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Deep Analysis of Job State Statistics on Lomonosov-2

Supercomputer

Dmitry A. Nikitenko1, Vadim V. Voevodin1, Sergey A. Zhumatiy1

c© The Authors 2018. This paper is published with open access at SuperFri.org

It is a common knowledge that the increasingly growing capabilities of HPC systems are

always limited by a number of efficiency related issues. The reasons can be very different: hard-

ware failures, incorrect job scheduling, peculiarities of algorithm, chosen programming technology

specifics, etc. Most of these issues can be detected after precise analysis, but is a very resourceful

way to study every application run. Therefore we performed less complicated analysis of the whole

supercomputer job flow. In this paper we share our experience of analyzing user applications job

states assigned by the SLURM resource manager that is used on the Lomonosov-2 system at

Supercomputing center of Lomonosov Moscow State University. The statistics on job states was

collected and it revealed that the ratio of correctly finished jobs (with the COMPLETED state)

was rather low. The jobs owners were asked if the distribution of their jobs states is normal re-

garding their applications. This user feedback was processed, and some new ways of efficiency gain

were revealed as the result.

Keywords: HPC, supercomputer, parallel computing, efficiency analysis, job state.

Introduction

Supercomputers are constantly getting more and more powerful – the current #1 supercom-

puter in the world, Summit, has more than 180 PFlop/s in peak [1]. Such trend is dictated by

the desire to solve increasingly complex computational problems that arise in various scientific

areas. But in order to achieve this goal it is necessary not only to increase the performance of

computing systems, but also to ensure high efficiency of their functioning. And this is a big

problem in modern systems, since the efficiency of their usage is usually low [2].

This problem is directly related to the low efficiency of individual parallel applications run-

ning on the supercomputer. One of the main reasons for applications not being effective is quite

a significant ratio of incorrect application launches. There are various reasons for that: incorrect

input data or wrong input parameters specified in the application, issues with the file system or

interconnect switches, MPI-related issues, compute node fails, etc. All these problems decrease

the useful utilization of supercomputers, so it is natural for the management of supercomputer

centers to try minimizing the number of such problems.

In the Research computing center of Moscow State University (RCC MSU) we decided

to conduct a study of these issues on the Lomonosov-2 supercomputer installed in our super-

computer center. One of the basic information that can be used to estimate the correctness

of supercomputer job flow is the states of finished job runs. We collected the statistics on the

states of all finished jobs during several months of Lomonosov-2 functioning and found out that

the ratio of correctly finished jobs (with the COMPLETED state) is surprisingly low. So it was

decided to ask the users about the reasons of such seemingly unproductive behavior, concerning

their jobs.

This paper is devoted to the deep analysis of job state statistics on Lomonosov-2 supercom-

puter based on the communication with the users.

The rest of the paper is organized as follows. Section 1 describes our previous research

concerning efficiency analysis of particular parallel applications and the supercomputer usage in
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general, as well as related works performed by other scientists. The process of collecting data for

the job state analysis is described in Section 2. Section 3 is devoted to the analysis of collected

data as well as the results and useful ideas developed during this study. Last section contains

conclusion and our plans for future work.

1. Background and Related Work

The efficiency of any supercomputer is affected by many factors. Our team has a long experi-

ence in optimizing the efficiency of our supercomputers. The first important step is to understand

the supercomputer behavior in general and identify the key factors that cause inefficiency. Then

it is possible to eliminate or at least to reduce the impact of the found factors and evaluate the

results of taken actions.

Our RCC MSU team uses the approach described in [3], which enables us to collect the most

detailed information on both the hardware part [4] and the computing job [5]. The collected data

is analyzed both in automatic and manual modes. The system monitoring data gives information

on how well the supercomputer is loaded. But a high load does not always mean high efficiency –

if a large amount of resources is spent on jobs that did not produce a result, then this time was

wasted.

Similar statistics can be found, for example, in [6], where various aspects of computing

jobs behavior on the Blue Waters supercomputer are considered, although there is no data on

the distribution of job exit states. A more interesting analysis is given in the article [7], which

deals with distributions of jobs of the Kraken supercomputer, including such characteristics as

the frequency of cancellation of jobs and the accuracy of setting their the time limits. Another

existing solution is based on using XDMoD tool designed for managing of HPC systems [8, 9].

In these papers, a lot of analyzing results of the job behavior on the largest supercomputers

are given, but no conclusions or assumptions are made on how to improve their efficiency. In

our work we propose methods for increasing the efficiency of the supercomputer based on the

results achieved in communication with the users of Lomonosov-2 supercomputer.

2. Collecting Information about Job States

We store all the data collected by monitoring system on running and finished jobs, as well as

accounting data from SLURM manager, in our single PostgreSQL database. Therefore we only

need to filter out needed information and analyze it accordingly. In this study, we analyzed all

jobs finished since January 1, 2018 till May 28, 2018. Our goal was to find cases and users whose

jobs mostly seems as “abnormal” according to the exit states of their jobs. For each user, a total

amount of cpu-hours for his jobs was computed and compared with the amount of cpu-hours for

his jobs with particular exit states. We used the following criteria in order to detect users with

“abnormal” behavior:

• (amount of cpu-hours for user jobs with COMPLETED state) / (Total amount of cpu-

hours for this user) < 0.5;

• (The same for jobs with CANCELLED or FAILED state) > 0.2;

• (The same for jobs with TIMEOUT state) > 0.2.

If at least one of these criteria was fulfilled, user was asked via email to explain the reasons

for such big ratio of jobs with not COMPLETED state. We sent personalized statistics about

jobs in emails to help users to better understand our interest. We chose thresholds for these
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criteria empirically, using our experience and expectations. This process was repeated for each

of 3 main partitions of Lomonosov-2 supercomputer, because different partitions have specific

limits and different sets of jobs running on them. Therefore, several users were emailed more

than once with questions about different partitions.

We detected 97 cases of criteria triggering, each case was a unique combination of user

name and supercomputer partition. Since we are interested in analyzing overall statistics on the

behavior of the whole supercomputer, there is no need to analyze small cases, so we filtered

out ones with less than 20 000 cpu-hours. It resulted in 65 cases for 53 different users; an

email was sent for each of these cases. It should be noted that these users cover the majority

of the Lomonosov-2 usage – these users have consumed 85% of cpu-hours provided by the

supercomputer during the considered time period.

Most of the users received only 1 email, but there were 8 users that received 2 emails

(concerning 2 different partitions) and 2 users was asked questions about all our partitions,

therefore each received 3 emails.

In found cases all 3 criteria were triggered 23 times, only 2 criteria – 26 times and 17 times

only one criteria was triggered. We sent questions about small ratio of COMPLETED states

(first criteria) 47 times, as well as 36 and 52 questions about big ratio of CANCELLED+FAILED

and TIMEOUT states, accordingly.

3. Analysis of Job State Information

After collecting the information on the job states from the users, the next step is to analyze

the obtained data. We received answers from 39 users out of 53 (74% users responded). The

responded users were responsible for 56.5% of all CPU hours consumed by all users during the

considered time period (between Jan 1 and May 28). It seems to be a good result since there

were no obligations to provide feedback answering our questions.

We grouped all the answers from the users based on the job state (TIMEOUT, CANCELLED

and FAILED states) and the reason for such job behavior. Further the statistics for each state

is described.

3.1. TIMEOUT Job State

We received the most number of answers about big ratio of TIMEOUT job state – 32 users

responded. The majority of these users (21 of 32) noticed that such behavior was absolutely

normal for their jobs since the current time limit for job execution was not enough for them. In

this case a user ran the job till the time limit and created a control point, so he could continue

the calculation from that point in the next job run.

Many of users intentionally going for the time limit showed us that we needed to distinguish

such behavior from unintentionally exiting with TIMEOUT job state, since the former was a

normal job behavior and the latter could be an indicator of incorrect or inefficient job execution.

So, after analyzing this information, we decided to use special option specified for the SLURM

resource manager that would be used in Lomonosov-2 supercomputer. Specifying this option,

users can explicitly mark that this new job is planned to reach TIMEOUT limit. This will help

us in future to divide such cases, leading to more accurate statistics.

Deep Analysis of Job State Statistics on Lomonosov-2 Supercomputer
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Next, 7 users mentioned that they had not correctly estimated the time needed for job

execution; 2 of them added that they had already fixed that issue, and 4 of them said that the

problem was most likely related to the issues with the used software package.

Another 4 users admitted that the TIMEOUT job state was due to inefficient software im-

plementation bad parallelization, outdated software, packages working surprisingly inefficiently

on Lomonosov-2 supercomputer. This is a good opportunity for optimization since it will help

users to conduct experiments faster, and to increase the overall efficiency of the supercomputer

as well.

The last 7 of 32 users said that the reason for many of their jobs to be finished with

TIMEOUT job state was that they evaluated new methods and approaches. In this case it is

hard to deal with these issues, since the problem is not technical but more of semantic kind.

3.2. CANCELLED Job State

We received response from 24 users about big ratio of jobs with CANCELLED job state.

10 of them said that, as in the case of TIMEOUT state, this situation was completely normal.

It was dictated by the specifics of such jobs: it was impossible to predict when the calculation

is completed in advance, so users had to specify bigger time limit. And when users decided that

the needed computational goal was achieved, they manually canceled the job, since after that

moment there would be no useful work done. Since such job behavior is normal, it would be

useful to divide this scenario from other types of cancelled jobs; but as for now, there is no

simple way to accurately identify it.

Other types of jobs with CANCELLED job state are the following. 13 users stated that

they needed debugging job launches, but the reasons were different – it could be rather a test

launch in order to check the correctness of planned experiment or an evaluation of new method

or approach. The main optimization that can be done in this situation is to reduce the number

of test launches in the main working partitions of the supercomputer – in our case, a special test

partition should be used. Since it seems that in some cases users do not use this test partition

on purpose, it is probably necessary to adjust the quotas and time limits for this partition to

better suit the needs of users.

It is worth mentioning separately the interesting response of the last user. This user said that,

due to the quotas on the maximum number of jobs running on the Lomonosov-2 supercomputer,

he sometimes needed to cancel less priority jobs in order to be able to launch more priority jobs.

This situation requires a more detailed discussion with the user – maybe this could be a signal

to system administrators to adjust the quotas and policies.

3.3. FAILED Job State

The information about failed jobs is usually the most useful for us since it covers most of the

situations that we can potentially fix. We received answers from 19 users which can be grouped

into 5 different types.

5 users claimed that their jobs failed due to different system problems like compute node

fails or issues with MPI library. This is exactly the situation where we as system administrators

need to take prompt actions. Modern supercomputers are very big and complex, so such issues

are going to happen in any way, therefore our goal is to eliminate such problems as quickly as
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possible and take prophylactic measures trying to minimize the frequency of occurrence of such

errors.

The problems on the user software side were the main reasons of failed jobs, as stated by

the biggest group of the responders (7 out of 19). As in the case of inefficient implementation

mentioned in subsection 3.1, it is desirable to interact with such users in order to detect the

root causes of these problems and to correct and optimize their applications, which will lead

to the increase of supercomputer useful utilization and help users to conduct experiments more

effectively.

Next, 2 users stated that there were some system problems that led to failed jobs, but at

the moment they were fixed by the supercomputer support team. In such case there is no need

to take any action.

As mentioned by 3 more users, the big ratio of failed jobs in their cases was caused by the

need for many test launches. As in the case of cancelled jobs, we should try to reduce the number

of such launches by convincing users to use test partitions created specifically for this goal.

The last type of responses is quite unusual in our opinion. 2 users said the FAILED job

state was a completely normal situation that could appear in software they were using. On the

one hand, this situation should be fixed because FAILED job state should be only used in case

of some errors occurred, but here it is used to label normal behavior. On the other hand, this

is usually quite difficult to change the behavior of large and complex user software, especially

with some ready-to-use packages involved. In any case, such information is a subject for further

detailed study and discussion with the users.

Conclusions and Future Work

Many of the jobs with TIMEOUT and CANCELLED states appeared to be inefficient by

the application nature and implementation peculiarities, that was proved by our users – jobs

owners. So this illustrates the necessity for system support to work on improving the efficiency

of supercomputer applications together with their owners.

It is revealed, that the ratio of COMPLETED state jobs which are usually considered as

successful runs, is lower than can be expected. Some jobs just cannot finish with such state

because of their specifics, for example, the jobs that compute until they meet timeout and are

marked as TIMEOUT by state. It means that there is at least a good way to provide a SLURM

option for the users that can mark the job as considered to be run until the timeout. This

would allow subtracting these jobs from suspicious jobs category. Then, it would be reasonable

to adjust currently used job statistics, splitting the TIMEOUT and CANCELLED categories in

two groups each.

Many user applications are based on common packages and libraries. It seems a good idea

to check the correlation of all revealed cases with the usage of these popular software packages

and libraries. This would allow us detecting similar problems that experience different users and

workgroups. This work is planned to be done using XALT tool designed for collecting job-level

information about used libraries, modules and executables [10].

Another interesting way of future research related to the obtained results is to automate

the process of getting user feedback. This can be developed as a special service of currently used

Octoshell system [11] which is used for our supercomputer center workflow management. It could

provide reports and surveys with statistics of the job states, enriched with more detailed data on

Deep Analysis of Job State Statistics on Lomonosov-2 Supercomputer
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job resource utilization, revealed efficiency-related anomalies [12], used software packages and

libraries, etc.
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The paper is devoted to a scalability study of Cimmino algorithm for linear inequality systems.

This algorithm belongs to the class of iterative projection algorithms. For the analytical analysis

of the scalability, the BSF (Bulk Synchronous Farm) parallel computation model is used. An

implementation of the Cimmino algorithm in the form of operations on lists using higher-order

functions Map and Reduce is presented. An analytical estimation of the scalability boundary of

the algorithm for cluster computing systems is derived. An information about the implementation

of Cimmino algorithm on lists in C++ language using the BSF program skeleton and MPI parallel

programming library is given. The results of large-scale computational experiments performed on

a cluster computing system are demonstrated. A conclusion about the adequacy of the analytical

estimations by comparing them with the results of computational experiments is made.

Keywords: system of linear inequalities, iterative algorithm, projection algorithm, Cimmino

algorithm, parallel computation model, bulk synchronous farm, scalability estimation, speedup,

parallel efficiency, cluster computing systems.

Introduction

The problem of solving systems of linear inequalities arise in numerous fields. As examples,

we can mention linear programming [1, 2], image reconstruction from projections [3], image pro-

cessing in magnetic resonance imaging [4], intensity-modulated radiation therapy (IMRT) [5].

At the present time, a lot of methods for solving systems of linear inequalities are known, among

which we can mark out a class of self-correcting iteration methods that allow efficient paralleliza-

tion. In this field, pioneer works are papers [6, 7], in which the Agmon–Motzkin–Schoenberg re-

laxation method for solving systems of linear inequalities was proposed. The relaxation method

belongs to the class of projection methods, which use the operation of orthogonal projection

onto a hyperplane in Euclidean space. One of the first iterative algorithms of projection type

was the Cimmino algorithm [8], intended for solving systems of linear equations and inequalities.

Cimmino algorithm had a great influence on the development of computational mathematics [9].

A considerable number of papers have been devoted to the generalizations and extensions of the

Cimmino algorithm (for example, see [3, 10–13]).

In many cases, systems of linear inequalities arising in the solution of practical problems

can involve up to tens of millions of inequalities and up to hundreds of millions of variables [2].

In this case, the issue of developing scalable parallel algorithms for solving large-scale systems

of linear inequalities on multiprocessor systems with distributed memory becomes very urgent.

When one creates parallel algorithms for large multiprocessor systems, it is important at an

early stage of the algorithm design (before coding) to obtain an analytical estimation of its

scalability. For this purpose, one can use various models of parallel computation [14]. Nowadays,

a large number of different parallel computation models are known. The most famous models

among them are PRAM [15], BSP [16] and LogP [17]. Each of these models generated a large

∗The article is recommended for publication by the Program Committee of the International Scientific Conference

“Russian Supercomputing Days 2018”.
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family of parallel computation models, which extend and generalize the parent model (see,

e.g., [18–20]). The problem of developing new parallel computation models is still important

today. The reason is that it is impossible to create a parallel computation model, which is good

in all respects. To create a good parallel computation model, the designer must restrict the

set of target multiprocessor architectures and class of algorithms. In paper [21], the parallel

computation model BSF (Bulk Synchronous Farm) intended for cluster computing systems and

iterative algorithms was proposed. The BSF model makes it possible to predict the scalability

boundary of an iterative algorithm with great accuracy before coding. An example of using the

BSF model is given in [22].

The purpose of this article is to investigate the scalability of the Cimmino algorithm for solv-

ing large-scale systems of linear inequalities on multiprocessor systems with distributed memory

by using the BSF parallel computation model. The rest of the article is organized as follows.

Section 1 gives a formal description of the Cimmino algorithm. In Section 2, the representation

of the Cimmino algorithm in the form of operations on lists using higher-order functions Map

and Reduce defined in the Bird–Meertens formalism is constructed. Section 3 is dedicated to

an analytical investigation of the scalability of the Cimmino algorithm on lists using the BSF

model cost metrics; the equations for estimating the speedup and parallel efficiency are given;

the boundary of the algorithm scalability depending on the problem size is calculated. In Sec-

tion 4, a description of the implementation of the Cimmino algorithm on lists in C++ language

using the BSF algorithmic skeleton and the MPI parallel programming library is presented; a

comparison of the results obtained analytically and experimentally is given. In conclusion, the

obtained results are summarized and directions for further research are outlined.

1. Cimmino Algorithm for Inequalities

Let us consider the system of linear inequalities

li(x) = 〈ai, x〉 − bi 6 0 (i = 1, . . . ,m), (1)

where 〈ai, x〉 is the Euclidean inner product of ai and x in Rn, bi ∈ R. To avoid triviality, we

assume m > 2. We also assume that the system (1) is consistent. It is necessary to find a solution

of the system of linear inequalities (1). To solve this problem, it is convenient to use a geometric

language. Thus, we look upon x = (x1, . . . , xn) as a point in n-dimensional Euclidean space Rn,

and each inequality li(x) 6 0 as a half-space Pi. Therefore, the set of solutions of system (1) is

the convex polytope M =
m⋂
i=1

Pi. Each equation li(x) = 0 defines a hyperplane Hi:

Hi = {x ∈ Rn| 〈ai, x〉 = bi} . (2)

Let the orthogonal projection of x ∈ Rn onto the hyperplane Hi ⊂ Rn be denoted by πHi
(x).

