

and very low at all other times. Native RDMA is used for data movement. TCP over IPoIB is

used for SGE control streams and monitoring - all these components combined use only minimal

network bandwidth, measured in kilobytes a second.

Figure 6. CPU utilization on a node across many test iterations

1. Genomic sequences from each cancer sample are processed with an aligner - an applica-

tion that compares the sequences to a human reference genome sequence and identifies the

position and alignment of each sequence from the cancer samples.

2. The files from each cancer sample are processed by a variant caller program, which com-

pares the aligned sequences to the human reference genome sequence to identify variations

(substitutions, insertions, deletions) in the cancer samples.

3. The variant files from each cancer sample are annotated. A specialized application compares

each variation to multiple databases to identify what potential effects of each mutation have

on regions in the genome.

The applications are pre-installed in the VM images together with their dependencies to enable

portability. An example output is shown on (Figure 3.2.2). The reference datasets required

by the aligner, variant caller, and annotation tool, are located on remotely mounted BeeGFS.

Depending on the expected data access pattern, the datasets can be accessed in place or staged

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 65



Figure 7. Memory utilization on a node across many test iterations

Figure 8. Parallel filesystem read/write bandwidth across single test iteration

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

66 Supercomputing Frontiers and Innovations



Figure 9. Workflow for variant calling of genomic data from cancer samples

into local scratch. After the processing is complete, the output is also saved on the BeeGFS

parallel file system.

================================================================================

Starting Pipeline at 2016 -03 -15 21:04

================================================================================

================================= Stage align [AD365_S3_L001 ]===================

...

============================== Stage variant [AD363_S2_L001] ===================

...

============================= Stage annotate [AD363_S2_L001] ===================

...

======================================== Pipeline Finished =====================

21:48:07 MSG: Finished at Tue Mar 15 21:48:07 UTC 2016

21:48:07 MSG: Outputs are:

annotate/AD407_S5_L001.avinput

annotate/AD407_S5_L001.hg19_multianno.csv

annotate/AD363_S2_L001.hg19_multianno.csv

annotate/AD422_S6_L001.avinput

annotate/AD422_S6_L001.hg19_multianno.csv

... 8 more ...

Listing 7. Example output from the pipeline

3.2.3. Geopipeline performance analysis

Performance metrics gathered during the test show that the execution time is determined mostly

by CPU performance and, while average I/O bandwidth is low, it can be very streaming read

and write intensive in short burts. Given highly parallel nature of the workload, performance

can be further optimized by increasing the number of cores available for processing, increasing

per-core performance and at later stage increasing storage performance.

The CPU utilization metrics gathered throughout the run show a large variation between com-

pletion times across different sites. This is due to heterogenous hardware setup, particularly:

• difference in per-core CPU performance (up to 50% higher per-core performance between

Haswell and Sandy Bridge)

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 67



• faster local data staging (Singapore nodes don’t have to compete for WAN bandwidth with

other sites)

• local storage performance (SSD-equipped machines can achieve 50% higher storage band-

width)

The main focus of this paper is functionality more than performance. The goal of this research

is demonstrating the ability to aggregate geographically distant compute resources and enabling

the users to efficiently work with large amounts of data over large distances, hence we don’t see

performance disparity as a problem. For this reasons we haven’t performed detailed analysis of

performance data or attempts to optimize the pipeline further. This can be a subject of further

research. More information on performance analysis and comparison between different types of

Public and Private Clouds can be found in [7] and [11].

3.3. Extempore

In contrast to the high bandwidth genome analysis pipeline, we also explored the potential of the

InfiniCortex network for interactive latency-sensitive applications using the Extempore “live”

interactive HPC programming environment [13]. Extempore allows the HPC programmer to

hot-swap running code on-the-fly. It supports seamless integration with C/Fortran (C-ABI com-

patible) in an interactive “live programming” workflow for Exploratory HPC. For the purpose of

this demonstration, we ran four Extempore instances with 8 CPU cores, 64GB RAM and 20GB

local SSD. All communications used MPI running over IPoIB. We ran 32 MPI processes in total

and the code was mostly CPU and communications intensive, with little memory and storage

utilization. The emphasis of this experiment was to test the feasibility of real-time interaction

with running computations in a geographically distributed environment like ours, so no detailed

resource utilization or execution time measurements were taken.

For the Supercomputing ’15 event, we ran an interactive plasma physics simulation (Figure 10)

from the SC show floor to demonstrate the possibility of interactive steering and simulation

across the globe. We used a particle-in-cell distributed (MPI) plasma physics code, based on

codes by Viktor Decyk (UCLA) [9]. All aspects of the simulation could be modified:

• re-definition of constants (time step, electric/magnetic fields) and even subroutines (change

boundary conditions), via code updates sent from a laptop on the SC show floor

• summary data was streamed back to the laptop on the show floor, running real-time

visualisation and sonification of the computation in progress

• updates of the code from the show floor were immediately reflected in the visualisation in

real time, so that visitors to the infinicortex booth could see the simulation being “steered”

in real-time

The interactive show floor demo was successful, but not without challenges. The InfiniCortex

network was reliable and running the MPI codes over multiple locations (e.g. between Singapore

and Australia) required no code changes. However, link latency was a significant challenge for

this inherently data-parallel application. For this reason, best results were achieved by dividing

the computations into sub-problems that were contained within a single site, and then handling

result aggregation in an extra tier.

Thanks to the ability of on-demand, interactive access to high performance computing resources

distributed around the globe, InfiniCloud2.0 provided a valuable testing environment for Extem-

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

68 Supercomputing Frontiers and Innovations



Figure 10. Extempore workflowh

pore, allowing scientific programmers to explore the response of the codes to different parametri-

sations and workloads.

Future optimization work could involve porting the simulation to reconfigure MPI running over

IPoIB to native RDMA which is easier to tune appropriately to the characteristics of a long-

distance link. The application could also be enhanced by adding topology and scheduling aware-

ness, which would be very helpful in making sure that each component of the simulation runs in

an optimal location, based on latency and bandwidth available. This could then become a foun-

dation for a tiered model for Extempore, where problem sizes are devided into tightly coupled

and loosely coupled parts which then can be efficiently scheduled into local and remote worker

nodes.

Conclusions

In (Section 1) and (Section 2) we demonstrated the concept, design and implementation of a

geographically distributed, High Performance Cloud system, capable of aggregating high per-

formance computing resources available across four continents.

These resources can then be accessed through a uniform set of CLI, GUI and API interfaces,

allowing users to create on-demand virtual supercomputers and storage systems, all connected

with native InfiniBand.

This clearly demonstrates that it is indeed possible to fully aggregate capacity of a globally

distributed pool of computational and storage resources. This is the first, small scale, implemen-

tation of a Galaxy of Supercomputers [14].

The InfiniCloud 2.0 platform has proved efficient and resilient. OpenStack components were able

to seamlessly communicate over the IPoIB links presented by the InfiniCortex and apart from

the image caching overhead, we did not observe any impact of the distance on Cloud operations.

Centralized architecture allowed easy scaling to the growing number of InfiniCortex sites, without

multiplying the management overhead. Such design enforces consistency through its simplicity

- the central site provides a single source of truth.

In this paper, we run four distinct sites and we envision this number can grow to up to ten sites

which would allow to provide a good global coverage in data transfer infrastructure for scientific

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 69



computations. Hence we are confident to state that our current design scales sufficiently for its

purpose.

It is worth noting that this design made the Singapore site a single point of failure. While

this is an acceptable risk for a prototype, semi-production environment, a full-production, large

scale system would require a slightly different approach providing greater operational resiliency,

however providing such solution is beyond the scope of this paper.

In (Section 3.1) we present BeeGFS storage optimized for high-latency, high-bandwidth links

proved to be a very powerful tool, supplementing data processing toolkit with the ability to

access data over long distance. This means that data collections no longer need to be copied for

processing and can be accessed in place.

ElastiCluster and Biopipeline can very easily adapt to operate in a globally-distributed system.

After some I/O optimizations, we were able to transparently distribute computational genomics

jobs across four continents, aggregating the entire available capacity and creating a fully func-

tional, global HPC cluster, realising the vision of a Galaxy of Supercomputers.

The distributed plasma physics simulation in Extempore demonstrated the ability of the In-

finicloud2.0 network to support real-time bidirectional data streaming and real-time code hot-

swapping. As dynamic cloud HPC contexts become more popular (e.g. [10] and [16]) the issues

of on-demand interactivity and real-time feedback are active areas of research.