The orthogonal projection πHi
(x) can be calculated by the following equation:

πHi
(x) = x+

bi − 〈ai, x〉
‖ai‖2

ai, (3)

where ‖·‖ is the Euclidean norm. Let us define the orthogonal reflection of x with respect to

hyperplane Hi as follows:

ρHi
(x) = πHi

(x)− x =
bi − 〈ai, x〉
‖ai‖2

ai. (4)
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The Cimmino algorithm for equally weighted inequalities consists of the following steps:

Step 1: k := 0; x0 := 0.

Step 2: xk+1 := xk + λ
m

m∑
i=1

ρHi
(xk).

Step 3: If ‖xk+1 − xk‖2 < ε then go to Step 5.

Step 4: k := k + 1; go to Step 2.

Step 5: Stop.

Cimmino’s method starts with an arbitrary point x0 in Rn as an initial approximation,

and then calculates at each step the centroid of a system of masses placed at the reflections

of the previous iterate with respect to the hyperplanes H1, . . . ,Hm defined by the system of

inequalities. This centroid is taken as the new iterate:

xk+1 = xk +
λ

m

m∑

i=1

ρHi
(xk). (5)

In equation (5), λ is a relaxation parameter. It is known [10] that for 0 < λ < 2 the iteration

process (5) converges to a point belonging to the polytope M .

2. Cimmino Algorithm in the Form of Operations on Lists

In order to obtain analytical estimations of an algorithm using the cost metrics of the BSF

model, it must be represented in the form of operations on lists using higher-order functions

Map and Reduce defined in the Bird–Meertens formalism [23]. The higher-order function Map

applies the given function F : A → B to each element of the given list [a1, . . . , am] and returns

a list of results in the same order:

Map(F, [a1, . . . , am]) = [F (a1), . . . , F (am)]. (6)

The higher-order function Reduce reduces the given list [b1, . . . , bm] to a single value by itera-

tively applying the given binary associative operation ⊕ : B × B → B to each pair of elements:

Reduce(⊕, [b1, . . . , bm]) = b1 ⊕ . . .⊕ bm. (7)

In the context of the Cimmino algorithm, we define the list Lmap as follows:

Lmap = [i1, . . . , im], (8)

where ik ∈ {1, . . . ,m} and ik 6= il for k 6= l (k, l = 1, . . . ,m). In other words, Lmap – is the list

of numbers of inequalities (1) ordered in an arbitrary way. For an arbitrary point x ∈ Rn, let us

define the function Fx : {1, . . . ,m} → Rn as follows:

Fx(i) = ρHi
(x) (9)

for all i ∈ {1, . . . ,m}. In other words, the function Fx(i) calculates the orthogonal reflection

of x with respect to the hyperplane Hi. For an arbitrary point x ∈ Rn, let us define the list

L
(x)
reduce ⊂ Rn as follows:

L
(x)
reduce = [Fx(i1), . . . , Fx(im)]. (10)
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The list L
(x)
reduce holds orthogonal reflections of the point x with respect to the hyperplanes

H1, . . . ,Hm in the order determined by the list Lmap. Thus, the list L
(x)
reduce is obtained from the

list Lmap by applying to it the higher-order function Map using as a parameter the function Fx:

L
(x)
reduce = Map(Fx, Lmap). (11)

Let us define the binary associative operation ⊕ : Rn × Rn → Rn as follows:

x⊕ y = x+ y (12)

for all x, y ∈ Rn. In this case, the ⊕ operator performs the conventional composition of vec-

tors. Then the sum of orthogonal reflections of the point x can be obtained by applying to

the list L
(x)
reduce the higher-order function Reduce using as a parameter the vector composition

operation ⊕:
m∑

i=1

ρHi
(x) = Reduce(⊕, L(x)

reduce). (13)

Now we can write the Cimmino algorithm in the form of operations on lists:

Step 1: k := 0; x0 := 0; Lmap := [1, . . . ,m].

Step 2: L
(xk)
reduce := Map(Fxk

, Lmap).

Step 3: s := Reduce(⊕, L(xk)
reduce).

Step 4: xk+1 := xk + λ
ms.

Step 5: If ‖xk+1 − xk‖2 < ε then go to Step 7.

Step 6: k := k + 1; go to Step 2.

Step 7: Stop.

The BSF model assumes that the algorithm is executed by a computing system consisting

of one master-node and K worker-nodes (K > 0). Step 1 of the algorithm is performed by both

the master and the workers during the initialization of the iterative process. Step 2 (Map) is

performed only on the worker-nodes. Step 3 (Reduce) is performed on the worker-nodes and

partially on the master-node. Steps 4–6 are performed only on the master-node. The BSF model

assumes that all arithmetic operations (addition and multiplication) as well as comparison op-

erations on floating-point numbers take the same time τop.

3. Analytical Evaluation of Scalability

Let us introduce the following notation for the scalability evaluation of the Cimmino algo-

rithm:

cs : the quantity of float numbers transferred from the master to one

worker;

cmap : the quantity of arithmetic operations performed in the Map step

(Step 2 of the algorithm);

ca : the quantity of arithmetic operations required to calculate the sum of two

vectors;
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cr : the quantity of float numbers transferred from one worker to the

master;

cp : the quantity of arithmetic and comparison operations performed by the master in

Steps 4 and 5 of the algorithm.

Let us calculate the indicated values. At the beginning of each iteration, the master sends

to all the workers the current approximation xk, which is a vector of dimension n. Hence:

cs = n. (14)

Let us calculate the number of arithmetic operations performed in the Map step. For each el-

ement of the list Lmap, one vector is calculated by equation (4). Note that the values of ‖ai‖2
(i = 1, . . . ,m) do not depend on xk, and therefore can be calculated in advance at the initializa-

tion stage. Taking this into account, the quantity of operations for calculating one orthogonal

reflection of the point xk is 3n + 1. Multiplying this value by the number of inequalities, we

obtain

cmap = m(3n+ 1). (15)

During the execution of Reduce step, the list Lreduce consisting of m vectors is divided into equal

parts, each of them assigned to a single worker. Everywhere below we assume that K 6 m. For

simplicity we assume that m is a multiple of number of workers K. The composition of vectors

of dimension n requires n arithmetic operations. Hence:

ca = n. (16)

After execution of Reduce step, each worker sends the resulting vector to the master. Thus:

cr = n. (17)

The execution of Step 4 requires 2n operations (we assume the constant value of λ/m to be

computed in advance). The execution of Step 5 requires 3n − 1 arithmetic operations and one

comparison operation. It follows the equation:

cp = 5n. (18)

Let us designate the time spent by the worker to perform one arithmetic operation as τop,

and designate the time spent for transferring a single float number across the network excluding

latency as τtr. In that way, we get the following values for the cost parameters of the BSF

model [21] in the case of the Cimmino algorithm:

ts = nτtr; (19)

tmap = m(3n+ 1)τop; (20)

ta = nτop; (21)

tr = nτtr; (22)

tp = 5nτop. (23)
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Equation (19), obtained on the basis of (14), gives an estimation of the time ts spent by the

master to transfer a message to one worker excluding latency. Equation (20) is obtained using the

equation (15). According to the BSF model cost metric, tmap denotes the total time spent by a

single worker to process the entire Map list. Equation (21) obtained using equation (16) calculates

the time tp spent by a processor node on adding two vectors of dimension n. Equation (22),

obtained on the basis of (17), gives an estimation of the time tr spent by the master to transfer

a message to one worker excluding latency. Equation (23) obtained using equation (18) calculates

the time tp spent by the master on the following actions: calculating the next approximation

and checking of the stopping criterion. In accordance with this metric, the time for solving the

problem by a system consisting of one master and one worker (K = 1) can be estimated as

follows:

T1 = 2L+ ts + tr + tp + tMap + lta

= 2(L+ τtrn) + τop (5n+m(3n+ 1) + (m− 1)n) .
(24)

The time of solving the problem by a system composed of one master and K workers can be

estimated by the following equation:

TK = K (2L+ ts + tr + ta) +
tMap + lta

K
− ta + tp

= 2K(L+ τtrn+ τopn) + τop

(
m(3n+ 1) + (m− 1)n

K
+ 4n

)
.

(25)

For m→∞ , the equations (24) and (25) asymptotically tend to the following estimations:

T1 = 2(L+ τtrn) + τop (5n+m(3n+ 1) +mn) ; (26)

TK = 2K(L+ τtrn+ τopn) + τop

(
m(3n+ 1) +mn

K
+ 4n

)
. (27)

On the basis of equations (26) and (27) we can write the equation for speedup a in the form of

a function of K:

a(K) =
T1
TK

=
2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)

2K(L+ τtrn+ τopn) + τop

(
m(3n+1)+mn

K + 4n
) . (28)

To determine the scalability boundary of the Cimmino algorithm in accordance with the

procedure described in [21], let us deduce the derivative a′(K) and solve the equation

a′(K) = 0. (29)

Using simple algebraic transformations, from equation (28), we can deduce the following equation

for the derivative of speedup:

a′(K) = (2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)) ·

·
m(3n+1)+mn

K2 τop − 2(L+ nτtr)− τopn(
2K(L+ τtrn+ τopn) + τop

(
m(3n+1)+mn

K + 4n
))2 .

(30)
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Let us solve the equation

(2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)) ·

·
m(3n+1)+mn

K2 τop − 2(L+ nτtr)− τopn(
2K(L+ τtrn+ τopn) + τop

(
m(3n+1)+mn

K + 4n
))2 = 0.

(31)

Dividing both sides of equation (31) by the positive quantity

2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)

and multiplying by the positive quantity

(
2K(L+ τtrn+ τopn) + τop

(
m(3n+ 1) +mn

K
+ 4n

))2

we obtain the equation

m(3n+ 1) +mn

K2
τop − 2(L+ nτtr)− τopn = 0,

which implies

K =

√
(m(3n+ 1) +mn) τop

2(L+ nτtr) + nτop
.

Thus, equation (31) has the only root

K0 =
√

(m(3n+ 1) +mn) τop/(2(L+ nτtr) + nτop)

on the interval [1,+∞). It is easy to see that the derivative a′(K) calculated by the equa-

tion (30) takes only positive values in the interval [1,K0) and only negative values in the interval

(K0,+∞). Therefore, the point K0 is the maximum of the function a(K) on the interval [1,+∞).

It follows that the maximum of speedup is obtained at the point K0. Thus, in accordance with

the BSF model, the boundary Kmax of the scalability of the Cimmino algorithm is determined

by the following equation:

Kmax =

√
(m(3n+ 1) +mn) τop

2(L+ nτtr) + nτop
. (32)

Let us simplify equation (32). For n,m→∞, we have

(m(3n+ 1) +mn) τop ≈ O(mn) (33)

and

2(L+ nτtr) + nτop ≈ O(n). (34)

Substituting the right-hand sides of equations (33) and (34) into (32), we obtain

Kmax =

√
O(mn)

O(n)
,

which is equivalent to

Kmax =
√
O(m). (35)
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In that way, the boundary of the scalability of the Cimmino algorithm on lists increases in

proportion to the square root of the number m of inequalities. In conclusion of this section, let

us write the equation for estimating the parallel efficiency e as a function of K. Considering

equation (28), we have

e(K) =
a(K)

K
=

2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)

2K2(L+ τtrn+ τopn) + τop (m(3n+ 1) +mn+ 4nK)
. (36)

4. Numerical Experiments

In order to verify the analytical results, we implemented the Cimmino algorithm in

C++ language using the BSF algorithmic skeleton and the MPI parallel programming li-

brary. The source code of this program is freely available on Github, at https://github.

com/leonid-sokolinsky/BSF-Cimmino. The system of inequalities was taken from the model

scalable linear-programming problem Model-n given in [24]. In this system, the number of in-

equalities is m = 2n + 2, where n is the dimension of the space. We investigated the speedup

and parallel efficiency of the Cimmino algorithm on the supercomputer “Tornado SUSU” [25].

The calculations were performed for the dimensions 1 500, 5 000, 10 000 and 16 000. At the same

time, we plotted the curves of speedup and parallel efficiency for these dimensions using equa-

tions (28) and (36). For this, the following values in seconds were determined experimentally:

L = 1.5 · 10−5, τop = 2.9 · 10−8 and τtr = 1.9 · 10−7. The results are presented in Fig. 1–4.

In all cases, the analytical estimations were very close to experimental ones. Moreover, the

performed experiments show that the boundary of the BSF-program scalability increases in pro-

portion to the square root of the number m of inequalities. It was analytically predicted by the

equation (35).

Conclusion

In this paper, the scalability and parallel efficiency of the iterative Cimmino algorithm used

to solve large-scale linear inequality systems on multiprocessor systems with distributed memory

were investigated. To do this, we used the BSF (Bulk Synchronous Farm) parallel computation

model based on the “master-slave” paradigm. The BSF-implementation of the Cimmino algo-

rithm in the form of operations on lists using higher-order functions Map and Reduce is described.

A scalability boundary of the BSF-implementation of the Cimmino algorithm is obtained. This

estimation tells us the following. If space dimension n is greater than or equal to the number m

of inequalities, then the boundary of the scalability of the Cimmino algorithm on lists increases

in proportion to the square root of the number m of inequalities. So, we may conclude that

the Cimmino algorithm on lists is scalable well. Also, the equations for estimating the speedup

and parallel efficiency of the Cimmino algorithm on lists are obtained. The implementation of

the Cimmino algorithm in C++ language using the BSF algorithmic skeleton and the MPI

parallel programming library was performed. This implementation is freely available on Github,

at https://github.com/leonid-sokolinsky/BSF-Cimmino. On a cluster computing system,

the large-scale experiments were conducted to obtain the actual speedup and parallel efficiency

curves for systems having number of variables 1 500, 5 000, 10 000, 16 000 and the number of

inequalities 3 002, 10 002, 20 002, 32 002, respectively. The results of the experiments showed

that the BSF model predicts the boundary of the scalability of the Cimmino algorithm on lists

with high accuracy. As future research directions, we intend to do the following:
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Figure 1. Experiments for n = 1 500 and m = 3 002
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Figure 2. Experiments for n = 5 000 and m = 10 002
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Figure 3. Experiments for n = 10 000 and m = 20 002
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Figure 4. Experiments for n = 16 000 and m = 32 002
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1) apply the Cimmino algorithm to implement the Qwest phase of the NSLP algorithm [2],

designed to solve large-scale non-stationary linear programming problems;

2) carry out computational experiments to solve large-scale linear programming problems on a

cluster computer system under the conditions of dynamically changing the input data.
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On the Inversion of Multiple Matrices on GPU in Batched
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In this research we are considering the benchmarking of batched matrix inversion and solution

of linear systems. The problem of multiple matrix inversion with the same fill sparsity is usually

considered in problems of fluid mechanics with chemistry. In this case the system is stiff, and

an implicit method is required to solve the problem. The core of such method is the multiple

matrix inversion. We benchmark different methods based on cuSPARSE and MAGMA libraries

and CPU LAPACK version depending on the matrix filling. We also provide our own experimental

code that implements GaussJordan elimination on GPU using register shuffle. It is shown that

the fastest method is the QR matrix inversion for single precision calculations. We also show that

the suggested Gauss–Jordan elimination method looks promising being about 8–10 times faster

than cuSPARSE QR method. We also demonstrate the application of batch solvers in the coupled

reactive flow problem.

Keywords: QR algorithm, LU Matrix Inversion, Batched Solver, Matrix solver, GPU Batched

Solver.

Introduction

In many applications, such as astronomy, chemistry and approximate preconditioning design

(e.g. block Jacobi preconditioning in implicit Discontinuous Galerkin methods), one must find

solutions of many small linear systems of equations. Let us consider one situation that is very

common in CFD where chemical or plasma-chemical reactions are essential and included into

multicomponent system of equations, e.g. see [4]. Chemical reactions are governed by systems of

ODEs, typically of small or medium size M ∼ O(10), and the problem complexity is multiplied

by the discretization of the CFD problem size N ∼ O(106). These systems of ODEs are stiff,

and implicit methods must be applied to find numerical solutions, e.g. Rosenbrock method [16]

is a very popular choice. This leads to the solution of the following linear systems:

Ajxj = bj , j = 1, ..., N, (1)

where Aj ∈ RM×M are matrices of the numerical method for systems of chemical reactions,

xj ∈ RM are the vectors of unknowns (concentrations) and bj ∈ RM are the right hand sides.

Methods for the solution of this problem type are called batch methods. In this paper we refer

to the size N as batch size or simply batch and M as matrix size. Matrices Aj are, in general,

nonsymmetric, nonsingular and usually sparse with filling up to 50%.

We aimed at multiple GPU architecture to be used for the solution of (1). There is no

communication between systems (1), so we can analyse performance on a single GPU device

and assume linear scaling of the problem for multiple GPUs. There are some papers related to the

problem. In [1] authors give design and implementation of batched matrix-matrix multiplication

on GPUs. It is shown that for relatively small matrices (8 × 8) one achieves performance of
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80 GLFOPS in single precision, while for rather big matrices 32×32 a performance of 260 GFlops

is achieved, both on k40 GPUs. Analysis of symmetric matrices of linear systems is performed

in [8] during the solution of the problem (1). A comparison of MKL LAPACK and MAGMA

library [14]. It is stated, that 80% of the practical dgemm peak of the machine is achieved

with the self-written code, while MAGMA achieves only 75%, and finally, in terms of energy

consumption MAGMA is outperformed by 1.5 times in performance-per-watt for larger matrices.

However MAGMA is assumed to be a fairly good alternative, since now MAGMA is extended

to cover the batched routines. Batched matrices LU decomposition is discussed in [7]. Batched

mode is compared with the streamed one, and it is shown that the premire is superior. A batched

LU factorization for GPUs is proposed that uses a multi-level blocked right looking algorithm. It

preserves the data layout but minimizes the penalty of partial pivoting. As a result 2.5 speedup

is achieved, compared to the alternative CUBLAS solution on a K40c GPU. Batched matrix

matrix multiplication for matrices size smaller then 32×32 are provided in [15], where MAGMA

library is compared with cuBLAS and MKL. Very good results are reported for MAGMA library

with peak performance of 1000 GFlops for Tesla P100 GPUs in double precision. Another new

paper is [2] where MAGMA is compared with CUBLAS for the solution of million linear systems.

It is shown that MAGMA is an efficient library and is significantly faster than CUBLAS for the

considered problems, scoring speedups between 4.3 – 16.8 in single precision and between 3.4

– 14.3 in double precision. Performance is around 650–800 GFlops in single precision for P100

NVIDIA GPU and matrices 16× 16.

All these results give great insights into performance, but we found no good comparison of

libraries that are designed to be used in batch mode, except from MAGMA library. Besides,

there is no comparison in terms of wall time which is what a user is looking for in the first

place when trying to speed-up the problem with GPU usage. One can estimate wall time from

provided floating point operation per second but it is difficult for complex algorithms, especially

those that are using sparse matrix format or relay on non-naive algorithms. One can also use

cuSOLVER NVIDIA CUDA library [5] to perform batch solution of many small linear systems.

The goal of the paper is to perform as many tests as possible, related to the problem (1), and give

an insight on using different libraries for future reference and solution strategies using modern

compute capability of relitively cheap GPUs.

The paper is laid out as follows. In the first section we provide the benchmark problem and

metrics that we collect. We describe libraries that we are using and library routines that we

are testing. Here we also describe used hardware. The second section contains brief explanation

our code implementation of Gauss–Jordan method that uses register shuffle. The third section

contains results that we obtained during benchmarking. This section is divided into three sub-

sections: analysis of libraries, analysis of Gauss–Jordan method and analysis of newer MAGMA

library which, we belive, demonstrates abnormal behaviour. The final fourth section we demon-

strate the application example of batch linear solver in reactive gas dynamics flow. Then, the

conclusion follows.

1. Benchmark Problem and Metrics

In the paper we use four different methods to solve the problem (1). The CPU version

is LAPACK routines SGETRS for single precision and DGETRS for double precision. The

OpenMP is used to divide the stream and run independent solvers.
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Figure 1. Time for inversion of all matrices on CPU using 1, 2 and 4 threads as function of

batch size. Different colors correspond to different matrices

Next we use MAGMA library by calling magma (S/D)gesv batched routine that ex-

ecutes the linear solution of systems on a GPU in single or double precision. MAGMA uses

full matrix storage and we refer to magma library below as magma float and magma double,

respectively, for single and double precision call.

We also test two cuSOLVER libraries. The first one is using QR matrix decomposition and

is called by cusolver(S/D)pXcsrqrsvBatched routine in single or double precision. Some

additional preparations must be made that analyse system matrices connectivity graph and

transfer reordering permutations to increase the efficiency on the device, for more information we

refer a reader to the manual [5]. The second one is called refactored solver that uses LU matrix

decomposition and is called by cusolverRfBatchSolve routine. Note that some additional

preparations must be made on a host part of the program. Besides, the interface of the call

is assumed to be only in double precision (with respect to CUDA Toolkit Version 8.0). Both

routines use sparse CRS matrix storage format. We refer to these libraries as QR float, QR double

and RF double, respectively.

Our test is performed in the following manner. We generate a set of matrices with sizes

M = {4, 5, 8, 9, 10, 11, 14, 16} with random sparsity patterns having filling 10%, 25% and 50% of

all matrix elements, except diagonal elements. We also fill diagonal elements in such a way, that

matrices are invertable. It is checked on the stage of matrix generation. We assume that pivoting

can be used to these systems to increase the stability of system solution to perturbations. We use

the following set of batch sizes: N = {1, 3, 6, 10, 30, 60, 100, 300, 600, 1000} · 103. We also check

the performance of two different GPUs with single and double precision calculations, where

possible. The test set is generated as a tensor product of all possible configurations. For each

test in the test set we make 10 runs of the code with different generated matrices that share

the same sparsity pattern, and execution time is averaged. Performance is measured in FLOPS

obtained from nvprof utility. All tests are generated, executed and logged by an automated

Python script.

We used CPU device INTEL XEON E5-2609 2.4 GHz, 4 cores and two GPU devices. The

first one designated Device 0 is a GTX TITAN X NVIDIA card with 12 GB RAM, 11 TFLOPS

peak single precision, 1/32 multiplier for double precision and 5.2 compute capability. The second

Device 1 is a GTX TITAN Black NVIDIA card with 6 GB RAM, 5.1 TFLOPS peak single

precision, 1/3 multiplier for double presision and 3.5 compute capability.

2. Gauss–Jordan Elemiation Using Register Shuffle

The code is based on simple Gauss–Jordan elemiation algorithm. A distinctive feature of the

implementations is the application of register shuffle that is supported from compute capability
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Figure 2. Time for inversion of all matrices on GPU using magma float (left) and QR float as

function of batch size on Device 0. Different colors correspond to different matrices
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Figure 3. Time for inversion of all matrices on GPU using QR double (left) and RF as function

of batch size on Device 0. Different colors correspond to different matrices
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Figure 4. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/magma float left and CPU/QR float right on Device 0

On the Inversion of Multiple Matrices on GPU in Batched Mode

26 Supercomputing Frontiers and Innovations



0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

1

2

3

4
ra
tio

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

10

20

30

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 5. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/magma float left and CPU/QR float right on Device 1
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Figure 6. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/QR double left and CPU/RF right on Device 0
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Figure 7. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/QR double left and CPU/RF right on Device 1
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Figure 8. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.
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Figure 9. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

magma float/RF left and QR double/QR float right on Device 0

3.0 and above. It allows us to share data between threads that are part of the same warp.

It insures a speedup of about 3 times to the shared memory access speed but limits current

implementation in using only single precision arithmetics (double precision requires spliting into

two 32b registers) and matrix size M ≤ W , where W is a warp size. For more information

see [3, 6]. This code is now being tested and is in alpha version, we designate this code as

shuffleGJ. It is also benchmarked against best results of selected libraries in the end, and

performance Gflops are provided.
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Figure 10. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix

sizes. QR float/RF left and QR double/RF right on Device 1
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Figure 11. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix

sizes. QR float/RF left and QR double/RF right on Device 0
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3. Results

3.1. Libraries Analysis

All results are brought into figures that represent sections and projections of multidimen-

sional data from the test set. All figures are self–explanationary, but we comment on some of

most essential results. In Fig. 1 we can see the time needed to solve systems of equations for all

matrices as function of batch size (up to 30,000 matrices) using 1,2 and 4 threads with single

precision. We can see linear scaling with batch size since all matrices are treated as dense and

have no dependence on sparsity. Analogous results by different libraries on Device 0 are provided

in Fig. 2, 3 showing significant reduction of time. Interesting to note that batched RF method

having no interface with single precision is almost as efficient as QR float. Results are a little

bit different on Device 1. We checked the occupancy of GPU RAM. QR float and RF use about

the same amount of RAM, for example it requires 1845 MB using QR float and 3590 MB using

RF for N = 1 · 106,M = 11, and sparsity 0.5. MAGMA requires way more memory due to

some internal memory allocation instructions, for example magma float takes about 831 MB for

N = 3 ·104,M = 11 and about 5264 MB for N = 2.4 ·105. This memory is dynamically allocated

during the solution process and can cause exception of insufficient memory despite that memory

for all matrices storage is sufficient, so we limit MAGMA batch size up to 30,000.

Speed ups against CPU 4-thread code for different libraries and different devices are shown

in Fig. 4–7. We can see that MAGMA speed up varies from 5 to 3 times for Device 0 and 4

– 2 times for Device 1. QR float achieves speed up 40 times for small matrices and 20 for big

matrices on Device 0 and 35 – 15 times for Device 1. RF is about the same results, lower by

approximately 10% and QR double lower by another 10%. We can see that RF library has a

narrower spread between matrix sizes.

We then benchmark one library against another in terms of execution time. Results for

MAGMA library are presented in Fig. 8 and 9 (left). One can see that other libraries are faster,

so taking memory demands into account we scratch out MAGMA from comparison. We also

compare QR float and QR double with RF on different devices. We can see in Fig. 10 that RF

version is more efficient on Device 1 compared with both QR double and QR float. However,

QR float is more efficient on Device 0, see Fig. 11.

Further investigation is conducted in term of speed dependence from sparsity and matrix

size for all batches. For this test we check only Device 0 because we found that the difference in

scaling on these axes is negligible. One see the scaling of QR float on sparsity 0.1 in Fig. 12 and

sparsity 0.5 in Fig. 13. The factor of speed loss is about 2 3 times for the matrix size increase

from 4 to 16 when sparsity is 0.5 which implies better performance on bigger matrices. This

effect is even stronger when sparsity is 0.1 and also for RF library, see Fig. 14 and 15. Another

dependence on sparsity is given in terms of matrix size and provided for QR float in Fig. 18, 19,

and for RF in Fig. 16, 17.

Analysis of performance in terms of floating point operations is provided in the Tab. 1.

One can see that MAGMA has very small performance results in the batch mode, except using

magma float on Device 0 with 267.78 GLFOPS. This is, probably, due to the usage of new device

features of compute capability 5.2. However, timing for this library mode remains almost the

same. Notice, that when MAGMA is executed as magma float, some calculations are performed

in double precision, and visa versa. Best flops performance (41.17 GLFOPS) is achieved on

QR float on matrix size M = 16. We also checked asymptotics by considering M = 128. We can
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Figure 12. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.1 using QR float on Device 0
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Figure 13. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.5 using QR float on Device 0

see, that QR float achieves maximum performance of 39.12 GFlops, so we can assume that the

metrics is correct for M = 16. RF method also uses some single precision calculations but bulk

part of all calculations is done in double precision with maximum of 20.35 GFlops.

3.2. Shuffle Gauss–Jordan Analysis

We test shuffleGJ method for M = {11, 16} with sparsity 0.5. Ratio of time execution is

shown in Fig. 20 for Device 0 and in Fig. 21 for Device 1. One can clearly see that the suggested

method outperforms libraries on about 20 times for M = 11 and about 8–10 times for M = 16.

This twofold decrease of performance is related to the algorithm requirements for matrix size in

the shuffleGJ method. Still this gives us about 400 times acceleration compared to 4 threaded

CPU version. We also calculated flops for this method that is provided in Tab. 1. One can see

that we managed to achieve about 11.3% performance compared to the maximum theoretical

performance of the device.
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Figure 14. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.1 using RF on Device 0
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Figure 15. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.5 using RF on Device 0

0.1 0.2 0.3 0.4 0.5
sparcity

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

0.1 0.2 0.3 0.4 0.5
sparcity

0.6

0.8

1.0

1.2

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

matrix size 8

Figure 16. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 8 using RF on Device 0
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Figure 17. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 16 using RF on Device 0
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Figure 18. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 8 using QR float on Device 0
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Figure 19. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 8 using QR float on Device 0
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Figure 20. Ratio of time execution of QR float/shuffleGJ (left) and RF/shuffleGJ (right) as

function of batch size for sparsity 0.5 on Device 0
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Figure 21. Ratio of time execution of QR float/shuffleGJ (left) and RF/shuffleGJ (right) as

function of batch size for sparsity 0.5 on Device 1
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Table 1. Performance of different batch solver

implementations on selected problems with sparsity 0.5

and one million batch size

solver device matrix size Gflops(float) Gflops(double)

QR float 0 4 4.85 0

QR float 0 11 25.34 0

QR float 0 16 41.17 0

QR float 1 4 3.73 0

QR float 1 11 15.16 0

QR float 1 16 23.69 0

QR double 0 4 0.18 7.97

QR double 0 11 0.24 24.73

QR double 0 16 0.119 28.04

QR double 1 4 0.071 6.21

QR double 1 11 0.105 15.51

QR double 1 16 0.084 19.58

RF double 0 4 0.3317 4.2

RF double 0 11 0.497 14.5

RF double 0 16 0.33 20.35

RF double 1 4 0.136 3.45

RF double 1 11 0.244 10.36

RF double 1 16 0.234 14.5

magma float 0 11 267.78 0.14

magma float 1 11 9.22 0.148

magma double 0 11 0.139 9.09

magma double 1 11 0.102 7.31

QR float 0 128 38.79 0

QR float 1 128 39.12 0

shuffleGJ 0 11 955.49 0

shuffleGJ 0 16 1251.88 0

shuffleGJ 1 11 544.25 0

shuffleGJ 1 16 595.38 0
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Table 2. Performance of MAGMA 2.3 library for LU

factorization and solution of linear systems on matrices

16× 16 with sparsity 0.5. Asterisk indicates tests with self

written code, other tests use standard MAGMA library

tests. Symbol ’—’ means that the problem does not fit in

device memory

routine batch size · 103 Gflops time, ms

sgetrf batched (LU) 100 282.21 0.93

sgetrf batched nopiv (LU) 100 2.08 30.03

sgesv batched (Solves) 100 14.67 20.0

sgetrs batched∗ (Solves with LU) 100 12.4 23.05

sgetrf batched (LU) 200 253.14 2.07

sgetrf batched nopiv (LU) 200 10.39 50.35

sgesv batched (Solves) 200 19.68 31.0

sgetrs batched∗ (Solves with LU) 200 18.3 33.86

sgetrf batched (LU) 500 258.09 5.07

sgetrf batched nopiv (LU) 500 31.18 41.95

sgesv batched (Solves) 500 22.63 72.9

sgetrs batched∗ (Solves with LU) 500 26.7 33.86

sgetrf batched (LU) 1000 307.26 8.51

sgetrf batched nopiv (LU) 1000 83.37 31.95

sgesv batched (Solves) 1000 — —

sgetrs batched∗ (Solves with LU) 1000 — —

3.3. Notes on MAGMA Library

We thank an anonymous reviewer for pointing out on the efficiency of newly released

MAGMA 2.3 library (at the time of this research submission in October, 2017 latest MAGMA

version was 2.2) for LU decomposition in batch mode. We performed tests on MAGMA library

and confirmed that it achieves efficiency up to 308 GFlops (Device 0) for batched LU decom-

position in single precision using magma sgetrf batched call with approximately 9.0 ms for

one million matrices sized 16 × 16. This is outstanding result compared to CUBLAS native

NVIDIA library. However, in this papaer we are interested in batch solution of linear systems. So

we tested magma sgesv batched and magma sgetrs batched routines and obtained results

close to the ones we obtained for MAGMA 2.2, see Tab. 2 for Device 0. For these tests we used

simple programs that called these routines and compiled tests that are available in MAGMA

library. Notice, that routine with no pivoting for LU decomposition takes substantial amount of

time, compared to the standard LU decomposition with pivoting. This behaviour is abnormal

and must be investigated.

In the results above we see, that only obtaining LU factors is efficient. One can’t just take

solver from MAGMA and solve batched linear systems out of box as it can be done for NVIDIA

cuSPARSE libraries, at least on our hardware. Our recipe for MAGMA library is to use very

efficient LU decomposition and then manually perform solution of linear systems (using batched

triangular solver). One must take care, though, because arrays in GPU memory for MAGMA
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calls are not optimally located for 1D indexing and one must introduce 2D grid in order to

perform efficient solution of linear systems with sequential swaps in shared memory. This is the

scope of the future work. More tests are required since results in paper [2] show performance of

up to 800 GFlops for batch inversion of small matrices on P100 GPUs. Still, even LU MAGMA

efficiency can’t outperform our implementation of Gauss–Jordan method, compare GFlops in

Tab. 1 and Tab. 2 for matrices 16× 16 on Device 0.

4. Application Example

We are considering a standard chemical reaction flow benchmark problem, called ZND

[9, 17, 18]. The problem is formulated for compressible perfect gas equations with chemical

reaction. Detonation wave is propotaged with constant velocity D. The wave has the following

structure: gas shock wave is propotaged, followed by reaction domain. Detonation reaction

velocity is behind the shock wave. Governing equations are given bellow:





ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (u⊗ (ρu)) +∇p = 0,

ρEt +∇ · (u(ρE + p)) = 0,

(ρYj)t +∇ · (ρYju) = ω̇j .

ρE = 1
2ρu

2 + ρe, j = 1,M,

M∑

j=1

Yj = 1.

(2)

The chemical source term is given by:

ω̇1 = −ω̇2 =

{
−ρY1A exp

(−Eact

RT
)
, T ≥ Tign,

0, T < Tign.
(3)

Above equations are coupled by the equation of state:

p = ρR̃T,

h = CpT + h0, h0 =
∑M

j=1 h0,jYj ,

Cp = γ
γ−1R̃.

(4)

Here ρ is density of gas mixture, ρYj is the mass fraction of gas species j, M = 2 is the number

of species, A is the Arrhenius frequency factor, u is the velocity vector, p is the pressure, E is

the total energy density, h is the specific enthalpy, e is the specific internal energy, ω̇j is the

reaction rate of species j, T is temperature, R = 8.31451 is the universal gas constant, R̃ = 1

is the specific gas constant, γ is the specific heat ratio of the gas mixture, h0,j is the reference

enthalpy of formation for the species j. In all calculations we set T = 1 and Tign = 1.01. The

fluid dynamics is solved using discontinuous Galerkin method [10], and the chemical part is

solved using Crank–Nicolson method.

We define two domains – 1D segment and 2D plane. For the 1D segment we set boundary

conditions as supersonic outflow conditions on the right and subsonic outflow conditions on the

left. For the 2D plane we add two boundary conditions of sleep walls on top and bottom.

Initial conditions are defined as:

• x ≥ 0: (ρ, ρux, ρuy, ρE, ρY1, ρY2)
T = (ρY ∗1 ,−ρY ∗1 D, 0, ρE, ρY ∗1 , 0)T ;

• x < 0:
dY1(x)

dx
= − ω̇(Y1(x))

ρ(Y1(x))Y ∗1 D
. (5)
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Figure 22. Pressure distributions for different time steps (10 seconds per step). Propagation

velocity Dnum ∼ 3.664275 m/s

Here Y1 is burned species, and Y2 = 1 − Y1 is unburned species, Y ∗1 = 1 is a constant value.