We believe a novel approach to High Performance Computing and Cloud Computing proposed in

this paper can enable new ways of utilizing computational resources, joining resources available

in multiple locations and providing new, more efficient ways of interacting with data collections.

This work was supported by the A*STAR Computational Resource Centre through the use of its

high performance computing facilities.

This research was undertaken with the assistance of resources from the National Computational

Infrastructure (NCI), which is supported by the Australian Government.

The authors wish to thank Universite de Reims Champagne-Ardenne for providing the equipment

essential for the experiments described in this paper.

The authors wish to thank Stony Brook University, New York for providing the equipment es-

sential for the experiments described in this paper.

The authors wish to thank Fraunhofer Institute and in particular Bernd Lietzow, Sven Breuner,

Frank Kautz and Christian Mohrbacher for their contribution and generous support for our

BeeGFS work.

This paper is distributed under the terms of the Creative Commons Attribution-Non Commercial

3.0 License which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is properly cited.

References

1. Amazon EC2 pricing. http://aws.amazon.com/ec2/pricing/, urldate = 2016-05-20.

2. BeeGFS parallel filesystem. http://www.beegfs.com.

InfiniCloud 2.0: Distributing High Performance Computingacross Continents

70 Supercomputing Frontiers and Innovations



3. ElastiCluster. https://github.com/gc3-uzh-ch/elasticluster.

4. Lustre File System, Operations Manual - Version 2.0. http://wiki.old.lustre.org/

manual/LustreManual20_HTML/, urldate = 2016-05-20.

5. OpenStack Cloud Computing Platform. http://www.openstack.org.

6. PuppetForge OpenStack Puppet Modules. https://forge.puppet.com/puppetlabs/

openstack.

7. Joseph Antony, Jakub Chrzeszczyk, Dongyang Li, Matthew Sanderson, Andrzej

Chrzeszczyk, and Ben Evans. An Initial Microbenchmark Performance Study for Assessing

the Suitability of Scientific Workloads Using Virtualized Resources from a Federated Aus-

tralian Academic Cloud & EC2. Presented at HPC in Asia poster session at International

Supercomputing Conference 2014, Leipzig, Germany.

8. Kenneth Ban, Jakub Chrzeszczyk, Andrew Howard, Dongyang Li, and Tin Wee Tan. In-

finiCloud: Leveraging Global InfiniCortex Fabric and OpenStack Cloud for Borderless High

Performance Computing of Genomic Data and Beyond. Supercomputing Frontiers and In-

novations 2015, Vol2.

9. V. Decyk. Skeleton Particle-in-Cell Codes on Emerging Computer Architectures. Computing

in Science Engineering, PP(99):47–52, 2015.

10. Marius Hillenbrand, Viktor Mauch, Jan Stoess, Konrad Miller, and Frank Bellosa. Virtual

InfiniBand clusters for HPC clouds. In Proceedings of the 2nd International Workshop on

Cloud. ACM, 2012.

11. Jonathan Low, Jakub Chrzeszczyk, Andrew Howard, and Andrzej Chrzeszczyk. Performance

Assessment of Infiniband HPC Cloud Instances on Intel Haswell and Intel Sandy Bridge

Architectures. Supercomputing Frontiers and Innovations 2015, Vol2.

12. Gabriel Noaje and Marek Michalewicz. Around The Globe Towards Exascale: InfiniCortex

Past and Present. Presented at Supercomputing Frontiers Conference, Singapore, 2016.

13. Ben Swift, Andrew Sorensen, Henry Gardner, Peter Davis, and Viktor K. Decyk. Live

Programming in Scientific Simulation. 2(4):4–15.

14. Tin Wee Tan, Dominic S.H. Chien, Yuefan Deng, Seng Lim, Sing-Wu Liou, Jonathan Low,

Marek Michalewicz, Gabriel Noaje, Yves Poppe, and Geok Lian Tan. InfiniCortex: A path

to reach Exascale concurrent supercomputing across the globe utilising trans-continental

InfiniBand and Galaxy of Supercomputers. Supercomputing Frontiers Conference 2015,

Singapore.

15. Calleja Paul Turek, Wojciech. Technical bulletin: High performance lustre filesystems using

dell powervault md storage. http://i.dell.com/sites/content/business/solutions/

hpcc/en/Documents/lustre-hpc-technical\%20bulletin-dell-cambridge-03022011.

pdf.

16. Jerome Vienne, Wasi-ur Rahman, Nusrat Sharmin Islam, Hari Subramoni, and D.K. Panda.

Performance Analysis and Evaluation of InfiniBand FDR and 40GigE RoCE on HPC and

Cloud Computing Systems.

J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan...

2016, Vol. 3, No. 2 71



Making Large-Scale Systems Observable — Another

Inescapable Step Towards Exascale

Dmitry A. Nikitenko1, Sergey A. Zhumatiy1, Pavel A. Shvets1

c© The Authors 2017. This paper is published with open access at SuperFri.org

The effective mastering of extremely parallel HPC system is impossible without deep under-

standing of all internal processes and behavior of the whole diversity of the components: computing

processors and nodes, memory usage, interconnect, storage, whole software stack, cooling and so

forth in detail. There are numerous visualization tools that provide information on certain compo-

nents and system as a whole, but most of them have severe issues that limit appliance in real life,

thus becoming inacceptable for the future system scales. Predefined monitoring systems and data

sources, lack of dynamic on-the-fly reconfiguration, inflexible visualization and screening options

are among the most popular issues. The proposed approach to monitoring data processing resolves

the majority of known problems, providing a scalable and flexible solution based on any available

monitoring systems and other data sources. The approach implementation is successfully used in

every-day practice of the largest in Russia supercomputer center of Moscow State University.

Keywords: scalable monitoring visualization, situational screen, supercomputer state visual-

ization, joint monitoring sources, supercomputer dashboard, HPC instrument control board.

Introduction

The effective mastering of large-scale supercomputer systems which includes many aspects

of management and administering, is impossible without deep understanding of peculiarities of

system behavior on all levels. Most of existing techniques and tools require extensive tuning

to fit even present system scales and tasks. Taking steps towards Exascale predetermines the

strong need for effective highly-scalable and flexible techniques and algorithms that support

simultaneous use of a number of data sources with diverse output formats with a dynamical

reconfiguration feature as well as means for visualization of obtained data in user-defined com-

binations and a variety of screening cases and templates, including implementation for mobile

devices. At present numerous monitoring systems and visualization tools are available. Most of

them were developed for a certain purpose such as network monitoring, without taking into the

account extreme parallelism of observed objects and strict scalability requirements.

Zabbix is a system designed to monitoring network services and applications [1] with compre-

hensive facilities for visualization of observed object state and history of changes. The developers

declare support for 10 000+ observed objects and more, but with a consequent reduced monitor-

ing rate to once per several minutes for every attribute, that is hardly acceptable even for present

scales of supercomputers, say nothing of Exascale. Moreover there are issues with simultaneous

visualization of multiple characteristics and lack of HPC-specific component support “out of the

box”, such as resource managers support, queuing systems, etc. Some of the issues cannot be

fixed by system Zabbix design.

Nagios is another monitoring system [2] for network services. The system provides a wider

support for different modules due to log evaluation history. Basic Nagios has very poor tools

for visualization, which is why external tools are used. These tools are usually designed to meet

certain requirements, and they are rarely flexibly configurable. Moreover, the declared scalability

is even worse than thousands of objects. There is Nagios-based commercial software with mature

1Research Computing Center M.V. Lomonosov Moscow State University, Moscow, Russia

DOI: 10.14529/jsfi160205

72 Supercomputing Frontiers and Innovations



visualization facilities and some HPC-relevant modules, but stillit is as limited in scalability as

the original version.

Moreover, there are many other monitoring systems and data collectors with different vi-

sualization facilities: Ganglia, Collectd, Cacti, OpenNMS, Munin, Monit, NetXMS, etc. All of

them have demerits in flexibility of visualization configuration and difficulties in introducing

new data sources.

Among others one should notice Open Lorenz by Lawrence Livermore National Laboratory.

This tool allows every user designing his own web-page with the information on the latest and

forthcoming events, job queue state, overall system load rate and some other information. Every

data type is available in separate portlet visual element. As for now, custom configuration of

portlet combination and positions is available. The number of available characteristics is rather

small and the majority of those available do not suit most other supercomputers, fitting the

specific certain HPC center workflow. It is very promising that the project is open source and

one can expect further development in functionality extension, introducing new portlets, but

there have been not many changes during the last 1,5 years [3, 4].

Another interesting project has been developed by National Center for Supercomputing

Applications, University of Illinois. It is aimed at visualization data on certain jobs behavior

screening characteristics of network usage, CPU utilization, etc. and is oriented to users, lacking

valuable information on infrastructure or queuing that is important for system administrators.

Unfortunately, the project is not publicly available [5]. As we see, the need for efficient HPC

dashboard exists and there are same attempts to develop such tools. At present, most approaches

lack flexibility, portability and have poor support for diverse data sources and visualization

schemes, not to mention critical scalability issues.

1. Design Principles

In our approach we put emphasis on the development of portable, configurable and scalable

algorithms and principles aimed to provide flexible all-round methods of control over supercom-

puter complex of any scale. The analysis of many-year experience of running and supporting

large HPC systems provided us same basic principles that the development has to follow.

1. It is imperative to permanently keep track on all components that influence

efficiency of large-scale system output. It is totally wrong to control only compute

nodes, real life imposes much more complicated set of observed objects:

• Computing hardware: nodes, CPUs, memory stack, disks and storage hierarchy, net-

works, etc.

• Infrastructure hardware: this part of hardware is rarely paid enough attention, but it is

much more fault-tolerance critical, than compute hardware. It includes cooling system:

chillers, heat exchangers, air conditioners; piping, pumps; a set of components of the

power system in conjunction with an uninterruptible power supply; fire safety systems

and smoke removal; access control.

• Whole software stack: OS parameters, package and license usage rates and limitations,

etc.

• Dynamics and resource utilization of all user applications.

• Job queuing from different points of view: currently run jobs study and analysis of the

queued jobs structure including issues of simultaneous jobs interference.

D. Nikitenko, S. Zhumatiy, P. Shvets

2016, Vol. 3, No. 2 73



• Users. At one hand, all HPC systems are designed for users, and on the other job

queue structure, application peculiarities and as a total an output of supercomputer is

determined by user activity.

2. Support extreme levels of parallelism. One of the distinctive features of the modern

computer world is a rapidly growing degree of parallelism in all elements of architecture.

Even today, the number of processor cores in the largest system is more than 3 million.

Many other options like networks interfaces are in a close range too. These levels must be

supported as a starting point, keeping in mind forthcoming Exascale concurrency levels

that are expected to be at least thousands times higher. It is related both to scalable

algorithms for data analysis that comes from a huge number of objects, and to the means

of visualization.

3. Minimal induced overhead. Auxiliary tools must not be integrated deeply into a system

and must not be able to influence its functionality. Hence, it is best not to be integrated

with monitoring system and data collector agents on compute nodes.

4. The general and the particular points of view. At one hand system must provide

summary statistics for the whole machines in a space-effective (on a single display) manner,

and on the other providing detailed reports on any and every component just in a few clicks,

including support of wide range of display types: wide display panels, notebook and desktop

displays, tablets and other mobile devices.

5. Flexible configuration of data sources. It means easy introduction of new data collector

of any output format supporting most popular data types and protocols (http, json, csv,

etc.), but not limited to any set of those.

2. Implementation

A variety of monitoring systems and data collectors can serve as data source. The developed

system of data acquisition runs over HTTP request via PUT methods. The data is submitted

in json or csv format. Thus, the data transmission can be performed even by a simple script

with a common curl or wget. Most monitoring systems support exporting data via HTTP in

json format. If not, an external program (or perl, ruby, python, etc. script) is used to export

data, which allows using HTTP and json. At present, we use information that is acquired from:

Collectd monitoring system, epilogue scripts of SLURM resource manager, Octoshell cluster

management system [6], Octotron fault-tolerance system [7]. General dataflow is shown in fig. 1.

Incorporation of a new data source is implemented easily, but the one thing we should be

aware of is the data size. Large-scale systems already include ∼ 104 of nodes, so saving and

processing of the raw data from numerous per-node sensors with high granularity can hang

the system. This scalability issue can be resolved with on-the-fly filtering and aggregation.

As a rule, real raw data is not too important for visualization and must correspond to the

resolution limitations or analysis purposes. After aggregation and filtering, the data size is

reduced significantly and can easily be stored for reference and post-processing.

Efficient on-the-fly aggregation and filtration is a challenge, and LapLang (LAPTA [8] Lan-

guage) tool was developed to tackle it. It’s main difference from other similar tools is the ability

of dynamical on-the-fly changing of data processing architecture without restarting. To run a

LapLang program, a daemon service is started. LapLang program consists of named nodes (here-

inafter ll-nodes) for data processing that run simultaneously in low resource conditions). Data

Making Large-Scale Systems Observable — Another Inescapable Step Towards Exascale

74 Supercomputing Frontiers and Innovations



Figure 1. LapLang general dataflow

can be passed from one ll-node to another, generating command pipes. It is allowed to pass data

from one ll-node to several, all data flows can be filtered.

Every ll-node processes data portions one by one in FIFO order. Besides the data, ll-node

can send and receive commands: to create a new ll-node joining with parent ll-node, to delete

specified ll-node with all its links; set filter on the link of two ll-nodes; delete filter from the

two ll-nodes link; create link between two specified ll-nodes; delete link between two ll-nodes,

get information on all ll-nodes, links and filters (executed only by a head ll-node), finish service

(executed by the head ll-node), sent signal “end-of-data” instead of “data”.

At the current stage of implementation, the following ll-nodes functionality is available: avg,

min, max, file (csv read), http csv (csv http read), exec (reads program output), outcsv (writes

csv to file), slice (sends end-of-data periodically or by condition), agr/grid (aggregation types),

sort, join, db save.

Figure 2. LapLang command pipe aggregating and calculating averages

An example of command pipe that gets min, max and avg for some dynamical characteristic

of a job is illustrated in fig. 2. The master “head” ll-node performs no processing, “h” ll-

node obtains data from monitoring system and passes it to three children — job avg 778899,

job min 778899, and job max 778899. Only filtered data is passed (bold arrows shown on figure

represent filtering by set of ll-nodes). Every filter performs own aggregation by a specified field of

data. Later, all three aggregators pass data to job join 778899 ll-node, that joins tuples in a new

tuple, containing min, max, and avg for a period of time. Next, job 778899 ll-node saves data

to the database. When job finishes, ll-nodes job avg 778899, job min 778899, job max 778899,

job join 778899 and job 778899 are killed after processing the last portions of data.

All the data that passed aggregation is saved to database and is immediately available for

visualization via web-server. The data is transmitted in a json type and can be easily immediately

interpreted by web-client, typically, a web-browser. This allows uniform display methods on

D. Nikitenko, S. Zhumatiy, P. Shvets

2016, Vol. 3, No. 2 75



diverse hardware from mobile phones to widescreen panels just with a difference in templates

and preferences. Authorization and authentication allows granting access in different scenarios

for various user groups and use cases.

Web-page design does not require experience in web-programming and even HTML knowl-

edge. Most portlets are already prearranged, so one just has to add a few lines of slim code

into a template. As an example, the following code is used to display a set of available queues

as controls, queue load graph and average number of CPU (cores) utilization. The resulting

template is shown in fig. 3.

== slim :header, locals: {link: ’/v1/display/queues’}

== slim :’components/partitions’, locals: {link: ’/v1/display/queues’}

- unless @partition

== @partition=’all’

div[class="queue" style="height:500px" class="tvz_elem" id="rq"

tvz_source="queues_rq"

tvz_display="queues_rq"

tvz_partition="#{@partition}"

tvz_title=t("charts.q_rq")

tvz_labels=t("charts.q_rq_labels")]

div[class="queue" style="height:500px" class="tvz_elem" id="ctbf"

tvz_source="queues_ctbf"

tvz_display="queues_ctbf"

tvz_partition="#{@partition}"

tvz_title=t("charts.q_ctbf")

tvz_labels=t("charts.q_ctbf_labels")]

An example of slim-based code to display a set of available queues as controls, queue load

graph and average number of CPU (cores) utilization

Figure 3. “Lomonosov” system visualization sample: jobs in a queue and utilized core number

timeline

Making Large-Scale Systems Observable — Another Inescapable Step Towards Exascale

76 Supercomputing Frontiers and Innovations



The next example illustrates the temprature distribution according to the formal model of

the HPC system that includes information on aisles and infrastructure racks location, see fig. 4.