All other values for initial conditions are calculated in accordance with [11] as functions of

Y1(x),∆h0,2, D. The Arrhenius frequency factor A is obtained from the given half–reaction

length of a detonation wave as:

L1/2 = −ρ2D
∫ 1

1/2

1

ω̇(z)
dz. (6)

The initial value problem (5) and value of A cannot be solved analytically, but the solution to

these problems can be computed numerically for any given accuracy.

Three tests are performed – 1D comparison of computed velocity of detonation wave D,

stability and instability of detonation wave for different initial D and 2D unstable detonation

wave propagation. First results of the detonation wave propagation are presented in Fig. 22 for

parameters γ = 1.4, L1/2 = 12.5448 m. One can observe that the obtained velocity Dnum ∼
3.664275 m/s is close to the reference propagation velocity D = 3.66931 m/s. The other test

verifies the stability of the detonation wave under provided value of D. We use parameter

f to define the propagation velocity D =
√
fDCJ from the analytical speed DCJ given by

the Chapman – Jouguet theory [11]. The results demonstrate that for L1/2 = 1, γ = 1.4 and

different values of parameter f one obtains different stability properties for the detonation wave.

The results in Fig. 23 fully agree with reference results from [12].

The third test demonstrates spatial heterogeneity of the detonation wave (Fig. 24), calcu-

lated for the same parameter values as the previous test. Again, we can check these results with

reference data from [12].

To check the performance of the chemical solver, we use the RF batch solver for the ODE

batch Crank–Nicolson method. The performance results are presented in the Tab. 3. We can

observe that the overall performance is satisfactory, though the chemical solver sightly degradates

the performance.
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Figure 23. Temporal (left) and spatial (right) evolution of the detonation wave as function of

initial detonation velocity parameter f

Figure 24. Spatial evolution of ρY1 for different time steps in the reference frame moving with

velocity D
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Table 3. Acceleration of the 2D ZND problem for reactive

flow (chem) and pure gas dynamics (no chem).

solver time per step (ms) acceleration

CPU, 1 thread, chem 8,708.158 1.00

GPU, Device 0, chem 46.339 187.92

GPU, Device 1,chem 65.381 133.19

CPU, 1 thread, no chem 5,922.279 1.00

GPU, Device 0, no chem 27.935 212.00

GPU, Device 1, no chem 43.538 136.03

Conclusion

First, we wish to note that we do not recommend using MAGMA batch library call for

the solution of the problem (1) at least for library version 2.2. It is clear from all metrics that

we collected, especially from Tab. 1. We also notice that it is very inefficient to use MAGMA

solution routines for both MAGMA 2.2. and MAGMA 2.3. However, one can benefit from using

very efficient MAGMA LU factorisation and then solve the system manually. This combination

may look promising if one is ready to implement a self-written routine. Also, MAGMA may work

much more efficiently on cutting edge GPUs (VOLTA architecture) so one must try MAGMA

on these GPUs as well.

For the available libraries we can conclude the following. It is beneficial to use RF method

if your code uses double precision arithmetics and QR float if you are using single precision for

our GPUs. This is valid for our hardware where GPUs have poor double precision performance.

Both these methods perform graph connectivity analysis on CPU of provided matrices before

calling batched routine for the solution of the problem on GPU. So these methods would require

additional CPU work if your matrices connectivity is changing from one execution to anther.

Note that the GFlops achieved by both of these methods is about 0.3 – 0.5% of the peak GFlops

performance of GPUs.

If your GPUs support compute capability 3.0 and higher we can recommend using shuffle

Gauss–Jordan method as an alternative to libraries for batch solution of linear systems. Achieved

GLOPS and accelerations look promising. Debugging of this code and using it to solve plasma–

chemistry on GPU is our next goal. Note, that we did not test this implementation on new

NVIDIA GPUs (Volta architecture) and can’t extrapolate these results.

In the last section we demonstrate a successful application of the batched solver in the

coupled gas dynamics reacting to flow ZND problem.

Benchmark source codes are availablable at github [13] under GPL licence.
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Parallel Numerical Algorithm for Solving Advection Equation

for Coagulating Particles
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In this work we present a parallel implementation of numerical algorithm solving the Cauchy

problem for equation of advection of coagulating particles. This equation describes time-evolution

of the concentration f(x, v, t) of particles of size v at the point x at the time-moment t. Our numer-

ical algorithm is based on use of total variation diminishing (TVD) scheme and perfectly matching

layers (PML) for approximation of advection operator along spatial coordinate x and utilization of

the fast numerical method for evaluation of coagulation integrals exploiting low-rank decomposi-

tion of coagulation kernel coefficients and fast FFT-based implementation of convolution operation

along particle size coordinate v. In our work we exploit one-dimensional domain decomposition

approach along spatial coordinate x because it allows to avoid use of parallel FFT implementations

which are very expensive in terms of data exchanges and have poor parallel scalability. Moreover,

locality of finite-difference operator from TVD-scheme along x coordinate allows to obtain good

scalability even for computing clusters with slow network interconnect due to modest volumes of

data necessary for synchronization exchanges between times integration steps.

Keywords: aggregation equations, parallel algorithms, low-rank matrices, convolution.

Introduction

Coagulation and fragmentation processes stand in the basement of a wide class of physical

phenomena starting from micro-polymer chains growth [6, 17] and finishing at the scale of stars

formation from interstellar dust [5, 8]. The very first model of aggregation was suggested by

Smoluchowski in 1916 [24] and generalized by Hans Muller [18] into the form of the following

integro-differential equation:

∂f(t, v)

∂t
=

1

2

v∫

0

K(u, v − u)f(t, u)f(t, v − u)du− f(t, v)

∞∫

0

K(v, u)f(t, u)du (1)

This equation describes dynamics of concentration f(t, v) of the particles of size v per unit

volume. The first term in the right-hand side corresponds to growth of concentration due to

coalescence of the aggregates of sizes v and v − u. The second term describes decrease of the

concentration due to their coalescence of the particles of size v with other particles. Kernel

coefficients

K(v, u) = K(u, v) ≥ 0

correspond to rates of aggregation process and have to be derived for each concrete application.

If the initial conditions f(t = 0, v) are known, then Cauchy problem for the coagulation equation

is defined and can be solved numerically.

Under natural assumptions [8] the solution of the Cauchy problem for semi-infinite size

domain v ∈ [0,∞) can be approximated by its finite part v ∈ [0, Vmax]. In fact, the class
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of mathematical models of potential interest is extremely wide and may include description of

various physical effects: inception and sinks of particles of concrete sizes [2], unary fragmentation

process [1] due to instabilities of big clusters and binary collisional fragmentation process [5],

and many others [3, 7, 12, 14, 20]. Even though the list of phenomena for application of spatially

homogeneous aggregation and fragmentation equations is really huge [25, 26], there is an even

broader class of spatially inhomogeneous models [19, 22]. In this work we concentrate on analysis

of advection-coagulation equation [28]:

∂f(t, x, v)

∂t
+ c(v)

∂f(t, x, v)

∂x
=

1

2

v∫

0

K(u, v − u)f(t, x, u)f(t, x, v − u)du−

(2)

−f(t, x, v)

∞∫

0

K(u, v)f(t, x, u)du,

where function f(t, x, v) corresponds to concentration per unit volume of particles of size v

at the point with coordinate x at moment t. Coagulating particles are transported along the

axis of nonnegative coordinate x with velocity c(v). The velocities of the coalescence processes

are again determined by the values of function K(u, v). In the similar manner with classical

coagulation equation one needs initial conditions f(t = 0, x, v) and one boundary condition e.g.

f(t, x = 0, v) for definition of the Cauchy problem for advection-coagulation equation and its

further numerical investigation.

Recently, we proposed an efficient numerical method solving the Cauchy problem for this

equation [28] and demonstrated its efficiency for the concrete examples of modelling problems.

We revisit description of this algorithm in Section 1.

Nevertheless, even modest simulations presented in our previous report required quite a lot

of CPU-time. In this work we propose a parallel implementation of this algorithm. We should

also emphasize, that there exists a special parallel algorithm allowing to perform evaluation

of aggregation and fragmentation sums of the similar structure as coagulation integrals. Even

though, a reasonable speedup of calculations was presented at [16], the parallel scalability of the

algorithm is relatively poor [16]. This fact lies in motivation to exploit one-dimensional domain

decomposition approach along spatial coordinate x for advection-coagulation equation but not

along axis v and not two-dimensional domain decomposition.

In Section 2 we present a detailed description of novel parallel algorithm. Section 3 is devoted

to tests of performance of the proposed algorithm at different computing clusters and Lomonosov

supercomputer. We obtain speedup of calculations more than by 300 times. This allows us

consider a broader class of problems of potential interest for mathematical modelling and studies

of advection-coagulation processes. In conclusions we discuss the presented results and possible

directions for further generalization of the presented ideas.

1. Numerical Method, Revisited

In this section we revisit description of the fast numerical algorithm for advection-

coagulation equation from work [28]. First of all, we use an explicit Euler time-integration
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scheme with time step ∆t for solution of the Cauchy problem:

fn+1 − fn
∆t

= A(fn) + S(fn),

where A(f) is an approximation of the advection operator and S(f) approximates Smoluchowski

integrals. Let us denote M as number of grid nodes along particle size axis v with grid step ∆v

and parameters v1 = 0, vM = M ·∆v and N as number of spatial grid nodes along x with step

∆x, x1 = 0, xN = N · ∆x. Finally, we denote fni,j as value of numerical solution at grid node

(xj , vi) at the moment n ·∆t.
For S(f) we use skeleton decomposition of coagulation kernel and fast algorithms of linear

algebra with overall algorithmic complexity of solution scheme to be O(MR logM) at each

grid node along x axis [13]. Whereas without utilization of these ideas the complexity becomes

O(M2). We discuss this method with more details in Section 2.2. We get significant acceleration

for evaluation of Smoluchowski integrals if the rank R of the coagulation kernel is a modest

number. For approximation of the advection part A(f) we exploit well-known TVD scheme [10]

and PML layers [4] allowing us to keep monotonicity of numerical method. Detailed relations

for advection part are presented in Section 2.3.

1.1. Handling Smoluchowski Integrals

Skeleton decomposition of coagulation kernel

K(u, v) =

R∑

α=1

aα(u)bα(v)

helps accelerate computations by reduction of the algorithmic complexity of the numerical eval-

uation of Smoluchowski integrals [27, 29].

With use of skeleton decomposition we can perform transformation of the first integral:

∫ v

0
K(u, v − u)f(t, x, u)f(t, x, v − u)du =

∫ v

0

R∑

α=1

aα(u)bα(v − u)f(t, x, u)f(t, x, v − u)du =

=
R∑

α=1

∫ v

0
aα(u)f(t, x, u)bα(v − u)f(t, x, v − u)du.

Following this idea we also transform the second integral:

∫ ∞

0
K(u, v)f(t, x, u)du ≈

∫ Vmax

0

R∑

α=1

aα(u)bα(v)f(t, x, u)du =
R∑

α=1

bα(v)

∫ v

0
aα(u)f(t, x, u)du.

Transformation of integrals written as sum of R lower-triangular convolutions, hence, with the

use of FFT algorithm, total algorithmic complexity of the numerical integration using the re-

lations above yields to O(MR logM) operations at each from N points of spatial grid. Hence,

total cost of evaluation of Smoluchowski integrals is O(NMR logM)

S. Matveev, R. Zagidullin, A. Smirnov, E. Tyrtyshnikov

2018, Vol. 5, No. 2 45



1.2. Approximation of Advection Part

For approximation of the advection equation we use the following TVD-scheme.

fn+1
j − fnj
dt

= A(fn) = − c

2dx
(Cjf

n
j+1 + (2− Cj − Cj−1)fnj − (2− Cj−1)fnj−1) +

+
c2dt

2dx2
(Cjf

n
j+1 − (Cj + Cj−1)fnj + Cj−1fnj−1),

where Cj is a flux limiter function that ensures that no artificial oscillations occur and has to

satisfy the following restrictions

fnj − fnj−1
fnj+1 − fnj

≥ 0→ 0 ≤ Cj ≤ 2

fnj − fnj−1
fnj+1 − fnj

< 0→ Cj = 0.

For simplicity of notations we revisit this scheme ignoring volume index i because at each grid

point along size coordinate vi we perform these operations along spatial axis x. In fact, there

are a lot of possible choices for Cj which were introduced by many authors [10, 11]. In our work,

we use the one that is called “Monotonized Central Flux Limiter” [10].

Cj = max(0,min(2rj , 0.5(1 + rj), 2)),where rj =
fj − fj−1
fj+1 − fj

The last thing that has to be done with respect to numerical solution of advection equation

is incorporation of PML to emulate the absence of the right boundary condition in the grid.

Hence, we modify the advection equation into following:

∂f

∂t
= −c∂f

∂x
− cσ(x)f,

where

σ(x) =





(m+ 1)W ln 10

d

(
x− l
d

)m
x ∈ [l; l + d],

0 elsewhere,

where l is width of calculation domain along axis x without PML, d is width of PML and W ,

m are PML parameters and formal assumption f |x=l+d ≡ 0 .

2. Parallel Algorithm

There are two possible ways of parallel implementation of our numerical method with use of

p processors. First of all, we can perform simultaneous calculation by allocation of fixed particle

size intervals to different processors. This is one-dimensional domain decomposition along axis

v. But this option turns out to be bad due to quite poor parallel scalability of the algorithm for

evaluation of the Smoluchoswki coagulation integrals what was reported in [16].

The reason lies in the fact that fast calculation of coagulation convolution typed integrals

via FFT has a very limited resource of speedup on real parallel systems. Here we refer to work [9]

where authors demonstrated that main problem in parallel execution of one-dimensional FFT is
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(a) Computation of S(fn) (b) Data exchange (c) Computation of A(fn) (d) Calculation of fn+1

Figure 1. One parallel time-integration step with use of the suggested parallel algorithm. Areas

bordered by black lines represent the grid areas allocated to separated processors

problematic due to extremely high communication costs (comparable with computational). Such

bad parallel scalability of evaluation of the coagulation integrals also leads to loss of motivation

to exploit two-dimensional domain decomposition along both v and x coordinates in application

to our problem.

However another option of execution of parallel calculations is to distribute them along the

spatial coordinate x. Such distribution of data among processors corresponds exactly to uniform

one-dimensional domain decomposition into the segments along spatial coordinate x. This ap-

proach allows to obtain very modest requirements in terms of number of communications – it is

necessary just to synchronize the boundaries of spatial segments corresponding to neighboring

processes for evaluation of advection operator with use of TVD-scheme stencil. In other words,

we can allocate integrals at different points of the physical space to different processors and then

transmit the data at the borders of the corresponding intervals. Thus, on the input each from

p processes has set of grid nodes X and values of fn(xi, vj) at this domain X × (v1, . . . , vM ).

Total complexity of time-integration step for each processor is O
(
NRM logM

p

)
operations and

requires O(pM) data elements for O(p) data exchange operations.

We present our approach informally in Fig. 1. It shows the structure of the parallel nu-

merical scheme and the areas of the grid which communicate with each other. Areas bordered

by black lines represent the grid areas allocated to separated processors. Red stripes indicate

how calculations are performed. Blue stripes pose organization of data transmission between the

neighboring processes.

During stage corresponding to Fig. 1a each process evaluates the coagulation integrals along

vertical axis v (lines 1-3 the pseudocode) and keeps two additional vectors for the boundaries

assignment (presented as white stripes). Stage from Fig. 1b corresponds to synchronization of

the particle size distributions along axis v (from blue stripes into red of the neighboring process)

for the edge coordinates x between the processes (lines 4-5 of the pseudocode). It is necessary for

the correct work of the TVD-scheme stencil. During stage from Fig. 1c the advection operator

is evaluated along axis x for each particle size v (horizontal stripes corresponding to lines 6-10).

All in all, during stage from Fig. 1d we provide calculation of the time-step result for both

coordinates v and x (lines 11-16 of the pseudocode).
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However, we should mention that grid parameter affects the parallel the efficiency of pre-

sented algorithm. Number of grid points along spatial coordinate x must be greater or equal to

number of used processes. Otherwise there will be a lack of opportunity to distribute the data

among the processors. We assume that the best parallel performance can be achieved in case of

uniform domain decomposition when number of grid points along x can be divisible by a number

of used processes. In the next section we present benchmarks of the proposed algorithm.

Algorithm 1 Operations performed by each process

1: for i ∈ X do

2: Compute S(fn(xi; v1 . . . , vM )) at xi along v . Requires O
(
NRM logM

p

)
operations

3: end for

4: Exchange data with left and right neighbors

5: and assign boundary conditions . Each process sends and receives 2M elements

6: for i ∈ X do . loop among grid points corresponding to process

7: for j ∈ V do

8: Apply advection operator A(fn(xi; vj)) . Requires O
(
NM
p

)
operations

9: end for

10: end for

11: for i ∈ X do . loop among grid points corresponding to process

12: for j ∈ V do

13: fn+1(xi; vj) = fn(xi; vj) + ∆t · ( S(fn(xi; vj)) +A(fn(xi; vj)) ) . Requires O
(
NM
p

)

operations

14: end for

15: end for

16: return fn+1(xi; vj) . defined for X × (v1, . . . , vM )

3. Benchmarking Parallel Implementation

In our numerical tests we investigated the Cauchy problem for the advection-coagulation

equation with zero-value initial conditions and the following left boundary condition:

f(t, x = 0, v) = e−v
2

. (3)

Thus, we model a constant flow of particles from one side of the grid to the other.

Also, calculations differ with respect to coagulation kernels. Tests were conducted for con-

stant kernel

K(u, v) ≡ 1,

which rank R = 1 and for ballistic coagulation kernel

K(u, v) = (u
1

3 + v
1

3 )2
√

1

u
+

1

v

with greater values of ranks. Grid parameters were set as ∆x = ∆v = 10−2 and ∆t = 0.005.