Temperature sensors are mapped to the racks. There can be a total of four sensors located on

each rack: two upper-mounted and two bottom-mounted. The racks with no sensors are actually

racks with compute nodes.

Figure 4. “Lomonosov” system visualization sample: aisles temperatures

The example shown in fig. 5 illustrates the timeline of warning and errors, revealed by

OctoTron resilience system.

The developed system also provides data on user activity. As a result of integration with

user management system administrator can get in a few clicks user, project or organization

details as well as detailed information on any job, including means to reveal categories of user

job runs by resource utilization and many other factors.

Conclusions

As a result, the proposed approach allows visualizing diverse data obtained from various

data sources on supercomputer functionality, including user activity, hardware state and fault-

tolerance notification. The prototype that is being evaluated at Supercomputer Center of Moscow

State University can be deployed at any HPC Center with minimal efforts providing a scalable

and flexibly configurable tool both for users, and system administrators and managers. The

software is developed as open source and will be available for public commits as soon as all

the planned features and templates are implemented. The variety of supported data collectors,

functionality and visualization templates are definitely to be extended further as the need for

such tools on the road to Exascale will only ascend.

D. Nikitenko, S. Zhumatiy, P. Shvets

2016, Vol. 3, No. 2 77



Figure 5. “Lomonosov” system visualization sample: warnings and failures timeline

The work is partially funded by the Russian Foundation for Basic Research, grants 13-07-

12206, 2016-07-01199 and by the Ministry of Education and Science of the Russian Federation,

Agreement No. 14.607.21.0006 (unique identifier RFMEFI60714X0006).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Zabbix — The Enterprise-class Monitoring Solution for Everyone, http://www.zabbix.com

2. Nagios — The Industry Standard in IT Infrastructure Monitoring, http://www.nagios.org

3. Long J.W. Lorenz: Using the Web to Make HPC Easier. 2013. 15.

4. OpenLorenz — Web-Based HPC Dashboard and More, https://github.com/hpc/OpenLorenz

5. Showerman M. Real Time Visualization of Monitoring Data for Large Scale HPC Systems //

2015 IEEE International Conference on Cluster Computing. IEEE, 2015. Pp. 706-709.

6. Dmitry Nikitenko, Vladimir Voevodin, and Sergey Zhumatiy. Octoshell: Large Supercom-

puter Complex Administration System // Russian Supercomputing Days International Con-

ference, Moscow, Russian Federation, 28-29 September, 2015, Proceedings. CEUR Workshop

Proceedings, 2015. Vol. 1482. pp. 69-83.

7. Pavel Shvets, Vladimir Voevodin, Sergey Sobolev, Vadim Voevodin, Konstantin Stefanov,

Sergey Zhumatiy, Artem Daugel-Dauge, Alexander Antonov and Dmitry Nikitenko. An Ap-

proach for Ensuring Reliable Functioning of a Supercomputer Based on a Formal Model.

Parallel Processing and Applied Mathematics. 11th International Conference, PPAM 2015,

Making Large-Scale Systems Observable — Another Inescapable Step Towards Exascale

78 Supercomputing Frontiers and Innovations



Krakow, Poland, September 6-9, 2015. Revised Selected Papers, Part I (2016), vol. 9573 of

LECTURE NOTES IN COMPUTER SCIENCE, Springer International Publishing, pp. 12-

22.

8. Vladimir Voevodin, Anadrey Adinets, Pyotr Bryzgalov, Vadim Voevodin, Sergey Zhumatiy,

Dmitry Nikitenko, and Konstantin Stefanov. Job Digest - approach to analysis of application

dynamic characteristics on supercomputer systems. Numerical Methods and Programming.

2012. Vol. 13. pp. 160-166.

9. Dmitry Nikitenko, Vladimir Voevodin, Sergey Zhumatiy, Konstantin Stefanov, Alexey

Teplov, Pavel Shvets, and Vadim Voevodin. Supercomputer Application Integral Charac-

teristics Analysis for the Whole Queued Job Collection of Large-Scale HPC Systems. Parallel

Computational Technologies (PCT’2016): Proceedings of the International Scientific Confer-

ence. Chelyabinsk, Publishing of the South Ural State University, 2016. pp. 20-30.

D. Nikitenko, S. Zhumatiy, P. Shvets

2016, Vol. 3, No. 2 79



Application of CUDA technology to calculation of ground states

of few-body nuclei by Feynman’s continual integrals method

Mikhail A. Naumenko1, Vyacheslav V. Samarin1,2

The possibility of application of modern parallel computing solutions to speed up the cal-

culations of ground states of few-body nuclei by Feynman’s continual integrals method has been

investigated. These calculations may sometimes require large computational time, particularly in

the case of systems with many degrees of freedom. This paper presents the results of application

of general-purpose computing on graphics processing units (GPGPU). The energy and the square

modulus of the wave function of the ground states of several few-body nuclei have been calculated

using NVIDIA CUDA technology. The results show that the use of GPGPU significantly increases

the speed of calculations.

Keywords: NVIDIA CUDA, Feynman’s continual integrals method, few-body nuclei.

Introduction

Low-energy reactions involving few-body nuclei [1] constitute a significant part of the studied

nuclear reactions. Investigation of their collisions with other nuclei provides valuable information

on the mechanisms of fusion and nucleon transfer reactions (e.g. [2]). Knowledge of the properties

and the ground state wave functions of these nuclei is necessary for the theoretical description

of reactions with their participation. The few-body problem in nuclear physics has been studied

for a long time. For instance, calculations of 3H and 3He nuclei were performed in [3] based on

the Faddeev equations. The expansion in hyperspherical functions (K -harmonics) [4] was used

for calculations of 3H nucleus in [5] and 4He nucleus in [6]. In [7] the wave function of the three-

body system was obtained using Gaussian basis and the numerical solution of the Hill-Wheeler

integral equations.

Feynman’s continual integrals method [8, 9] provides a more simple possibility for calculating

the energy and the probability density for the ground state of the few-body system, because it

does not require expansion of the wave function in a system of functions. This approach may

be realized using the Monte-Carlo method with imaginary time and continuous variation of

coordinates (e.g. [10–12]) or discrete coordinate lattice (e.g. within the nuclear lattice effective

field theory [13, 14]). The possibility of application of the Monte-Carlo method with imaginary

time and continuous variation of coordinates for calculation of energies of ground states of

light nuclei up to 4He was declared in [10, 11], but the power of computers available at that

time did not allow obtaining reliable results since the statistics was very low. Even today, the

authors usually either restrict themselves only to the calculation of energies of ground states

of few-body nuclei [12, 13] or perform the more time-consuming calculation of wave functions

with large lattice spacing (e.g. [14]), which is probably due to the lack of the computing power.

In [15] calculations of both energies of ground states and wave functions were performed on the

CPU with the statistics 105.

In this work an attempt is made to use modern parallel computing solutions to speed up the

calculations of ground states of few-body nuclei by Feynman’s continual integrals method. The

algorithm allowing us to perform calculations directly on GPU was developed and implemented

in C++ programming language. The energy and the square modulus of the wave function of the

1Joint Institute for Nuclear Research, Dubna, Russian Federation.
2Dubna State University, Dubna, Russian Federation.

DOI: 10.14529/jsfi160206

80 Supercomputing Frontiers and Innovations



ground states of several few-body nuclei have been calculated using NVIDIA CUDA technology

[16–18]. The results show that the use of GPU is very effective for these calculations.

1. Theory

The energy E0 and the square modulus of the wave function |Ψ0|2 of the ground state

of a system of few particles may be calculated using continual (path) integrals introduced by

Feynman [8, 9]. Feynman’s integral

K (q, t; q0, 0) =

∫
Dq(t) exp

{
i

h̄
S
[
q(t′)

]}
=

〈
q

∣∣∣∣exp

(
− i
h̄
Ĥt

)∣∣∣∣ q0

〉
(1)

is a propagator - the probability amplitude for the particle of mass m to travel from the point q0

to the point q in time t. Here S[q(t)] and Ĥ are the action and the Hamiltonian of the system,

respectively, Dq(t) is the integration measure [8, 9]. For the time-independent potential energy

the transition to the imaginary (Euclidean) time t = −iτ gives the propagator KE (q, τ ; q0, 0)

KE (q, τ ; q0, 0) =

∫
DEq(τ) exp

{
−1

h̄
SE
[
q(τ ′)

]}
(2)

with the Euclidean action

SE
[
q(τ ′)

]
=

τ∫

0

dτ ′
[
m

2

(
dq

dτ ′

)2

+ V (q)

]
. (3)

Integration over q with the periodic boundary condition q = q0 allows us to find the energy

E0 of the ground state in the limit τ →∞ [10, 11]

∞∫

−∞

KE (q, τ ; q, 0) dq = Sp

[
exp

(
−Ĥτ

h̄

)]
=
∑

n

exp

(
−Enτ

h̄

)
+

∞∫

Econt

exp

(
−Eτ
h̄

)
g(E)dE, (4)

∞∫

−∞

KE (q, τ ; q, 0) dq → exp

(
−E0τ

h̄

)
, τ →∞, (5)

KE (q, τ ; q, 0) =
∑

n

|Ψn(q)|2 exp

(
−Enτ

h̄

)
+

∞∫

Econt

|ΨE(q)|2 exp

(
−Eτ
h̄

)
g(E)dE. (6)

Here g(E) is the density of states with the continuous spectrum E ≥ Econt. For the system with

a discrete spectrum and finite motion of particles the square modulus of the wave function of

the ground state may also be found in the limit τ →∞ [10, 11] together with the energy E0

h̄ lnKE (q, τ ; q, 0)→ h̄ ln |Ψ0(q)|2 − E0τ, τ →∞, (7)

KE (q, τ ; q, 0)→ |Ψ0(q)|2 exp

(
−E0τ

h̄

)
, τ →∞. (8)

The equation (7) may be used to find the energy E0 as the slope of the linear part of the curve

h̄ lnKE (q, τ ; q, 0) calculated for several increasing values of τ . The equation (8) may be used

to find the square modulus of the wave function of the ground state |Ψ0(q)|2 in all points q of

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 81



the necessary region by calculating KE (q, τ ; q, 0) at the fixed time τ corresponding to the linear

part of the curve h̄ lnKE (q, τ ; q, 0).

Outside of the classically allowed region the square modulus of the wave function |Ψ0(q)|2
of the ground state with E < Econt may be significantly smaller than |ΨE(q)|2 for the

states with the continuous spectrum E ≥ Econt. The ground state term in the formula

(6) will not dominate despite the much more rapid decrease of the exponential factors

exp (−Eτ/h̄) � exp (−E0τ/h̄) , E > E0. Therefore, in this case the formulas (7), (8) are in

general applicable only for the region not far beyond the classically allowed ground state region.

Such situation may occur in the description of bound states of few-particle systems (e.g.

two protons and a neutron) when the existence of bound states of some of them (e.g. proton

plus neutron) is possible.

The contribution of states with the continuum spectrum may be eliminated by introducing

infinitely high walls in the potential energy located about the range of the nuclear forces beyond

the classically allowed region. Introduction of the boundary condition Ψ0(q) = 0 at these walls

will not have a significant effect on the energy E0 and |Ψ0(q)|2 far away from the walls.

Feynman’s continual integral (2) may be represented as the limit of the multiple integral

K (q, τ ; q0, 0) = lim
N→∞
N∆τ=τ

∫
· · ·
∫

exp

{
−1

h̄

N∑

k=1

[
m(qk − qk−1)2

2∆τ
− V (qk) + V (qk−1)

2
∆τ

]}
×

×CNdq1dq2 . . . dqN−1,

(9)

where

qk = q(τk), τk = k∆τ, k = 0, N, qN = q, C =
( m

2πh̄∆τ

)1/2
. (10)

Here (N − 1)-fold integral corresponds to averaging over the “path” of the particle as a broken

line in the plane (q, τ) with the vertices (qk, τk) , k = 1, N − 1.

For the approximate calculation of the continual integral (9) the continuous axis τ is replaced

with the grid τ = τk = k∆τ, k = 0, N,N ≥ 2 with the step ∆τ and the Euclidean propagator of

a free particle K
(0)
E (q, τ ; q0, 0) is separated [9, 10]

KE (q, τ ; q0, 0) ≈ K(0)
E (q, τ ; q0, 0)

〈
exp

[
−∆τ

2h̄

N∑

k=1

(V (qk) + V (qk−1))

]〉
, (11)

K
(0)
E (q, τ ; q0, 0) =

( m

2πh̄τ

)1/2
exp

[
−m(q − q0)2

2h̄τ

]
. (12)

Requiring qN = q0, we obtain

KE (q0, τ ; q0, 0) ≈ K(0)
E (q0, τ ; q0, 0)

〈
exp

[
−∆τ

h̄

N∑

k=1

V (qk)

]〉
, (13)

K
(0)
E (q0, τ ; q0, 0) =

( m

2πh̄τ

)1/2
. (14)

Here and below the angle brackets mean averaging of the values of the quantity F

F = exp

[
−∆τ

h̄

N∑

k=1

V (qk)

]
(15)

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

82 Supercomputing Frontiers and Innovations



over random trajectories, i.e. over (N − 1)-dimensional vectors Q = {q1, . . . , qN−1} with the

distribution law W (q0; q1, . . . , qN−1; qN = q0)

W (q0; q1, . . . , qN−1; qN = q0) = CN−1N1/2 exp

[
− m

2h̄∆τ

N∑

k=1

(qk − qk−1)2

]
. (16)

This averaging may be calculated using the Monte Carlo method [19]

〈F 〉 =
1

n

n∑

i=1

Fi, (17)

where n is the total number of random trajectories, n ∼ 105 - 107.

The standard algorithm for simulation of the random vector consists in a sequential choice of

the values of its components from the conditional distributions W1 (q1), W2 (q2|q1), W3 (q3|q1, q2),

..., WN−1 (qN−1|q1, q2, . . . , qN−2) [20]. Here Wk (qk|q1, q2, . . . , qk−1) is the probability density for

the values of the quantity qk given the values of quantities q1, q2, . . . , qk−1. For example, for k=1

W (q1) =

∫
dq2 . . .

∫
dqN−1W (q0; q1, q2, . . . qN−1; qN = q0) =

=
1√

2πσ1
exp

{
− 1

2σ1

[
(Mq1 − q1)2

]}
,

(18)

σ1 =
h̄∆τ

m

(
1− 1

N

)
,Mq1 = q0. (19)

In the case of k=2

W2 (q2|q1) =

∫
dq3 . . .

∫
dqN−1W (q0; q1, q2, q3, . . . qN−1; qN = q0) =

=
1√

2πσ2
exp

{
− 1

2σ2

[
(Mq2 − q2)2

]} 1√
2πσ1

exp

{
− 1

2σ1

[
(Mq1 − q1)2

]}
,

(20)

σ2 =
h̄∆τ

m

(
1− 1

N − 1

)
,Mq2 =

(
1− 1

N − 1

)
q1 +

1

N − 1
q0. (21)

Finally, in the general case

Wk (qk|q1, q2, . . . , qk−1) =

∫
dqk+1 . . .

∫
dqN−1W (q0; q1, q2, q3, . . . , qN−1; qN = q0) =

=
1√

2πσk
exp

{
− 1

2σ2

[
(Mqk − qk)2

]}
. . .

1√
2πσ1

exp

{
− 1

2σ1

[
(Mq1 − q1)2

]}
,

(22)

σk =
h̄∆τ

m

(
1− 1

N − k + 1

)
,Mqk =

(
1− 1

N − k + 1

)
qk−1 +

1

N − k + 1
q0. (23)

Introducing the variable Ak
Ak = (N − k + 1)−1 (24)

we obtain that the quantity qk is normally distributed with the mean value Mqk, variance Dk

and standard deviation σk =
√
Dk [15]

Mqk = (1−Ak) qk−1 +Akq0, (25)

Dk = (1−Ak) h̄∆τ/m, (26)

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 83



σk = [(1−Ak)h̄∆τ/m]1/2. (27)

In the simulation the next point qk of the trajectory is calculated by the formula

qk= Mqk + ζkσk, k = 1, N − 1, (28)

where ζk is a normally distributed random variable with zero mean and unity variance. Sample

one-dimensional random trajectories for low N = 6 and large N = 1200 numbers of time steps

are shown in fig. 1a and fig. 1b, respectively.