Scalability of parallel implementation was tested on several different computing clusters, so

we assume that the results are robust. Moreover, our calculations also differ with respect to

mesh and coagulation kernel. Surprisingly, even for a system with slow interconnect (see Tab. 4

Parallel Numerical Algorithm for Solving Advection Equation for Coagulating Particles

48 Supercomputing Frontiers and Innovations



 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1  2  4  8  16  32  64  128  256  512

A
cc

e
le

ra
ti

o
n
, 
ti

m
e
s

Number of cores

Strong scalability

Marchuk INM
Lomonosov

Pardus Skoltech
Supermicro Skoltech

Linear scalability

Figure 2. Strong scalability of the proposed parallel algorithm for different clusters. Visualized

data corresponds to results presented in Tab. 1 – 4. We obtain almost linear speedup if number

of processors is less than or equal to 128

Table 1. Supercomputer Lomonosov, tests for regular4

partition with 40 Gb/s QDR interconnect. Constant

coagulation kernel, R = 1, N = M = 8192, 32

time-integration steps

p Time, s Speedup

1 34.476 1

2 17.468 1.97

4 9.126 3.778

8 5.124 6.728

16 2.576 13.384

32 1.306 26.398

64 0.66 52.236

128 0.342 100.807

256 0.185 186.357

512 0.11 313.418

with results at Supermicro cluster of Skoltech 1 Gb/s Ethernet) and for heterogeneous cluster

of Marchuk Institute of Numerical Mathematics (see Tab. 2) we obtain a reasonable speedup

of calculations. Besides the fact that we obtain a good scalability of the algorithm for different

clusters, we also see its good performance for different problem sizes (for each of Tab. 1 – 4 we

tried a different problem size).

Tables 1 – 4 and Fig. 2 indicate that the scalability of parallel program is almost linear

at the amount of nodes per dimension lower than or equal to 128. If the number of processors

goes beyond that number, the payoffs from parallel implementation slowly decrease due to
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Table 2. Cluster of Marchuk Institute of Numerical

Mathematics RAS; test for heterogeneous cluster consisting

of many different models of CPUs with 32 Gb/s QDR

interconnect. Ballistic coagulation kernel, R = 12,

N = M = 2048, 32 time-integration steps

p Time, s Speedup

1 133.43 1

2 66.112 2.018

4 34.49 3.869

8 17.775 7.507

16 8.997 14.83

32 4.618 28.893

64 2.353 56.706

128 1.227 108.745

256 0.943 141.495

Table 3. Pardus cluster of Skoltech with 56 Gb/s FDR

interconnect. Ballistic coagulation kernel, R = 14,

N = M = 4992, 32 time-integration steps

p Time, s Speedup

1 1202.947 1

2 604.34 1.99

4 301.304 3.992

8 152.223 7.903

16 78.681 15.289

32 40.3 29.85

64 20.175 59.626

128 9.848 122.151
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Table 4. Supermicro cluster of Skoltech with 1 Gb/s

Ethernet interconnect. Ballistic coagulation kernel, R = 14,

N = M = 8064, 32 time-integration steps

p Time, s Speedup

1 2373.189 1

2 1168.678 2.03

4 601.246 3.947

8 318.474 7.452

16 168.127 14.115

32 85.922 27.62

64 42.952 55.252

128 23.838 99.555

increasing costs of data exchanges between processors after each time integration step. Speedup

also saturates with satisfactory results when the size of problems is not large enough (see Tab. 2).

Conclusions

In this work we propose a parallel implementation of the numerical method solving

advection-coagulation equation from work [28]. The numerical scheme is parallelized along spa-

tial axis x which promotes a good speedup of calculations. In the presented benchmarks we

show that our scheme of finding the numerical solution of the problem might be accelerated by

hundreds of times giving an almost linear speedup with respect to the amount of used CPU

cores.

There is also an opportunity for additional increase of performance of the presented method.

As far as coalescence integrals are evaluated sequentially at each processor their calculation can

be additionally accelerated by use of GPU and Cuda technology. We will apply our ideas to

more intricate multicomponent coagulation models [7, 15, 23] requiring special implementations

of multidimensional convolutions based on utilization of low-rank tensor decompositions [15, 21].
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Generation of Multiple Turbulent Flow States for the

Simulations with Ensemble Averaging
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The paper deals with the problem of improving the performance of high-fidelity incompress-

ible turbulent flow simulations on high performance computing systems. The ensemble averaging

approach, combining averaging in time together with averaging over multiple ensembles, allows

to speedup the corresponding simulations by increasing the computing intensity of the numerical

method (flops per byte ratio). The current paper focuses on further improvement of the pro-

posed computational methodology, and particularly, on the optimization of procedure to generate

multiple independent turbulent flow states.

Keywords: Incompressible turbulent flow, Generalized sparse matrix vector multiplication,

Multiple right-hand sides, Ensemble averaging.

Introduction

The high-fidelity simulations of turbulent flows for the complex geometries are among the

typical applications for the high performance computing (HPC) systems. These applications are

characterized by the high computational costs, long simulation times, and low computational

efficiency, not exceeding several percent of the peak performance of HPC system. This leads to

the situation when the simulations may take months to complete even using modern compute

systems.

The present paper focuses on the problem of improving the performance and efficiency of

the high-fidelity turbulent flow simulations. An approach to model incompressible turbulent

flows, combining conventional time averaging with the ensemble averaging has been proposed

in [1, 4]. This approach allows to parallelize the simulations in time and replace the single

simulation with long time averaging by multiple simulations with much shorter time averaging

intervals. The paper [4] suggests to perform each of these simulations independently and to obtain

the simulation speedup by increasing the amount of utilized compute resources. This approach

increases the corresponding computational costs for the simulation, but allows to speedup the

calculations beyond the strong scalability limit. Alternatively, the paper [1] suggests to perform

the simulations in a single run and rearrange the computations in order to utilize the operations

with blocks of vectors. The multiple solutions of system of linear algebraic equations (SLAE)

for the pressure Poisson equation can be combined in a single solution of SLAE with multiple

right-hand sides (RHS). The memory traffic reduction when solving the SLAE with multiple

RHS compared to multiple solutions of SLAE with single RHS vectors allows to increase the

computational intensity of the algorithm (flops per byte ratio), and as a result, to speedup the

turbulent flow simulations by a factor of 1.5–2.

Both simulation scenarios mentioned above are the limiting cases of the generalized algo-

rithm, combining several independent runs and several flow states inside each run. The corre-

sponding estimates and recommendations to choose the optimal simulation scenario have been

proposed in [2].

While the results presented in [1, 4] demonstrate the proof of concept for the suggested

approach to parallelize the simulations in time, several questions affecting overall simulation
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speedup are not discussed in detail in these publications. Among them is the problem of gen-

eration of multiple uncorrelated turbulent flow states to start averaging in time. The simplest

approach used in the mentioned publications assumes the simulation of flow transition for mul-

tiple different initial flow states. These calculations, however, produce significant computational

overhead thus reducing the efficiency of the suggested methodology. The current paper focuses

on the problem of improving the efficiency of the proposed ensemble averaging methodology,

and particularly, on the aspects of efficient generation of multiple initial turbulent flow states.

An alternative strategy to generate initial turbulent flow states based on introduction of random

perturbations to the single flow state at different moments in time is examined. The efficiency of

the methodology is analyzed in terms of the total time to compute m uncorrelated flow states,

that can be used as initial flow states for time averaging.

The paper is organized as follows. Section 1 contains theoretical estimates reflecting the

influence of generation of multiple turbulent flow states on the overall efficiency of the ensemble

averaging methodology. A brief description of the computational codes used for the experimental

evaluation is presented in Section 2. Section 3 is focused on the detailed description of the

procedure used to generate multiple turbulent flow states and its experimental comparison with

the basic one, including the full simulation of the transition interval for each of flow states.

Finally, the Conclusion section concludes the paper.

1. Theoretical Estimates

The simplest, but computationally expensive way to generate multiple independent turbu-

lent flow states comprises of modelling of transition to the turbulence for the flows with different

initial states (e.g. laminar flows with different perturbations). The choice of different initial flow

states guarantees the turbulent flow states finally to become uncorrelated. This statement is a

result of exponential divergence of the turbulent flow trajectories in the phase state, and the

corresponding divergence growth rate is determined by the Lyapunov exponent [6, 8].

The corresponding simulation of transition to the turbulence for multiple flow states includes

two characteristic time scales: (i) the time scale to perform transition to the statistically steady

turbulent flow state, Tturb, and (ii) the decorrelation time scale when two different turbulent

flow states become uncorrelated, Tcorr. The basic strategy to generate multiple turbulent flow

states can be optimized depending on the ratio of these time scales. In case the transition time

scale exceeds the decorrelation time scale, Tturb � Tcorr, the procedure of generation multiple

turbulent flow states can be obviously improved. For example, the simulation of the transition

interval can be started for the single flow state. Then, the small perturbations are introduced at

the bifurcation point, TB, to generate multiple uncorrelated flow states. The bifurcation point

is reasonable to be chosen close to the end of the transition interval, TT , with the limitation

TT − TB & Tcorr (Fig. 1).

The contribution of the optimized procedure to generate multiple turbulent flow states on the

overall simulation speedup can be expressed with simple theoretical estimates. Let us consider the

expected simulation speedup for the ensemble averaging approach with the suggested procedure

to generate multiple initial flow states. Following the methodology suggested in [1], the simulation

speedup Pm can be expressed as:

Pm =
T1
Tm

, (1)
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Figure 1. Evolution of the friction at the channel walls for the problem of modelling turbulent

flow in a channel with a matrix of wall-mounted cubes. Results are presented for two flow states;

the second state is produced as a result of evolution of random perturbations introduced in TB

moment in time

where T1 and Tm are the times to simulate the problem using averaging over single and m

flow states respectively. The time to solve the problem with averaging over single flow state is

expressed as:

T1 =
TT + TA

τ
t1, (2)

where τ is the integration step, t1 is the time to simulate single integration step, and TA is

the overall time averaging interval. The simulation time with multiple flow states includes the

simulation with single flow state for the initial interval TB and the subsequent simulation of

interval TT − TB + TA/m with m flow states:

Tm =
TB
τ
t1 +

(TT − TB + TA/m)

τ
tm. (3)

Here, tm is the time to simulate single integration step with m flow states. Substituting these

expressions into (1) and introducing the parameters β = TA/TT and γ = (TT −TB)/TT , one can

obtain the following relation:

Pm =
1 + β

(1− γ) + (β +mγ)
(
mt1
tm

)−1 . (4)

Using the estimate for the simulation times ratio based on the memory traffic reduction, proposed

in [1], the final form of the estimate is obtained:

Pm =
5m(1 + β)

5m(1− γ) + (5m− 3θ(m− 1))(β +mγ)
. (5)

The expression (5) is the generalization of the basic estimate in [1] on the case γ 6= 1.

The suggested estimate allows to analyse the influence of the computational costs reduction

to perform transition for multiple flow states on the overall performance gain when using the

method combining averaging in time with the ensemble averaging to model turbulent flows. The

corresponding performance gain distributions presented in Fig.2, show that the parameter γ

strongly affects on the simulation speedup. The reduction of computational overhead to generate
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multiple turbulent flow states leads to three major changes: (i) increase of the expected overall

simulation speedup, (ii) increase of the optimal number of modelled turbulent flow states, and

(iii) extension of the range of applicability for the proposed ensemble averaging methodology

towards β ∼ 1.

Figure 2. Expected overall simulation speedup for γ = 1 (left) and γ = 0.25 (right)

2. Validation

The estimate (5) vividly demonstrate that reduction of computational costs to construct

multiple independent flow states allows to significantly improve the range of applicability of the

ensemble averaging methodology and the overall simulation speedup. The suggested approach

to generate multiple turbulent flow states is based on fast decorrelation of different flow states

compared to the transition interval. In practice, however, the length of both transition and

decorrelation intervals is problem specific, and reliable estimates can only be obtained from

some preliminary simulations.

2.1. Computational Codes

The corresponding computational codes to perform the simulations with multiple turbulent

flow states, including the SLAE solver and “in-house” application for direct numerical simula-

tion of turbulent flows have been developed. The SLAE solver implements the Krylov-subspace

iterative methods, accelerated by the algebraic multigrid preconditioner. The “in-house” DNS

code is based on finite difference scheme for structured grids [7] providing second-order spatial

discretization together with third-order Runge-Kutta scheme for time integration. The further

details on these codes can be found in [1, 3].

2.2. Test Problem

The current paper uses the problem of modelling turbulent flow in a channel with a matrix of

wall-mounted cubes [5] as a validation example. The problem statement assumes the isothermal

flow of incompressible viscous fluid, governed by Navier-Stokes and continuity equations, in a

rectangular domain containing single dedicated cube (Fig. 3). The corresponding equations are

supplemented with periodic boundary conditions on streamwise and spanwise directions, and

no-slip conditions on the rigid walls. The constant flow rate is preserved with the Reynolds

number Reb = Ubh/ν = 3854, where Ub is the bulk velocity, h is the cube height, and ν is
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the kinematic viscosity of the fluid. The integration interval for this problem is set to T =

2100 with transition interval TT = 100 and averaging interval TA = 2000 time units, i.e. β =

TA/TT = 20. The simulations presented in this paper are performed on structured orthogonal

non-uniform computational grid consisting of 2.32 mln. cells. All the simulations are calculated

on “Lomonosov-2” supercomputer and use 32 compute nodes per each run.

Figure 3. Sketch of the computational domain

2.3. Validation Procedure

The several simulations are performed to validate the procedure of generation multiple

independent turbulent flow states with the introduction of random perturbations during the

modelling of transition interval. The simulations differ in the choice of the bifurcation point.

The cross-correlation functions are used to ensure the decorrelation of the corresponding flow

states. The corresponding velocity components time series are collected in the control points

around the cube. The cross-correlation function for two time series X and Y is defined as:

ρXY =
cov(X,Y )

var(X) var(Y )
, (6)

where

cov(X,Y ) =
1

tc

∫ t0+tc

t0

(X(t)− X̄)(Y (t)− Ȳ )dt,

X̄ =
1

tc

∫ t0+tc

t0

X(t)dt,

var(X) = cov(X,X).

The time series X and Y are the corresponding subsets of the velocity components profiles,

defined by the starting point t0 and the length of the interval tc (Fig. 1).

3. Numerical Results

A series of simulations has been performed to validate the proposed optimized procedure

of generation multiple turbulent flow states. The first series comprised of modelling transition

interval to generate decorrelated initial turbulent flow states at the end of transition interval.
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Initially, the simulation is performed with single flow state. Using the obtained intermediate

data sets the simulation is restarted at TB = 77 to generate 4 decorrelated flow states. The

corresponding simulation time, including the time to simulate single flow state over the interval

TB and 4 flow states from the bifurcation point to the end of transition interval is equal to

71 min. (Tab. 1). This result indicates about 1.9 times speedup for the generation of multiple

turbulent flow states compared to basic methodology where the perturbations are introduced at

the beginning of transition interval.

Table 1. The time to generate multiple turbulent flow states

with various simulation scenarios, results in min

Flow states, m TB 1 flow state m flow states Total

1 – 53 – 53

4 0 – 132 132

4 77 41 30 71

The second test series includes simulation of several full scale DNS runs to model flow over

a matrix of wall mounted cubes. This includes the run with single flow state, the run with

4 flow states and two runs with restarts from the bifurcation point TB = 77 for 4 and 8 flow

states. The corresponding compute times are summarized in Tab. 2. Using the expression (5)

one can obtain the expected simulation speedup with the optimized procedure of generation

multiple turbulent flow states compared to conventional DNS run. With basic procedure to

generate initial turbulent flow states, the optimal number of flow states is equal to m = 4, and

the speedup by a factor of 1.42 is expected. The obtained simulation speedup is 1.38, which is

close to predicted one2. For the simulations with bifurcation point TB = 77, corresponding to

γ = 0.23, performance gain for 4 flow states of about 1.53 is expected, and the optimal number

of states is equal to 8 with the speedup by a factor of 1.63. These results correlate with the full

scale simulation results, which are equal to 1.49 and 1.57 correspondingly.

Table 2. The computational times to simulate the

turbulent flow with various number of simultaneously

modelled flow states, results in min

Flow states, m 1 flow state m flow states Total

1 1088 – 1088

4 – 790 790

4 41 688 729

8 41 654 695

The time series for the velocity components monitored in 8 control points around the cube

are analyzed to verify the obtained initial turbulent flow states are uncorrelated. The corre-

sponding cross-correlation function distributions are evaluated for the time length tc = 100. The

distributions presented in Fig. 4, demonstrate that the turbulent flows become uncorrelated

before the end of transition interval, TT = 100.

2The presented simulation times obtained in the current test session are systematically 10-15% higher than the

ones published in [1]. The reason for the observed difference will be further investigated.
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Figure 4. Cross-correlation distributions for the streamwise velocity in different control points.

Results for the simulation with 4 flow states

Conclusion

The current paper focuses on further improvement of the algorithm to model turbulent

flows based on ensemble averaging, proposed earlier in [1]. The problem of reducing the compu-

tational overhead when generating multiple initial turbulent flow states is investigated. The new

procedure to generate uncorrelated flow states based on introduction of random perturbations

during the modelling transition to the statistically steady turbulent flow state is proposed. The

corresponding theoretical estimates demonstrate that the optimized procedure for generation

multiple turbulent flows extends the range of applicability and improves the overall performance

gain for the ensemble averaging approach. The corresponding numerical experiments performed

for the problem of modelling the turbulent flow in a channel with a matrix of wall-mounted

cubes are in agreement with suggested theoretical estimates and demonstrate additional 15%

overall speedup for the ensemble averaging methodology.
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The Unified Coarse Grained Model of biological macromolecules (UCGM) that is being de-

veloped in our laboratory is a model designed to carry out large-scale simulations of biological

macromolecules. The simplified chain representation used in the model allows to obtain 3-4 orders

of magnitude extention of the time-scale of simulations, compared to that of all-atom simulations.

Unlike most of the other coarse-grained force fields, UCGM is a physics-based force field, indepen-

dent of structural databases and applicable to treat non-standard systems. In this communication,

the efficiency and scalability of the new version of UCGM package with Fortran 90, with two par-

allelization levels: coarse-grained and fine-grained, is reported for systems with various size and

oligomeric state. The performance was tested in the canonical- and replica exchange MD mode,

with small- and moderate-size proteins and protein complexes (20 to 1,636 amino-acid residues),

as well as with large systems such as, e.g., human proteosome 20S with size over 6,200 amino-

acid residues, which show the advantage of using coarse-graining. It is demonstrated that, with

using massively parallel architectures, and owing to the physics-based nature of UCGM, real-time

simulations of the behavior of subcellular systems are feasible.