Figure 1. Sample one-dimensional random trajectories for low N = 6 (a) and large N = 1200

(b) numbers of time steps

For large values of τ random trajectories may reach the region where the probability density

for the states with continuum spectrum is substantially larger than the probability density for

the ground state, which may lead to a deviation from the asymptotic behavior (7), (8) and the

growth of the error. Therefore, the formulas (7), (8) are only applicable for the not very large

values of τ .

For convenience of calculations in the scale of nuclear forces we introduce dimensionless

variables

q̃ = q/x0, τ̃ = τ/t0,∆τ̃ = ∆τ/t0, Ṽ = V (q)/ε0, Ẽ0 = E0/ε0, m̃ = m/m0, (29)

where x0 = 1 fm, ε0 = 1 MeV, m0 is the neutron mass, t0 = m0x
2
0

/
h̄ ≈ 1.57 · 10−23 sec,

b0 = t0ε0/h̄ ≈ 0.02412. The expressions (7), (8), (13), (16), (25) - (27) may now be represented

as

K̃E (q̃0, τ̃ ; q̃0, 0) ≈ x−1
0

(
m̃

2πτ̃

)1/2
〈

exp

[
−b0∆τ̃

N∑

k=1

Ṽ (q̃k)

]〉
, (30)

D̃k = σ̃2
k, q̃k= Mq̃k + ζkσ̃k, σ̃k = x0[(1−Ak)∆τ̃/m̃]1/2, (31)

W (q̃0; q̃1, . . . , q̃N−1; q̃N ) = CN−1N1/2 exp

[
− 1

2∆τ̃

N∑

k=1

(q̃k − q̃k−1)2

]
, (32)

1

b0
ln K̃E (q̃, τ̃ ; q̃, 0)→ 1

b0
ln |Ψ0(q̃)|2 − Ẽ0τ̃ , τ̃ →∞, (33)

K̃E (q̃, τ̃ ; q̃, 0)→ |Ψ0(q̃)|2 exp
(
−b0Ẽ0τ̃

)
, τ̃ →∞. (34)

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

84 Supercomputing Frontiers and Innovations



The above formulas are naturally generalized to a larger number of degrees of freedom and

few particles including identical ones. The nuclei 3H, 3He and 4He contain no more than two

identical fermions (protons and/or neutrons with opposite spins), which ensures that the Pauli

Exclusion Principle is satisfied for their ground states. The nucleon identity requires symmetriza-

tion of trajectories [11], which is achieved by choosing the Jacobi coordinates in such a way that

vectors connect two identical fermions (see below).

It should be noted that the calculation of multiple integrals required to find the multidi-

mensional probability density |Ψ0|2 by Feynman’s continual integrals method continues to be a

challenging task. However, the analysis of the properties of |Ψ0|2 allows us to choose analytical

approximations of |Ψ0|2, e.g. as the product of the Gaussian type exponentials. The obtained

approximations may be used in dynamic calculations. The application of the formula (7) in a

single point in the multidimensional space allows us to find the approximate value of the energy

of the ground state.

To reduce the number of degrees of freedom and multiplicity of integrals in the formula (11)

the calculation should be performed in the center of mass system using the Jacobi coordinates

[4, 9].

For a system of two particles (2H nucleus)

~R = ~r2 − ~r1, (35)

where ~r1 and ~r2 are the radius vectors of a proton and a neutron, respectively.

For a system of three particles, two of which are identical (2 neutrons or 2 protons in 3H

and 3He nuclei, respectively)

~R = ~r2 − ~r1, ~r = ~r3 −
1

2
(~r1 + ~r2) . (36)

In the case of 3H nucleus ~r3 is the radius vector of a proton, ~r1 and ~r2 are the radius vectors

of neutrons. In the case of 3He nucleus ~r3 is the radius vector of a neutron, ~r1 and ~r2 are the

radius vectors of protons.

For a system of four particles consisting of two pairs of identical particles (2 protons and 2

neutrons in 4He nucleus)

~R1 = ~r2 − ~r1, ~R2 = ~r4 − ~r3, ~r =
1

2
(~r3 + ~r4)− 1

2
(~r1 + ~r2) , (37)

where ~r1 and ~r2 are the radius vectors of protons, ~r3 and ~r4 are the radius vectors of neutrons.

The energy of the ground states of bound nuclei is negative E0 < 0, whereas the binding

energy Eb (the energy required to disassemble a nucleus into separate nucleons) is positive,

Eb = −E0 > 0.

In the calculation of the propagator K (q, τ ; q0, 0) for the nuclei 2H, 3H, 3He, 4He neutron-

proton Vn−p(r), neutron-neutron Vn−n(r) and proton-proton Vp−p(r) two-body strong interac-

tion potentials have been used. The dependence of the nucleon-nucleon strong interaction with

a repulsive core on the distance r was approximated by a combination of Gaussian type expo-

nentials similar to the M3Y potential [21, 22]

Vn−n(r) ≡ Vp−p(r) =
3∑

k=1

uk exp
(
−r2

/
b2k
)
, (38)

Vn−p(r) = ηVn−n(r). (39)

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 85



The total interaction potential V (r) ≡ Vn−n(r) for two neutrons, V (r) ≡ Vn−p(r) for a neutron

and a proton, V (r) ≡ Vp−p(r)+e2/r for two protons (here the last term represents the Coulomb

part of the potential). The values of the parameters u1 = 500 MeV, u2 = −102 MeV, u3 = 2

MeV, b1 = 0.606 fm, b2 = 1.437 fm, b3 = 3.03 fm and η = 1.2 provide the absence of bound

states of two identical nucleons as well as the approximate equality of the energy Eb = −E0

found from the formula (33) to the experimental values of the binding energies for the nuclei
2H, 3H, 3He, 4He taken from the knowledge base [23] (the comparison is given in tab. 1 below).

The plots of the total interaction potential V (r) for two neutrons, a neutron and a proton, and

two protons are shown in fig. 2.

Figure 2. The neutron-proton (solid line), neutron-neutron (dashed line), and proton-proton

(dotted line) total interaction potentials V (r)

2. Implementation

The Monte Carlo algorithm for numerical calculations was developed and implemented

in C++ programming language using NVIDIA CUDA technology. The code samples are not

included in the publication, because the algorithm is described in detail in mathematical, physical

and implementation aspects, in contrast to e.g. [10, 11]. The paper itself is to a great extent the

description of the integration method which does not require the use of any additional integration

libraries. The detailed description of the algorithm provided allows anyone to easily implement

it.

The calculation included 3 steps:

1. K̃E (q̃, τ̃ ; q̃, 0) was calculated in a set of multidimensional points q̃ (e.g.
{
~R;~r
}

for 3H and

3He nuclei) and the maximum of K̃E (q̃, τ̃ ; q̃, 0) (i.e. |Ψ0|2) was found.

2. The point q̃0 corresponding to the obtained maximum was fixed, K̃E (q̃0, τ̃ ; q̃0, 0) was calcu-

lated for several increasing values of τ̃ and the linear region of ln K̃E (q̃0, τ̃ ; q̃0, 0) was found

for calculation of the energy Ẽ0 using formula (33).

3. The time τ̃lin corresponding to the beginning of the obtained linear region was fixed and

K̃E (q̃0, τ̃lin; q̃0, 0) (i.e. |Ψ0|2) was calculated in all points of the necessary region using for-

mula (34).

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

86 Supercomputing Frontiers and Innovations



The calculation of K̃E (q̃, τ̃ ; q̃, 0) for the fixed τ̃ was performed by parallel calculation of

exponentials F

F = exp

[
−b0∆τ̃

N∑

k=1

Ṽ (q̃k)

]
(40)

for every trajectory in a given kernel launch, where N = τ̃ /∆τ̃ .

The principal scheme of the calculation of the ground state energy is shown in fig. 3. The

calculation of the propagator (30) is performed using L sequential launches of the kernel. Each

kernel launch simulates n random trajectories in the space evolving from the Euclidean time

τ̃ = 0 to τ̃j , where j = 1, L (see fig. 1). All trajectories with Nj = τ̃j/∆τ̃ time steps start at the

same point q(0) in the space and in the moment τ̃j return back to the same point q(0) according

to the probability distribution described above.

The choice of the initial point q(0) is arbitrary for τ̃ →∞, but it is clear that for the finite

values of τ̃ available in calculations the point q(0) must be located within the region Ω the

integral over which of the square modulus of the normalized ground state wave function is close

enough to unity ∫

Ω

|Ψ0 (q)|2dq ≈ 1 (41)

in order to ensure less number of time steps in the calculation and obtain more accurate results.

All threads in a given kernel launch finish at approximately the same time, which makes the

scheme quite effective in spite of the possible delays associated with the kernel launch overhead.

Besides, the typical number of kernel launches L required for the calculation of the ground state

energy usually does not exceed 100.

Starting from the certain time τ̃lin the obtained values of the logarithm of the propagator

b−1
0 ln K̃E (30) tend to lie on the straight line, the slope of which gives the value of the ground

state energy. The time τ̃lin is then used in the calculation of the square modulus of the wave

function.

The principal scheme of the calculation of the square modulus of the wave function is shown

in fig. 4. Similarly, the calculation is performed using M sequential launches of the kernel. Each

kernel launch simulates n random trajectories in the space evolving from the Euclidean time

τ̃ = 0 to the time τ̃lin determined in the calculation of the ground state energy. All trajectories

start at the same point q(s) in the space and in the moment τ̃lin return back to the same point

q(s) according to the probability distribution described above. Here s = 1,M , where M is the

total number of points in the space in which the square modulus of the wave function must be

calculated.

One of the benefits of the approach is that the calculation may be easily resumed at a later

time. For example, initially the square modulus of the wave function may be calculated with

a large space step to obtain the general features of the probability distribution, and later new

intermediate points are calculated and combined with those calculated previously. This may be

very useful because the calculation of the square modulus of the wave function is generally much

more time-consuming since it requires calculation in many points in the multidimensional space.

An important feature of the algorithm allowing effective use of graphic processors is low

consumption of memory during the calculation because it is not necessary to prepare a grid of

values and store it in the memory.

To obtain normally distributed random numbers the cuRAND random number generator

was used. According to the recommendations of the cuRAND developers each experiment was

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 87



Figure 3. The scheme of calculation of the ground state energy E0 using formula (33)

assigned a unique seed. Within the experiment, each thread of computation was assigned a

unique sequence number. All threads between kernel launches were given the same seed, and

the sequence numbers were assigned in a monotonically increasing way.

3. Results and discussion

Calculations were performed on the NVIDIA Tesla K40 accelerator installed within the

heterogeneous cluster [24] of the Laboratory of Information Technologies, Joint Institute for

Nuclear Research, Dubna. The code was compiled with NVIDIA CUDA version 7.5 for archi-

tecture version 3.5. Calculations were performed with single precision. The Euclidean time step

∆τ̃ = 0.01 was used. Additionally, NVIDIA GeForce 9800 GT accelerator was used for debugging

and testing purposes.

The dependence of logarithm of the propagator b−1
0 ln K̃E on the Euclidean time τ̃ is shown

in fig. 5 for nuclei 2H (a), 3H (b), 3He (c) and 4He (d). Different symbols correspond to different

statistics n: empty circles (105), filled circles (106, 5·106, 107).

The behavior of the curves may be easily explained if we note that in all these cases only

the energy of the ground state is negative and therefore only the first term in (6) increases with

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

88 Supercomputing Frontiers and Innovations



Figure 4. The scheme of calculation of the square modulus of the wave function |Ψ0(q)|2 using

formula (34)

the increase of τ̃ , whereas the energies of the excited states are positive and hence the other

terms in (6) decrease with the increase of τ̃ .

The results of linear fitting of the straight parts of the curves are shown in fig. 5e-h. According

to the formula (33) the slope of the linear regression equals the energy of the ground state

E0. The obtained theoretical binding energies Eb = −E0 are listed in tab. 1 together with the

experimental values taken from the knowledge base [23]. It is clear that the theoretical values are

close enough to the experimental ones, though obtaining good agreement was not the goal. The

observed difference between the calculated binding energies of 3H and 3He is also in agreement

with the experimental values.

The comparison of the square modulus of the wave function for 2H calculated on GPU

using NVIDIA CUDA technology within Feynman’s continual integrals method and the square

modulus of the wave function calculated on CPU within the shell model is shown in fig. 6a.

The same potentials (38), (39) were used. Good agreement between the curves confirms that the

code based on Feynman’s continual integrals method using NVIDIA CUDA technology provides

correct results.

It should be mentioned that the wave function cannot be measured directly, though the

charge radii and charge distributions obtained from experiments may provide some information

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 89



Figure 5. The dependence of the logarithm of the propagator b−1
0 ln K̃E on the Euclidean time

τ̃ for 2H (a), 3H (b), 3He (c) and 4He (d). Lines are the results of linear fitting of the data lying

on the straight parts of the curves for 2H (e), 3H (f), 3He (g) and 4He (h). Different symbols

correspond to different statistics n: empty circles (105), filled circles (106, 5·106, 107)

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

90 Supercomputing Frontiers and Innovations



Table 1. Comparison of theoretical and experimental binding energies

for the ground states of the studied nuclei

Atomic nucleus Theoretical value, MeV Experimental value, MeV
2H 1.17 ± 1 2.225
3H 9.29 ± 1 8.482

3He 6.86 ± 1 7.718
4He 26.95 ± 1 28.296

Figure 6. (a) The square modulus of the wave function for 2H calculated on GPU using NVIDIA

CUDA technology within Feynman’s continual integrals method (circles) compared with the

square modulus of the wave function calculated on CPU within the shell model (line); r is the

distance between the proton and the neutron. (b) The theoretical charge distribution for 3He

(circles) compared with experimental data taken from taken from the knowledge base [23] (lines)

on its behavior. To compare the results of calculations with the experimental charge radii and

charge distributions the wave function must be integrated.

The probability density distribution
∣∣∣Ψ0

(
~R;~r
)∣∣∣

2
for the configurations of 3He nucleus (p+

p+n) with the angle θ = 0◦, 45◦, 90◦ between the vectors ~R and ~r is shown in logarithmic scale

in fig. 7a,b,c, respectively, together with the potential energy surface (linear scale, lines). The

vectors in the Jacobi coordinates are shown in fig. 7d.

The theoretical charge distribution for 3He obtained by integration of the wave func-

tion is compared with experimental data taken from taken from the knowledge base [23]

in fig. 6b. As can be seen, the agreement is very good. The obtained theoretical charge radius〈
R2
ch

〉1/2
= 1.94 fm is also very close to the experimental value 1.9664± 0.0023 fm.

The probability density distribution for the symmetric tetrahedral configuration of four

nucleons in the nucleus 4He

∣∣∣Ψ0

(
~R1;~r; ~R2

)∣∣∣
2

= |Ψ0 (R1x, 0, 0; 0, 0, rz; 0, R2y = R1x, 0)|2, (42)

~R1⊥~r⊥~R2,
∣∣∣~R1

∣∣∣ =
∣∣∣~R2

∣∣∣ , ~R1 = (R1x, 0, 0) , ~r = (0, 0, rz) , ~R2 = (0, R2y = R1x, 0) (43)

is shown in logarithmic scale in fig. 7e together with the potential energy surface (linear scale,

lines). The vectors in the Jacobi coordinates are shown in fig. 7f.

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 91



Figure 7. The probability density for the configurations of 3He with θ = 0◦ (a), 45◦ (b), 90◦ (c)

and the vectors in the Jacobi coordinates (d). The probability density for the configuration of
4He symmetric with respect to the positions of protons and neutrons (e) and the vectors in the

Jacobi coordinates (f)

Note also that the presence of the repulsive core in the nucleon-nucleon interaction reduces

the probability of finding nucleons in the center of mass of the system for the considered sym-

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

92 Supercomputing Frontiers and Innovations



metric configurations. This should lead to a smoother increase in the concentration of nucleons

and the density of electric charge when approaching the center of the nucleus.

The analysis of the properties of |Ψ0|2 obtained by Feynman’s continual integrals method

was used to refine the shell model for light nuclei [15].

The code implementing Feynman’s continual integrals method was initially written for CPU.

The comparison of the calculation time of the ground state energy for 3He using Intel Core i5

3470 (double precision) and NVIDIA Tesla K40 (single precision) with different statistics is

shown in tab. 2. Even taking into account that the code for CPU used only 1 thread, double

precision and a different random number generator, the time difference is impressive. This fact

allows us to increase the statistics and the accuracy of calculations in the case of using NVIDIA

CUDA technology.