Keywords: Unified Coarse Grained Model, UNRES force field, molecular dynamics simula-

tions, fine-grained parallelization, coarse-grained parallelization.

Introduction

The knowledge of the three-dimensional structure of macrobiomolecules is crucial for under-

standing many biological processes. Most biologically important molecules are too large to handle

for the classical simulation tools. Therefore, coarse-grained models and force fields have become

useful in these studies [37]. Reduced representations of molecules allow saving computational

cost of a few orders of magnitude in comparison with full-atomistic simulations. Various types

of coarse-grained models such as the SICHO and CABS models have been developed [13, 14].

These knowledge-based protein models, developed in the Kolinski group, use only three degrees

of freedom per residue. Compared to coarse-grained models of proteins [12], coarse-grained mod-

els of polysaccharides have a relatively short history. Most of them use three or four interaction

centers per sugar ring [26, 28, 34], including the polysaccharide component of the well-known

MARTINI force field [24]. The MARTINI force field allows to simulate also other important

biomolecules: lipids, proteins [29], DNA etc. [27]

The Unified Coarse Grained Model of biological macromolecules (UCGM) [19] that is be-

ing developed in our laboratory is a physics-based model, designed to carry out large-scale

simulations of biological macromolecules: proteins (the UNRES model [20]), nucleic acids (the

NARES-2P model [7]), polysaccharides (the SUGRES-1P model), and lipid membranes. The

chain representation in UCGM is reduced to two interaction sites (united peptide groups and

united side chains in UNRES, united phosphate groups and united sugar-base groups in NARES-

2P) or one interaction site (united sugar rings in SUGRES-1P). In UCGM the effective energy

function was derived via generalized-cumulant expansion [17] of the potential of mean force of
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biopolymer chains [21, 36]. Therefore, it reproduces the structure, dynamics, and thermody-

namics of biopolymers very well despite the significant reduction of the number of interaction

sites.

UNRES, which is the most advanced component of UCGM and has the longest history of

development, has succeeded in physics-based protein-structure predictions [8, 15], investigation

of protein-folding [38] and studying biological processes, such as amyloid formation [33], and

iron-sulfur cluster biogenesis [30]. NARES-2P [7] can reproduce the structures and thermody-

namics of small DNA and RNA molecules in free molecular-dynamics simulations and has also

recently been applied with success to model the stability of telomere sequences of DNA [35].

The preliminary version of SUGRES-1P [19] can reproduce the helical structure of amylose and

the sheet-like structure of cellulose.

The article is organized as follows. Section 1 describes the UNRES model, force field, and

coarse-grained molecular dynamics used in our study. In Section 2, we present details of imple-

mentation of UNRES with Fortran 90. In Section 3, we report the results and their analysis.

The Conclusion section summarizes our study.

1. Theory

1.1. UNRES Model and Force Field

In the UNRES model (Fig. 1) [19], a polypeptide chain is represented as a sequence of α-

carbon (Cα) atoms connected by virtual bonds, with united side chains (SC) attached to them

(with different Cα · · ·SC bond lengths, dsc) and united peptide groups (p) positioned in the

middle between the two consecutive Cαs. The SCs and ps are the only interacting sites, while

the Cαs only assist in geometry definition. Backbone geometry of the simplified polypeptide

chain is defined by the Cα · · ·Cα · · ·Cα virtual-bond angles θ (θi has the vertex at Cα
i ) and

the Cα · · ·Cα · · ·Cα · · ·Cα virtual-bond-dihedral angles γ (γi has the axis passing trough Cα
i

and Cα
i+1). The local geometry of the ith side-chain center is defined by the zenith angle αi

(the angle between the bisector of the respective angle θi and the Cα
i · · ·SCi vector) and the

azimuth angle βi (the angle of counter-clockwise rotation of the Cα
i · · ·SCi vector about the

bisector from the Cα
i−1 · · ·Cα

i · · ·Cα
i+1 plane, starting from Cα

i−1). The energy function consists of

local (including virtual-bond-deformation, virtual-bond-angle bending, virtual-bond-torsional

and double torsional, and virtual-side-chain rotamer potentials), pairwise site-site interaction

potentials, and correlation (multibody) potentials [20]. The solvent is implicit in the force field.

UNRES was derived based on the potential of mean force (PMF) of polypeptide chains in water,

which was factorized into Kubo cluster-cumulant functions [17], which are, in turn, identified

with specific effective energy terms [21, 36]. Expansion of the cluster-cumulant functions into

Kubo cluster cumulants [17] yielded approximate analytical expressions for the energy terms,

including the correlation terms [21, 36]. The force field was calibrated with solution structural

data of 7 traning proteins with various types of structure, by using the maximum-likelihood

method recently developed in our laboratory [16].

Because of PMF-based origin of UNRES, the force field has the sense of free energy restricted

to a given coarse-grained conformation rather than the potential energy. The temperature depen-

dence was implemented in our earlier work [22]; it affects mostly the correlation terms, thereby

contributing to weakening the regular structure elements with increasing temperature.
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Figure 1. UNRES model of polypeptide chains, with united peptide-groups (p)(blue circles),

united side chains (SC)(ellipsoids) and α carbons (Cα)(small open circles)

1.2. Molecular Dynamics and Replica Exchange Molecular Dynamics with

UNRES

Molecular dynamics is the core of the main conformational-search engine with UNRES. The

equations of motion are Langevin equations because of implicit solvent treatment; however, for

faster search, the simple Berendsen thermostat [2] (which originates from application of the

Langevin equations to a system) is often used [9, 10]; the Nosé–Hoover and Nosé–Poincaré

thermostats that enable more strict control of temperature conservation were also implemented

[11]. Because the virtual bonds are treated as stretchable rods, it was natural to select the

Cα · · ·Cα and Cα · · ·SC virtual-bond vectors as variables. With such a representation, the inertia

matrix is a full, albeit constant, matrix. Recently, by selecting the Cα and SC coordinates as

variables, we reduced it to a pentadiagonal form (J. Sans and A. Liwo, to be submitted), this

resulting in linear and not quadratic scaling the memory requirements with system size. A

version of adaptive multiple-time-step velocity-Verlet algorithm was developed to integrate the

equations of motion [9, 31].

For improved conformational search, replica exchange (REMD) [6] and multiplexed replica

exchange (MREMD) [32] extensions of MD were implemented with UNRES [4]. In the MREMD

method, a series of independent MD trajectories are run, each at a different temperature, with

synchronization every pre-defined (usually 10,000 or 20,000) number of steps. At each synchro-

nization point, the energies of the conformations from consecutive trajectories are compared,

and exchange of temperature occurs following the Metropolis criterion. This approach gives a

chance for high-energy conformations stuck at low temperatures to escape from high-energy

regions because of overcoming energy barriers upon heating and, conversely, to low-energy con-

formations simulated at high temperatures to cool down and achieve even lower energy. The
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MREMD method differs from REMD in that more than one trajectory is simulated at a given

temperature.

2. Implementation

2.1. Parallelization

UNRES was parallelized on two levels: coarse-grained and fine-grained [23]. At the coarse-

grained level, each MD trajectory is handled by a given task or task group. This means trivial

parallelization scheme when many canonical MD trajectories are run, or task-farm-type par-

allelization scheme for REMD/MREMD runs, with the master processor controlling the syn-

chronization and exchange of replicas and the slave processors running only MD trajectories

between the synchronization points. The REMD/MREMD UNRES jobs cannot be run in a

serial mode, and the number of cores per job must be equal to the number of trajectories if

coarse-grained-parallelization only is executed or a multiple of the number of trajectories for

fine-grained parallelization. Because the management work is a small fraction of trajectory com-

putations and the speed of calculations of all trajectories is virtually the same, the master

processor also computes an MD trajectory. The efficiency of coarse-grained parallelization is

close to 100 %.

To treat large systems, fine-grained parallelization was developed [23] in which energy and

force evaluation was split between the tasks handling a given trajectory. The task-group master

distributes coordinates to the slave tasks and collects the energy and force components from

them; it also does its share of energy and force calculations.

2.2. Implementation with Fortran 90

Originally, UNRES was written in Fortran 77. Because of this, the code started to be more

and more obscure as new functions were added to the package. Therefore, recently [25] we

have rewritten the code in Fortran 90, grouping subroutines and data structures into clearly

defined modules, which can also be shared by the programs for post-processing UNRES re-

sults (WHAM, which executes the weighted-histogram analysis method [18] given the results of

REMD/MREMD simulations in order to compute ensemble averages and probabilities of confor-

mations and CLUSTER to group the conformations into families [22]). This approach enabled

us to reduce the redundancy in the code to a great extent. Moreover, the code takes advantage

of dynamic memory allocation, this making memory usage more efficient, especially for 2-,3- and

4-dimensional arrays. The source code in the UNRES package with Fortran 90 has the following

directory structure:

• unres (main program modules, source code with all UNRES functionalities);

– data (modules containing arrays declarations that correspond to COMMON block

files in the UNRES package with Fortran 77);

• wham (weighted-histogram analysis method source code);

• cluster (cluster analysis source code);

• xdrfpdb (format conversion programs source code).

Because the postprocessing programs require a negligible fraction of compute time compared

to that required for simulations with the main UNRES module, only the performance of UNRES

will be discussed in this paper.
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3. Results and Discussion

We tested the scalability of the Fortran 90 implementation of UNRES with proteins of differ-

ent size and on various hardware platforms, which included our local Beowulf cluster composed

of 20-core Dell nodes Intel Xeon CPU E5-2640 v4 2.40 GHz connected with Gigabit Ethernet, at

Faculty of Chemistry, University of Gdańsk (piasek4.chem.univ.gda.pl), the 3214-node cluster,

each node containing a 12-core Intel Xeon E5 v3 2.3 GHz processor (35,568 cores total), with

Infiniband connection, at the Centre of Informatics - Tricity Academic Supercomputer & net-

worK (CI TASK) in Gdańsk (tryton-ap.gv.kdm.task.gda.pl), the 1084-node Cray supercomputer,

each node containing 2 Intel Xeon E5-2690 v3 12-core processors with Cray Aries connection

(okeanos.hpc.icm.edu.pl), and the 1024-node IBM Blue Gene/Q supercomputer, each node con-

tainig 16 4-thread PowerPC A2 cores with 5D Torus connectivity (nostromo.hpc.icm.edu.pl), at

the Interdisciplinary Centre for Mathematical and Computer Modelling, University of Warsaw.

The proteins used for benchmark runs were as follows: tryptophan cage (20 residues, single

chain, PDB code: 1L2Y), double-stranded RNA binding domain (68 residues, single chain, PDB

code: 1STU), M-domain from the GAG polyprotein (87 residues, single chain, PDB code: 1A6S),

endonuclease NucB (110 residues, single chain, PDB code: 5OMT), BID domain of Bep6 (137

residues, single chain, PDB code: 4YK1), CDI complex (263 residues, two chains, PDB code:

5HKQ), UDP-glucose glycoprotein glucosyltransferase (1,494 residues, single chain, PDB code:

5NV4), STRA6 receptor (819 residues, two chains, and 1,636 residues, four chains; PDB code:

5SY1) and human proteasome 20S (3,143 residues, 14 chains, and 6286 residues, 28 chains; PDB

code: 4R3O).

The speed-ups vs. the number of cores for single-trajectory MD runs are displayed in Fig. 2,

while the corresponding efficiency plots are shown in Fig. 3. These data pertain to single-

trajectory MD runs, i.e., they illustrate the performance of the software in the fine-grained

parallel runs. As expected, the speed up and efficiency increase with the number of residues

in a system. For the smallest protein, only up to 20-times speed up can be achieved, while

for large proteins over 50 % efficiency can be achieved with up to 24 cores or up to 128 cores

with Blue Gene/Q. Except for Blue Gene/Q, which has fast interconnect, all cores used for

fine-grained parallelization were contained in a single node. Use of cores from more than one

node for fine-grained parallelization resulted in performance deterioration. For example, use of

48 fine-grained processors (2 nodes) on the Cray resulted in the same or lower speed up than

that with 24 processors (a single node).

The fraction of communication time split into synchronization (barrier) and data exchange

is plotted for the 5HKQ protein in Fig. 4 as a function of the number of fine-grained tasks. It

can be seen that communication constitutes less than 10 % of the total wall-clock time and that

the main fraction of it is spent on synchronization, which is understandable because the data

are exchanged between the cores of the same hardware unit.

To test the efficiency of the parallel implementation of the code in full-blown calculation,

replica-exchange runs consisting of 2 to 48 trajectories, single-trajectory runs taken as reference,

were carried out for the 1A6S protein (87 residues). Each trajectory consisted of 400,000 steps

and exchange of replicas occurred every 10,000 steps. The non-setup time (defined as the wall-

clock time after subtracting that for data input, initializing variables, and computing the inertia

matrix) efficiencies as functions of number of trajectories (coarse-grained tasks) and different

numbers of cores per trajectory (fine-grained tasks) are shown in Fig. 5. It can be seen from

the figure that the non-setup time and efficiency effectively depend only on the number of fine-
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(a) piasek4.chem.univ.gda.pl (b) nostromo.hpc.icm.edu.pl

(c) okeanos.hpc.icm.edu.pl (d) tryton-ap.gv.kdm.task.gda.pl

Figure 2. Plots of the speed-ups for canonical single-trajectory UNRES/MD runs obtained for

proteins with various chain length vs. the number of processors on various hardware platforms.

The logarithmic scale with base 2 is used on both axes

grained tasks per trajectory. This is because all MD trajectories are running at virtually the

same compute speed, this providing good load balancing and data transmission occurs rarely

(in the reported calculations only 40 times).

To compare UNRES with the all-atom simulations we have chosen one of the most popular

molecular dynamics software packages, GROMACS [1, 3]. We have used the all-atom GROMACS

5.1.2 program run on tryton-ap.gv.kdm.task.gda.pl for 1L2Y, 1A6S, and 5OMT proteins, and

10,000 steps of molecular dynamics with amber03 force field [5]. The non-setup times for the

above-mentioned proteins, with various numbers of processors are plotted in Fig. 6. As can

be seen from this figure, the GROMACS computation time scales almost linearly with both

number of processors and protein size. This confirmed that GROMACS is currently one of

the most efficient and best load-balanced MD software (due, among other things, to the cut-
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(a) piasek4.chem.univ.gda.pl (b) nostromo.hpc.icm.edu.pl

(c) okeanos.hpc.icm.edu.pl (d) tryton-ap.gv.kdm.task.gda.pl

Figure 3. Plots of the efficiencies for canonical single-trajectory UNRES/MD runs obtained for

proteins with various numbers of residues vs. the number of processors on various hardware

platforms. The logarithmic scale with base 2 is used on x-axis

off introduction on non-bonded interactions). As shown, UNRES provides a few times quicker

simulations compared to GROMACS. Moreover, because the UNRES event-based time scale

is at least 1,000 times longer than that of the all-atom approach, the effective speed-up with

respect to GROMACS is even bigger. When the single-processor times are compared, the UNRES

simulation time is 33 times lower for 1L2Y, 10 times lower for 1A6S, and 5 times lower for 5OMT.

Summarizing, the simplified biopolymer-chain representation in UNRES results in several order

of magnitude extension of the time- and size-scale of computations, compared to that of the

all-atom simulations.
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Figure 4. Plots of the fraction of the collective-communication time to the non-setup wall-

clock time with a given number of cores in a single-trajectory UNRES/MD run for the 5HKQ

protein on okeanos.hpc.icm.edu.pl, tryton-ap.gv.kdm.task.gda.pl, piasek4.chem.univ.gda.pl and

nostromo.hpc.icm.edu.pl. The right panel (zoom) shows a higher-magnification view of the bot-

tom left region in the left panel. The logarithmic scale with base 2 is used on x-axis

(a) non-setup times (b) efficiencies

Figure 5. Plots of non-setup times and efficiencies in 40,0000 step MREMD simulations with

replica exchange each 10,000 steps, numbers of trajectories from 1 (reference) to 48, and various

numbers of fine-grain tasks per trajectory obtained for the 1A6S (87-residue) protein with tryton-

ap.gv.kdm.task.gda.pl. The logarithmic scale with base 2 is used on x-axis. For a given point in

the graph, the total number of cores used is obtained by multiplying the number of trajectories

by the number of fine-grained tasks

Conclusion

In this work, we implemented the Fortran 90 version of the UNRES package for coarse-

grained simulations of proteins and protein complexes on a number of parallel platforms and
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Figure 6. Plots of non-setup times in 10,000 steps MD simulations with UNRES and GROMACS,

with various numbers of processors obtained for the 1L2Y (20-residue), 1A6S (87-residue) and

5OMT (110-residue) proteins with tryton-ap.gv.kdm.task.gda.pl. The logarithmic scale with

base 2 is used on both axes

tested its parallel efficiency both in the fine-grained mode (energy and force parallelization in

single-trajectory molecular dynamics calculation) and in the full-blown (coarse- and fine-grained)

mode, in which multiple trajectories were run in replica exchange calculations with communica-

tion between the respective task groups every given number of steps, and parallelization of the

computation of each trajectory. For proteins with chain length about 300 amino-acid residues or

more over 50 % parallel efficiency is obtained. The efficiency does not deteriorate when replica-

exchange calculations are carried out.

The parallel implementation of UNRES enables us to simulate the dynamics of quite large

proteins in real time. For example, for the 263-residue 5HKQ protein, the time required for 10,000

time steps with 24 fine-grained tasks run on the Cray machine is 24 seconds, which translates to

about 176 nanoseconds of molecular-dynamics time per day (24 hours of computations) with the

4.89 fs time step commonly set in UNRES runs. However, because UNRES simulation time is at

least 1,000-fold extended with respect to that of all-atom simulations with explicit solvent [9], one

day of UNRES simulations for this protein amounts to a 0.176 millisecond molecular dynamics.

With this speed up, physics-based simulations of biologically important processes are now at

hand.

More informations about UNRES force field and the source code are available (De-

scription of UNRES program. http://www.unres.pl/unres, accessed: 2018-06-15; Downloads

page. http://unres.pl/downloads, accessed: 2018-06-15; UNRES server version. http://unres-

server.chem.ug.edu.pl./about, accessed: 2018-06-15).
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3D Problems of Rotating Detonation Wave in a Ramjet Engine

Modeled on a Supercomputer
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A rotating detonation engine (RDE) combustion chamber was modeled in the work numeri-

cally using 3D geometry. The RDE is a new type of engines capable to create higher thrust than

the traditional ones, which are based on the combustible mixture deflagration process. In the nu-

merical experiment, different scenarios of the engine performance were obtained. The calculations

were made at a compact supercomputer APK-5 with a peak performance of 5.5 Tera Flops.

Keywords: Mathematical Modeling, Detonation, Deflagration, RDE, Ramjet.

Introduction

The optimization of modern engines based on the traditional design is now close to its

technological limit. The engines performance may be increased only with the use of radically

new technical solutions [1]. One of those solutions is the development of detonation engines;

we deal with an engine with a rotating detonation [2]. The rotating detonation engine is being

investigated extensively during the last decades; see works [3, 4].

The numerical modeling of the processes in a combustion chamber is an important stage in

the investigation of its design and further usage. The mathematical model includes equations for

multicomponent gas mixture, it considers chemical reactions and turbulent transport of mass,

momentum and energy. In order to resolve such events as detonation cells development and thin

wave con-figurations, one should have a rather thin computational mesh, and it contributes to

the complexity. Therefore, the problem should be solved using big computational resources, high

precision approximation schemes, and effective parallelization methods: OpenMP, MPI, CUDA,

etc. In order to solve such problems, the authors have created a parallel code with the AUSM [5],

the MUSCL [6] methods incorporated. The current research uses the OpenMP version of the

computer program.

1. Mathematical Model

The mathematical model contains the governing equations (differential and algebraic),

boundary and initial conditions. The details of the numerical realization together with the com-

putational mesh design and the placement of variables on the mesh, is a subject of the numerical

model.

1.1. The Balance Equations

To model a multicomponent gas mixture, we use the following system of balance equations:

∂ρk
∂t

+
∂

∂xj
(ρkuj)−

∂Jkj
∂xj

= ω̇k, (1)
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2SRISA RAS, Moscow, Russia
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∂ρui
∂t

+
∂

∂xj
(ρuiuj) +

∂p

∂xi
− ∂τij
∂xj

= 0, (2)

∂ET
∂t

+
∂

∂xj
((ET + p)uj)−

∂

∂xj
(JTj + uiτij) = Q̇. (3)

Here ρk is partial density of a species k, Jkj are vector components of the species k diffusion

flux, ω̇k is the intensity of the species k origination in chemical reactions, ρ is the gas mixture

density, uj are vector components of gas velocity, p is the mixture pressure, τij are the tensor

components of viscous and turbulent stresses, ET is total energy of the gas volume unit consisting

of thermal, chemical, kinetic and turbulent energy, JTj are vector components of the energy

diffusion flux, Q̇ is the heat flux from an external source.

1.2. Additional Algebraic Relations

Density of mixture is a sum of partial densities, and it is useful to introduce two types of

concentrations: mass shares of species, and molar densities:

ρ =
NC∑

k=1

ρk, Yk =
ρk
ρ
, Xk =

ρk
Wk

. (4)

Here: Yk is the mass share of the species k, Xk is the molar density (in terms of many works on

chemical kinetics it is named a molar concentration), Wk is the molar mass of a species.

The pressure p is defined as the spherical part of the stresses tensor, with the opposite sign.

It is a sum of thermal pressure p̂ of perfect gases mixture, and an additive corresponding to

turbulent pulsations, which is modeled by means of the turbulent energy per mass unit K:

p = p̂+
2

3
ρK, p̂ = RGT

NC∑

k=1|
Xk. (5)

The total energy of a volume unit is the following sum:

ET = E + ρ
u2

2
+ ρK, u2 = ujuj . (6)

The total energy ET is therefore the sum of internal (thermal and chemical) energy, kinetic, and

turbulent energy. The internal energy of a volume unit is modeled as follows:

E =
NC∑

k=1

XkEk =
NC∑

k=1

Xk

(
Ĥk(T )− 1

)
. (7)

Here, Ek is an internal energy of a species mole, Ĥk is dimensionless enthalpy of a species

containing the formation enthalpy at a reference temperature Tref (chemical energy). Those

functions are the basis of the species thermodynamic description; for many species, they are

either tabulated, or approximated with polynomials. In the current research, they are taken

from [7]; their format (two temperature interval) is described in [8] and [9]. We joined those

temperature intervals into a single, and obtained the polynomial coefficients using the linear

regression analysis based on the least squares technique.
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1.3. Chemical Kinetics

In the current research, the chemical sources ω̇k depend on temperature T and the set of

molar densities Xk; the sum of those sources is zero due to the law of mass conservation in

chemical reactions:

ω̇k = Wkω̂k(T,Xj),
NC∑

k=1

ω̇k = 0. (8)

Here ω̂k is the intensity of a species mole origination in a volume unit.

Some more strict laws for chemical interactions exist, e.g. the conservation of mass for each

element. Those laws are considered in the chemical mechanism, and sometimes can reduce the

computation effort and increase the precisity. A general form for the chemical sources is usually

complex, and it consists of many nonlinear terms; a typical expression is as follows:

ω̂k =
NR∑

r=1

νrkωr, ωr = Mr(Xj)

[
kFr(Mr, T )

NC∏

i=1

Xαri

i − kBr(Mr, T )
NC∏

i=1

Xβri

i

]
. (9)

Here, ωr is the reaction r speed (intensity), νrk is an algebraic stoichiometric coefficient for a

species k in the reaction r, this coefficient is positive for the species being produced, and negative

for those being consumed. Mr is the influence coefficient of non-changing components, which is

equal to unity in the lack of such an influence, kFr is the direct reaction speed coefficient; it

usually depend on temperature only, but for some falloff reactions it depends on Mr, kBr is the

reverse reaction speed, αrk are degrees for species in a direct reaction (usually but not always

they are non-zero for the input species), βrk are the degrees for the reverse reactions.

In case of elementary reactions, the degrees for species in the expression (9) are the same

with the input and output stoichiometric coefficients. The reverse reaction speed coefficients

were calculated to provide the reach of the dynamical chemical equilibrium in the case of zero

external fluxes and constant density and internal energy; the following expression was used:

kBr = kFr exp

[
NC∑

k=1

νrk
(
Ḣk(T )− Ṡk(T )− 1

)](RGT
pref

)νr
, νr =

NC∑

k=1

νrk. (10)

The entropy dimensionless coefficients Ŝk are constructed like Ĥk from data in [7] using formulae

from [9].

For each direct reaction, its coefficient is modeled with an extended Arrhenius formula:

kFr = ArT
Br exp

(
−Θr

T

)
, (11)

where the reaction activation temperature Θr is derived from the activation energy as Θr =

Ear/RG.

1.4. Turbulence Model and Transport

The current research uses the Wilcox ka-omega model [10]:

∂ρK

∂t
+

∂

∂xj
(ρKuj)−

∂

∂xj

(
(µ+ σ∗µT )

∂K

∂xj

)
= τTij

∂ui
∂xj
− β∗ρKω, (12)

∂ρω

∂t
+

∂

∂xj
(ρωuj)−

∂

∂xj

(
(µ+ σµT )

∂ω

∂xj

)
= α

ω

K
τTij

∂ui
∂xj
− βρω2, (13)
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µT = ρ
K

ω
. (14)

Here K is the kinetic energy of pulsations per mass unit, µ is the molecular viscosity of the gas

mixture, µT is the turbulent (eddy) viscosity, τTij is the turbulent part of the stresses tensor, ω

is the intensity of the turbulent energy decay (dissipation) far away from walls and in lack of

the turbulent energy input sources, parameters

α =
5

9
, σ = σ∗ =

1

2
, β =

3

40
, β∗ =

9

100

are constant parameters of the standard Wilcox model.

The turbulent part of the stresses tensor deviator is:

τTij = µT

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− 2

3
ρKδij , (15)

where δij is the Kronecker symbol.

The molecular viscosity of the gas mixture is calculated using the pure species viscosity

µk(T ) and molar densities Xk as:

µ =
NC∑

k=1

µkXk

NC∑

j=1

φkjXj

. (16)

The effective mixture viscosity is lower than the weighted average due to the binary influence

coefficients φkj . A simple method to compute them was published in [11]:

φkj =
1√
8

(
1 +

Wk

Wj

)− 1

2


1 +

(
µk
µj

) 1

2
(
Wj

Wk

) 1

4



2

. (17)

A molecular viscosity is calculated using physical molecular constants taken from the

database [12], and the method of computation was taken from [11].

To calculate the fluxes of mass and energy Jkj and JTj , and the stresses tensor deviator τij ,

we used a model taking into account the turbulent transport calculated by means of the Wilcox

model [10]. In most cases, the turbulent transport supersedes the molecular, and the last is made

using simplified technique using constant Prandtl Pr and Schmidt Sc numbers hypothesis [13]:

Jkj =

(
µ

Sc
+

µT
ScT

)
∂Yk
∂Xj

, (18)

JTj =

(
µ

Pr
+

µT
PrT

)
∂h

∂Xj
+ (µ+ µT )

∂K

∂xj
, (19)

τij = (µ+ µT )

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− 2

3
ρKδij . (20)

Here, ScT , PrT are constant turbulent Schmidt and Prandtl numbers, h is the enthalpy per mass

unit; the last is computed as follows:

h =
RGT

ρ

NC∑

k=1

XkĤk(T ). (21)
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1.5. The Species List and the Kinetic Mechanism

Hydrogen, oxygen and nitrogen were the initial and the inflow mixture components. In the

process of combustion, besides the main product, water vapor, numerous products (radicals) are

originated; at high temperature they still persist in the mixture, and at lower temperature they

decay. We used the following set of species:

{H2O,OH,H,O,HO2, H2O2;H2, O2, N2}.

The research used a kinetic mechanism described in the Maas & Pope work [14] (1992). The

mechanism consisted of 20 reversible elementary reactions.

2. Results

A model combustion chamber of a ramjet detonation engine was treated as a test. Geometri-

cally, it is a hollow cylinder with the cylindrical internal body, which ends up as a cone. The fuel

flow into the chamber through numerous injectors (premixed rich composition [H2] : [O2] = 3 : 1,

stagnant pressure 10 bar, stagnant temperature 258 K, Mach number at each orifice 1). At the

initial instance, the chamber is filled with air at 1 bar pressure and 300 K temperature. The igni-

tion is made by means of an external energy source into a small spherical portion: rign = 2.5 mm

after a delay of 10 µs from the initial instance, and during tign = 1 µs, and with power per volume

as high as Q = 20 kW/mm3.

Figure 1. The combustion chamber geometry

The work area length was L = 10 cm, the maximal radius of the work area R = 2.5 cm,

the inner body radius Rb = 1.5 cm, the inner body length without the terminating cone was

Lb = 3 cm, the terminating cone length L = 3 cm, the number of injectors Nr = 72, their orifices

radii were r = 0.2 cm. The test problem was solved on a structured cubic cells mesh made of

≈ 1.3 · 106 cells; the size of a cell was 0.5 mm.

In order to force detonation wave propagation in one direction, initially all the orifices were

closed, then they are open in turn depending on their angular co-ordinate so that the whole ring

is open by 30 µs from the beginning.

The Fig. 2 shows pressure in the ramjet engine combustion chamber for different times

shown in a cross section OY Z at the distance of 0.5 cm from the injectors end.

One can see from the Fig. 2 that the detonation wave is formed after the ignition at 10 µs

propagating in one direction (counter-clockwise) due to specific filling of the combustible mixture

via the orifices (Fig. 2a). During the first circulation, its strength increases due to the increasing

amount of fresh mixture ahead of it (Fig. 2b – Fig. 2c). After the detonation wave rotates once,

3D Problems of Rotating Detonation Wave in a Ramjet Engine Modeled on a...
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(a) t=15 µs (b) t=29 µs

(c) t=57 µs (d) t=77 µs

Figure 2. Pressure in the cross section

it goes weaker due to lower amount of combustible mixture ahead (Fig. 2d). Still it propagates

without extinguishing.

The Fig. 3 shows temperature in this cross section at the same times.

The Fig. 3 shows that a portion of high temperature propagates counter-clockwise as the

detonation wave, but the high temperature goes also clock-wise with lower velocity (Fig. 3a –

Fig. 3b). Then, the temperature far behind the detonation wave decreases gradually due to the

displacement of hot products of combustion with a fresh combustible mixture. This process is

highly turbulent, and portions of hot products of combustion still remain in this cross section

(Fig. 3c). When the detonation wave rotates once, the structure of the temperature field behind

the wave in this cross section becomes more regular, but there still exist hot spots ahead of the

wave; however, it propagates stably in the fresh mixture (Fig. 3d).

The Fig. 4 shows 3D distribution of pressure (Fig. 4a) and temperature (Fig. 4b), at t = 57 µs

from the beginning of the process.

One can see the spiral-shaped pressure profile (Fig. 4a); the lower portion of it in the vicinity

of the orifices is a detonation wave, higher, it transfers to a shock wave. Other shock waves of

smaller amplitude could be seen, generated by the initial gas mixture inflow. The temperature

field (Fig. 4b) also demonstrates this spiral; one can see that the portion of fresh (cold) mixture

ahead of the detonation wave is rather thin; the hot products of combustion originated at the
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(a) t=15 µs (b) t=29 µs

(c) t=57 µs (d) t=77 µs

Figure 3. Temperature in the cross section

(a) 3D view of pressure at t = 57 µs (b) temperature at t = 57 µs

Figure 4. 3D view of pressure and temperature at t = 57 µs

first circulation of the detonation wave are depicted in yellow there, and they occupy the lower

1/3 of the combustion chamber by this time; the gas portion depicted in red is air heated by the

primary shock generated by the inflow of combustible gases. The upper 1/3 of the combustion

chamber is filled with cold undisturbed air: the shock wave has not reached it by t = 57 µs from

the beginning of the process.
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For the given parameter set, we obtained a detonation wave rotating around the bottom of

the combustion chamber. In the beginning, a stable detonation wave originates, at first circu-

lation its strength increases due to the increasing amount of fresh micture ahead of it. Then,

it decreases due to much lower fresh mixture because the previous mixture was consumed one

circulation before, and the new portion of it is much fewer than the initial. In some time after

70 µs the primary detonation wavet splits into two, even 3 waves, which then join into a single

detonation wave. After that, in some time the process repeats: lateral waves reflections from

walls contribute to it. As the result, we have obtained a galloping regime of rotating detonation.

2.1. The Calculating System

The calculations were performed at a computational system with two INTEL Xeon E5-2650

processors with 8 computational cores and 16 threads in each, and on a computational node

of a native supercomputer APK-5 [15]. The fig. 5 shows the results of a computational test on

both: acceleration due to the number of OpenMP threads, against a single thread. The time

stepping algorithm was organized into 4 main cycles by cells and faces; the last cycle assembling

all the fluxes together and creating the new state of parameters. The promotion to the 2nd order

approximation in time was made repeating this algorithm once more with some modifications;

the details are shown in [16] and [17].

The modeled configuration included more than 9 million cells.

(a) acceleration for the server node (b) acceleration for the APK-5

Figure 5. Acceleration for the server node and for the APK-5

It is seen that for the number of processes given, the acceleration is near linear. This is due to

the explicit numerical scheme used in calculations. We obtained more than 6 times acceleration

on the server system, and more than 12 times acceleration on the computer APK-5. The APK-

5 node acceleration is better due to high frequency of processors and its new architecture in

comparison with the processors of the another server node.

In order to calculate the bigger devices, and/or to use better mesh refinement to resolve

more details of the process, one should use all the computational nodes. To do this, it is worth

to add the MPI parallelization paradigm into the computational algorithm.
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Conclusions

The problem is computationally complex; the mathematical model includes multi-

component gas dynamics, with the addition of the transport terms, the chemical kinetics, and

the turbulence modeling. The following is obtained:

• The combustion chamber is a hollow cylinder; the inner body is cylindric, transfering to

a cone. In case the fresh combustible mixture is inflown via the orifices which are open in

turn, and not simultaneously, we obtained a detonation wave propagating in one direction.

• The detonation wave between two coaxial cylinders rotates consuming the fresh mixture.

After one circulation, the thickness of the fresh mixture is rather small, due to a high

velocity of detonation, and a small enough radius of circulation so that the time of one

rotation was about 50 µs.

• Due to this, the strength of the detonation wave decreases after the first rotation. However,

a stable inflow of cold fresh mixture causes the detonation wave to propagate even after

the initial combustible mixture is consumed.

• Some hot spots initiate detonation in the fresh mixture ahead of the main wave so that it

can split in two and even more other waves. The galloping detonation originated in some

time.

• The numerical scheme was explicit, and the computational acceleration using OpenMP

parallelization paradigm was nearly linear on both devices we have tested.
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We model the structure and evolution of black hole accretion disks using numerical simula-

tions. The numerics is governed by the equations of general relativistic magneto-hydrodynamics

(GRMHD). Accretion disks and outflows can be found at the base of very energetic ultra-relativistic

jets produced by cosmic explosions, so called gamma-ray bursts (GRBs). Another type of phe-

nomena are blazars, with jets emitted from the centers of galaxies.

Long-lasting, detailed computations are essential to determine the physics of these explosions,

and confront the theory with potential observables. From the point of view of numerical methods

and techniques, three ingredients need to be considered. First, the numerical scheme must work

in a conservative manner, which is achieved by solving a set of non-linear equations to advance

the conserved quantities from one time step to the next. Second, the efficiency of computations

depends on the code parallelization methods. Third, the analysis of results is possible via the

post-processing of computed physical quantities, and visualization of the flow properties. This is

done via implementing packages and libraries that are standardized in the field of computational

astrophysics and supported by community developers.

In this paper, we discuss the physics of the cosmic sources. We also describe our numerical

framework and some technical issues, in the context of the GRMHD code which we develop. We

also present a suite of performance tests, done on the High-Performance Computer cluster (HPC)

in the Center for Mathematical Modeling of the Warsaw University.

Keywords: astrophysical flows, black hole accretion, hydrodynamics, numerical simulations,

general relativistic MHD.