Table 2. Comparison of the calculation time of the ground state energy for 3He nucleus

Statistics, Intel Core i5 3470 NVIDIA Tesla K40 Performance gain,

n (1 thread, double precision), sec (single precision), sec times

105 ∼1854 ∼8 ∼232

106 ∼18377 ∼47 ∼391

5·106 - ∼221 -

107 - ∼439 -

The comparison of the calculation time of the square modulus of the wave function∣∣∣Ψ0

(
~R;~r
)∣∣∣

2
for the ground state of 3He using Intel Core i5 3470 and NVIDIA Tesla K40 with

the statistics 106 for every point in the space
{
~R;~r
}

and the total number of points 43200 is

shown in tab. 3. The value ∼177 days for CPU is an estimation based on the performance gain

in the calculation of the ground state energy. It is evident that beside the performance gain the

use of NVIDIA CUDA technology may allow us to reduce the space step in the calculation of the

wave functions, as well as greatly simplify the process of debugging and testing, and in certain

cases it may even enable calculations impossible before.

Table 3. Comparison of the calculation time of the square modulus of the

wave function for the ground state of 3He nucleus

Statistics, Intel Core i5 3470 NVIDIA Tesla K40

n (1 thread, double precision, estimation) (single precision)

106 ∼177 days ∼11 hours

4. Conclusion

In this work an attempt is made to use modern parallel computing solutions to speed up the

calculations of ground states of few-body nuclei by Feynman’s continual integrals method. The

algorithm allowing us to perform calculations directly on GPU was developed and implemented

in C++ programming language. The method was applied to the nuclei consisting of nucleons,

but it may also be applied to the calculation of cluster nuclei. The energy and the square modulus

of the wave function of the ground states of several few-body nuclei have been calculated by

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 93



Feynman’s continual integrals method using NVIDIA CUDA technology. The comparison with

the square modulus of the wave function for 2H calculated on CPU within the shell model was

performed to confirm the correctness of the calculations. The obtained values of the theoretical

binding energies are close enough to the experimental values. The theoretical charge radius and

charge distribution for 3He nucleus are also in good agreement with the experimental data. The

results show that the use of GPGPU significantly increases the speed of calculations. This allows

us to increase the statistics and the accuracy of calculations as well as reduce the space step in

calculations of wave functions. It also greatly simplifies the process of debugging and testing. In

certain cases the use of NVIDIA CUDA enables calculations impossible before.

The work was supported by grant 15-07-07673-a of the Russian Foundation for Basic Re-

search (RFBR).

The paper is recommended for publication by the Program Committee of the “Parallel com-

putational technologies (PCT) 2016” International Scientific Conference

References

1. Penionzhkevich Yu.E. Reactions Involving Loosely Bound Cluster Nuclei: Heavy Ions and

New Technologies // Phys. Atom. Nucl. 2011. Vol. 74. P. 1615-1622.

2. Skobelev N.K., Penionzhkevich Yu.E., Voskoboinik E.I. et al. Fusion and Transfer Cross

Sections of 3He Induced Reaction on Pt and Au in Energy Range 10-24.5 MeV // Phys.

Part. Nucl. Lett. 2014. Vol. 11. P. 208-215.

3. Wu Y., Ishikawa S., Sasakawa T. Three-Nucleon Bound States: Detailed Calculations of 3H

and 3He // Few-Body Systems. 1993. Vol. 15. P. 145-188.

4. Dzhibuti R.I., Shitikova K.V. Metod gipersfericheskikh funktsiy v atomnoy i yadernoy fizike

[Method of Hyperspherical Functions in Atomic and Nuclear Physics]. Moscow, Energoat-

omizdat, 1993. 269 P.

5. Kievsky A., Marcucci L.E., Rosati S. et al. High-Precision Calculation of the Triton Ground

State Within the Hyperspherical-Harmonics Method // Few-Body Systems. 1997. Vol. 22.

P. 1-10.

6. Viviani M., Kievsky A., Rosati S. Calculation of the α-Particle Ground State // Few-Body

Systems. 1995. Vol. 18. P. 25-39.

7. Voronchev V.T., Krasnopolsky V.M., Kukulin V.I. A Variational Study of the Ground and

Excited States of Light Nuclei in a Three-body Model on the Complete Basis. I. General

Formalism // J. Phys. G. 1982. Vol. 8. P. 649-666.

8. Feynman R.P., Hibbs A.R. Quantum Mechanics and Path Integrals. New York, McGraw-

Hill, 1965. 382 P.

9. Blokhintsev D.I. Osnovy kvantovoy mekhaniki [Principles of Quantum Mechanics]. Moscow,

Nauka, 1976. 608 P.

10. Shuryak E.V., Zhirov O.V. Testing Monte Carlo Methods for Path Integrals in Some Quan-

tum Mechanical Problems // Nucl. Phys. B. 1984. Vol. 242. P. 393-406.

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

94 Supercomputing Frontiers and Innovations



11. Shuryak E.V. Stochastic Trajectory Generation by Computer // Sov. Phys. Usp. 1984. Vol.

27. P. 448-453.

12. Lobanov Yu.Yu. Functional Integrals for Nuclear Many-particle Systems // J. Phys. A:

Math. Gen. 1996. Vol. 29. P. 6653-6669.

13. Lähde T.A., Epelbaum E., Krebs H. et al. Lattice Effective Field Theory for Medium-Mass

Nuclei // Phys. Lett. B. 2014. Vol. 732. P. 110-115.

14. Borasoy B., Epelbaum E., Krebs H. et al. Lattice Simulations for Light Nuclei: Chiral

Effective Field Theory at Leading Order // Eur. Phys. J. A. 2007. Vol. 31. 105-123.

15. Samarin V.V., Naumenko M.A. Study of Ground States of 3,4,6He Nuclides by Feynman’s

Continual Integrals Method // Bull. Russ. Acad. Sci. Phys. 2016. Vol. 80, No. 3. P. 283-289.

16. NVIDIA CUDA. URL: http://developer.nvidia.com/cuda-zone/ (accessed:

23.06.2016).

17. Sanders J., Kandrot E. CUDA by Example: An Introduction to General-Purpose GPU

Programming. New York, Addison-Wesley, 2011. 290 P.

18. Perepyelkin E.E., Sadovnikov B.I., Inozemtseva N.G. Vychisleniya na graficheskikh protses-

sorakh (GPU) v zadachakh matematicheskoy i teoreticheskoy fiziki [Computing on Graph-

ics Processors (GPU) in Mathematical and Theoretical Physics]. Moscow, LENAND, 2014.

176 P.

19. Ermakov S.M. Metod Monte-Karlo v vychislitel’noy matematike: vvodnyy kurs [Monte

Carlo Method in Computational Mathematics. Introductory Course]. St. Petersburg,

Nevskiy Dialekt, 2009. 192 P.

20. Pollyak Yu.G. Veroyatnostnoe modelirovanie na elektronnykh vychislitel’nykh mashinakh

[Probabilistic Modeling on Electronic Computers]. Moscow, Sovetskoe Radio, 1971. 400 P.

21. Satcher G.R., Love W.G. Folding Model Potentials from Realistic Interaction for Heavy-Ion

Scattering // Phys. Rep. 1979. Vol. 55, No. 3. P. 185-254.

22. Alvarez M.A.G., Chamon L.C., Pereira D. et al. Experimental Determination of the Ion-Ion

Potential in the N=50 Target Region: A Tool to Probe Ground-State Nuclear Densities //

Nucl. Phys. A. 1999. Vol. 656, No. 2. P. 187-208.

23. NRV Web Knowledge Base on Low-Energy Nuclear Physics. URL: http://nrv.jinr.ru/

(accessed: 23.06.2016).

24. Heterogeneous Cluster of LIT, JINR. URL: http://hybrilit.jinr.ru/ (accessed:

23.06.2016).

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 95


	M. Michalewicz
	F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, J. Dennis
	M. Krajecki, J. Loiseau, F. Alin, C. Jaillet
	J. Gustafson
	J. Chrzeszczyk, A. Howard, A. Chrzeszczyk, B. Swift, P. Davis, J. Low, T. Wee Tan, K. Ban
	D. Nikitenko, S. Zhumatiy, P. Shvets
	M. Naumenko, V. Samarin