Introduction

Astrophysical black holes are ubiquitous in the Universe. They occupy centers of galaxies

[28], they may be found in the binary systems with ordinary stars, where the streams of plasma

lead to the phenomenon called a “microquasar” [23], and, finally, they may be responsible for

the most extreme cosmic explosions – the gamma ray bursts [20]. In all these types of sources

one common physical process is in work: accretion of matter onto a black hole. It is the most

efficient of the known energy release mechanisms, which is orders of magnitude stronger than the

nuclear fusion reactions that fuel ordinary stars. The gravitational potential energy in the field

of the compact star is governed by its mass-to-radius ratio. Hence, per unit rest-mass energy of

the gas fallen into the black hole, we can extract up to almost sixty per-cent of power available

to be released in the form of the electromagnetic radiation [10].

Gamma ray bursts (GRBs) are electromagnetic transients observed from the most distant

parts of the Universe. Their brightness detected by the human-made telescopes implies that

the intrinsic power of the events is enormously large. During the collapse of a massive star into

a black hole in a hyper-nova process a long duration burst (t ∼ 100 − 1, 000 seconds) can be

observed. It is required that the progenitor star has enough angular momentum to form an

accretion disk around a black hole. Short GRBs (t ∼ 0.01 − 2 seconds) are associated with

the coalescence of binary neutron stars, which form a black hole as a product of their merger.

The transient jets of plasma are generated by central engine, which is composed of a newly
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DOI: 10.14529/jsfi180208

86 Supercomputing Frontiers and Innovations



formed black hole, surrounded by a remnant disk. These jets are ultimately responsible for the

electromagnetic gamma-ray emission, observed by our telescopes.

Another type of sources visible as the ultra-relativistic jets of plasma that emit very high

energy radiation spectra, are called blazars. These sources are persistent in nature, and they

do not originate in violent explosions. However, the mechanism of extracting energy from the

rotating black hole is the same, and requires the magnetic fields to mediate the process. The

famous Blandford–Znajek mechanism can work as a kind of cosmic “battery” [3] and requires

that the accretion disk is supplied with a strong poloidal magnetic field. When the jet is pointing

in the direction of the Earth, the observer detects phenomenon called a “blazar”, where the

highest energy flux is detected due to the boosting effect and collimation of the stream in a

narrow cone around the line of sight [33]. Gamma-ray emission of blazars exhibits often a short-

timescale variability that lasts from hours to days [1]. This means that the gamma-ray emission

from the jet is not uniform and short time-scale variability suggest that it occurs close to the

black hole. This effect is quite similar again to the GRB variability, albeit the timescales are

now on the order of a millisecond.

Our work focuses on modeling the structure and evolution of the accretion disk at the base

of the jet engine, which is composed of a highly magnetized plasma accreting onto a black hole.

In order to construct a physical model of such disk, we need to solve the GRMHD equations.

They are further supplemented by the equation of state (EOS) of the matter. Its form depends

on the particular phenomenon and astrophysical scenario considered. In the quiescent centers

of galaxies, and also in the persistent jet sources, such as blazars, the accreting matter is quite

hot, but rarefied, and to a good approximation it can be described with an ideal gas EOS. In

the GRBs explosive events, the EOS is more complex. Under the conditions of extremely high

densities and temperatures, the nuclear reactions have to be taken into account. Furthermore,

the matter is highly degenerated, and relativistic hot particles cannot form an ideal gas. The

density and temperature are tied to the pressure and internal energy in a non-linear way. Finally,

the nuclear processes may occur on the rates faster than the timescale required to establish the

statistical equilibrium conditions in the gas.

All these physical complexities: magnetic fields, general relativity, nuclear reactions, pose a

challenge to any kind of numerical scheme. Different codes have been proposed to cover both the

microphysics of the fluids, governed by EOS, and the evolution of magnetized gas in the black

hole gravitational potential, governed by the GRMHD equations.

The article is organized as follows. In Section 1 we define the physical equations thet are

solved by our GRMHD code and we describe the conversion scheme. In Section 2 we present

the tools used for visualisation of the simulation results. Section 3 is devoted to the problem of

boundary conditions in MHD simulations. In Section 4 we discuss the parallelisation methods

and compare the performance of the code when different techniques are used. Section 5 presents

exemplary results of our simulations of a black hole, torus and jet system evolved with the

GRMHD code, and the results of post-processing simulation with a nuclear reaction network

code. In Section 6 we discuss our computations in the broader context of recent astronomical

discoveries.

1. GRMHD Equations

From the steady state based on the analytical, equilibrium solution driven by the main

physical parameters of the black hole accretion disk (namely, BH mass, its spin, and size and
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Figure 1. Time step of a conservative scheme of order 1 in time, n denotes the time step

the mean accretion rate in the torus), as well as the seed configuration of magnetic field, we

follow the dynamical evolution. This is achieved by solving numerically the continuity Eq. (1), the

four-momentum-energy conservation Eq. (2), and induction Eq. (3) equations in GR framework:

1√−g∂µ(
√−g ρuµ) = 0, (1)

∂t(
√−g T tν) = −∂i(

√−g T iν) +
√−g T κλΓλνκ, (2)

∂t(
√−g Bi) = −∂j(

√−g (bjui − biuj)). (3)

Here the stress tensor separates into gas and electromagnetic parts:

Tµν = Tµνgas + TµνEM ,

Tµνgas = ρhuµuν + pgµν = (ρ+ u+ p)uµuν + pgµν ,

TµνEM = b2uµuν +
1

2
b2gµν − bµbν ; bµ = u∗νF

µν .

(4)

Other symbols in Eq. (4) have their usual meaning: uµ is the four-velocity of gas, u is

internal energy, ρ is density, p denotes pressure, and bµ is the magnetic four-vector. Note that

in Eq. (3) Bi is the magnetic field three-vector, bi is the spatial part of the magnetic field four-

vector and ui is the spatial part of the four-velocity. Finally, F is the Faraday tensor, and in

the force-free approximation Eν = uνFµν = 0. The space-time metric gµν is described in Eq. (1)

with determinant g ≡ Det(gµν) and Γλνκ is the spatial connection.

1.1. Our Code for the High Accuracy Relativistic MHD

HARM (High Accuracy Relativistic Magneto-hydrodynamics) is a conservative shock cap-

turing scheme, for evolving the equations of GRMHD, developed by C. Gammie et al. [11]. The

integrated equations are of the form:
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∂tU(P ) = −∂iF i(P ) + S(P ), (5)

where U is a vector of “conserved variables”, such as particle number density, or energy or

momentum, F i are the fluxes in finite control volume, and S is a vector of source terms. U is

conserved in the sense that, if S = 0, it depends only on fluxes at the boundaries. The vector P

is composed of “primitive” variables, such as rest-mass density, internal energy density, velocity

components, and magnetic field components, which are interpolated to model the flow within

zones. U and F i depend on P . Conservative numerical schemes advance U , then, depending on

the order of the scheme, calculate P (U) once or twice per time step, as shown in Fig. 1.

Our version of the code works in 2D and 3D. It is fully parallelized using the Message Passing

Interface (MPI) library (see Section 4 for parellelisation and performance test results) and the

output of the simulation is dumped both in ASCII and Hierarchical Data Format (see Section

2).

1.2. Equation of State

The equation of state in the plasma is based on equilibrium of the nuclear reactions, which,

when reached, defines the proton-to-baryon density ratio, and hence the pressure, internal energy

and entropy of the gas.

In the hyper-accreting matter in the GRB central engine, temperatures are above 109−1010

K, and the plasma is fully ionized and composed of free nuclei, n, p, and electron-positron pairs,

e+, e−. The chemical and pressure balance required by nuclear reactions between these species,

namely the electron and positron capture on nuclei, and the β-decay. Reactions are in the form:

p+ e− → n+ νe,

p+ ν̄e → n+ e+,

p+ e− + ν̄e → n,

n+ e+ → p+ ν̄e,

n→ p+ e− + ν̄e,

n+ νe → p+ e−.

The rates for these reactions are given by appropriate integrals [27].

The electron neutrinos and anti-neutrinos are the source for cooling of the plasma, in

addition to advective and radiative cooling (the latter is in fact negligible, due to the huge

opacities for the photons). The above nuclear processes have been studied in numerous works,

devoted to the neutron star Equation of State, and later on in the context of GRB central

engines [5, 7, 14–18, 26].

Other neutrino emission processes that occur at lower rates are: electron-positron pair

annihilation, bremsstrahlung, and plasmon decay:

e− + e+ → νi + ν̄i,

n+ n→ n+ n+ νi + ν̄i,

γ̃ → νe + ν̄e.
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We calculate their rates numerically, with proper integrals over the distribution function

of relativistic, partially degenerated species. These processes lead to formation of heavy lepton

neutrinos, ντ and νµ.

1.2.1. Pressure Components

In the EOS, contribution to the pressure is by the free nuclei and e+ − e− pairs, helium,

radiation and the trapped neutrinos:

P = Pnucl + PHe + Prad + Pν ,

where Pnucl includes free neutrons, protons, and the electron-positrons:

Pnucl = Pe− + Pe+ + Pn + Pp,

with

Pi =
2
√

2

3π2
(mic

2)4

(~c)3
β
5/2
i

[
F3/2(ηi, βi) +

1

2
βiF5/2(ηi, βi)

]
. (6)

Here in Eq. (6), Fk are the Fermi–Dirac integrals of the order k, and ηe, ηp and ηn are the

reduced chemical potentials, ηi = µi/kT , is the degeneracy parameter (where µi is the standard

chemical potential). Reduced chemical potential of positrons is ηe+ = −ηe − 2/βe. Relativity

parameters are defined as βi = kT/mic
2. EOS is computed numerically by solving the balance

of nuclear reactions [12, 16, 35].

To sum up, the proper description of the hyper-accretion in GRBs requires detailed treat-

ment of microphysics. Based on the solutions for degenerate Fermi gas EOS, with P (ρ, T ) non-

linear dependence, a non-trivial transformation between conserved variables and “primitives” in

HARM due to GRMHD scheme.

The interpolation over the tables of EOS is done (using the Akima-spline method [2]) during

the dynamical simulation at each and every time step. In order to save the computer power,

we usually compute a small matrix of 4 × 4 = 16 points at each grid cell, whenever the value

must be interpolated, and only then we store the table. To perform the interpolations with

maximum efficiency, we use the multi-threading feature of the Linux operating system (with

pthread command).

1.2.2. Neutrino Cooling

The effect important for the state of accretion disk is neutrino cooling. The neutrinos of three

flavors are emitted via the above weak interactions, and the neutrino cooling rate is finally given

by the two-stream approximation, and includes the scattering and absorptive optical depths for

neutrinos of all three flavors:

Q−ν =
7
8σT

4

3
4

∑

i=e,µ,τ

1
τa,νi+τs

2 + 1√
3

+ 1
3τa,νi

× 1

H
[erg s−1 cm−3],

as given by [7]. This expression assumes that neutrinos are thermalized. Ideally, neutrino trans-

port should be accounted for (see e.g. [25]).
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1.3. Conversion Scheme

The composition-dependent EOS is in our simulations coupled to the conservative scheme.

The HARM (high-accuracy relativistic magneto-hydrodynamics) scheme solves equations Eq. 5

where U is a vector of “conserved” variables, (i.e. the number density, energy or momentum

density in the coordinate frame), Fi are the fluxes, and S is a vector of source terms that do not

involve derivatives of P and therefore do not affect the characteristic structure of the system.

In non-relativistic MHD, both P → U and U → P have a closed-form solution. However, in

GRMHD U(P) is a complicated, nonlinear relation. Inversion P(U) is calculated once or twice

in every time step, numerically. The transformation between “conserved” (momentum, energy

density) and “primitive” (rest mass density, internal energy) variables requires to solve a set of

5 non-linear equations. This inversion is complex for a non-adiabatic relation of the pressure

with density. We are doing it numerically and interpolate over the table of pre-computed EOS

results.

2. Visualization and Post-processing of Results

The code produces a set of outputs that can be divided into three categories. The Initial-

ization Output is only produced once, before the integration begins, and contains the constant

quantities of the simulation like the grid and coordinates, the metric and its determinant on the

grid points. Some model parameters are also stored during the Initialization stage, e.g. the BH

spin parameter, the adiabatic index, etc.

The Results Output contains the main results of the integration and stores the physical

quantities of the flow (density, internal energy, contravariant velocity, magnetic field vector),

while it contains also some other derived quantities of physical interest. Among the various

options we used for the form of the dumping data (text, raw binary, HDF5, etc.), the HDF5

proved to be the most advantageous. The 1-D, and 2-D models of an ideal conducting fluid do

not pose significant restrictions on the dumped data type. The situation alters when we assume

a composition dependent EOS, or we proceed to the 3-D simulations where both file size and

structure complexity increase dramatically. The hierarchical structure of the file makes it easy

to locate specific quantities through a POSIX -like syntax.

The size of the dumped file or of the objects it includes is not limited, while the special

extensions, slib, zlib, can be used to compress the resulting file. But the most significant features

that HDF5 provided, were the performance of its collective (parallel) I/O driver and the porta-

bility of the data in both C/C++ and Python/IPython interfaces. The robust performance of

the I/O driver was noticed in both of the HPC and local servers we used.

The post-processing and the visualization of the results for the 1-D, 2-D simulation is per-

formed by the standard packages of the Python3 language (numpy, matplotlib/pylab, scipy).

With the extension of the h5py package, the import of the results is straightforward and se-

quentially the powerful routines of the python libraries are used for further manipulation. An

exemplary plot (Fig. 2) was produced using the matplotlib/pyplot module. The parallelization

of the above scripts proved to be a challenging task and we concluded that the mpi4py module

is easier portable to a series of machines from our Desktops and 32-Intel-cores local server, up

to the Cray XC40 of the Okeanos HPC, mostly because of the parallel HDF5/h5py and the

mpi4py module compatibility. It is clear that the parallelization is essential especially for the 3D

post-process where various manipulations, e.g. interpolation, coordinate transformations, have
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Figure 2. Space distribution of the density, magnetization, and Lorentz factor in the jet-outflow

in the GRB. Example of the graphical visualization with matplotlib/pyplot

to be done on the points of extended grids. Once these calculations are completed, we use PyVtk

module to produce a VTK file output and more advanced tools for the 3D visualizations, e.g.

VisIt. An example plot is shown in Fig. 3.

The Debug Output is the final set of output produced during the run time. Beyond the

simple execution messages and the validity of the ~∇ · ~B = 0 condition, the code performs a

number of physical diagnostics during each step of integration and dumps the results through

a series of binary and ppm graphic files (per process). The motivation for these tests is to help

user to identify unphysical results and avoid time consuming calculations.

To sum up, the HDF5 format is characterized by:

• Robust and satisfactory performance of the MPI I/O process.

• High portability in many interfaces (C/C++ and Python).

• Easy to locate quantities through the POSIX type structure.

Furthermore, our Python main processing (cython under development) allows for:

• Calculation of various physical quantities (h5py).

• Building of VTK Cartesian Structured Grid (PyVTK).

• Parallel Python (mpi4py).

• 2D slices and analysis (numpy, scipy, etc.).

Finally, we take advantage of the open-source tool VisIt for visualization and 3D post-

processing.

3. Boundary Conditions

The HARM code does not solve the equations of the GRMHD in the Boyer-Lindquist coor-

dinates system, but rather on a modified version of the so called Kerr-Schild coordinate system

(KS). The KS system is not singular on the black hole horizon and therefore, the matter can
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Figure 3. 3D simulation of the black hole-torus accretion system. The snapshot is taken at

t = 1, 000M . The x, y and z axes are in rg units (gravitational radius). The black hole is

represented with a black circle. Magnetic field is neglected in this simulation. The color scale

shows the normalized density

accrete smoothly through this surface, and the evolution of the flow can be followed, see for

example [9]. A further transformation applies on the radial component of the specific system

using a logarithmic mapping [11]. As a consequence, our points distribution is denser close to

the horizon, when we assume an equally spaced grid on the r-direction.

The boundary conditions that apply on the radial direction are the free inflow-outflow

conditions, modified by a specific extrapolation schema that reduces the unphysical behavior.

This behavior is induced mostly by the variation of the metric between the normal and the

ghost cells [11], and the selected extrapolation was chosen such as to maximize the robustness

of the code. In reality, the radial boundary conditions have negligible effect on the physics of the

problem under the proper choice of the grid. The inner boundary is located inside the horizon,

while due to the logarithmic spatial scale of the grid, the outer boundary can be set far away

from the domain of interest.

The 2-dimensional simulations are, by definition, axisymmetric, i.e. the derivatives of quan-

tities in the φ-direction are neglected; note however, that the vectors (velocity field, magnetic

field) still have all the three components. In contrast for the 3-dimensional simulations the

derivatives of the quantities are computed so the non-axisymmetric evolution is being followed

properly. The periodic boundary condition is always used in the azimuthal direction and the flow

quantities at φ0 + 2π are the same as at φ0 describing the smooth continuation of the solution

between the neighboring domains.

The real technical problem is posed by the boundary condition at the z-axis, namely in

the polar direction. Physically, the vertical axis is only the symmetry axis in the 2D flows,

but it should not work as a real boundary in the 3D flows. In order to get some intuition on

this effect, the reader can think of a Cartesian coordinate system. In such a case boundary

conditions have to be set in an inner box, that will lay well inside the horizon, and an outer
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Figure 4. Illustration of the spherical coordinate system and boundary conditions problem

one which lays at great distances, but not on the axis of the black hole rotation (see Fig. 4).

A technique to overcome the extra needed boundary conditions is to cancel in practice the axis

existence by attaining the “ghost cells” variables from the values of the corresponding normal

grid cells on the other side of the axis; notice though that the vectors φ− components must

change sign because of the opposite direction of the φ−unitary. Therefore the application of the

above technique requires by our algorithm to connect the two correspond grid domains and sets

further complexity in our MPI implementation.

4. Parallelization Methods in HARM Simulations

The HARM code works in 1, 2, and 3-Dimensions. In the latter case, the optimal time for

any realistic simulation requires parallel computing.

In the simulation presented in Fig. (3), i.e. the non-magnetized, 3-dimensional case, the grid

resolution was 192x192x192 points. The number of HPC nodes was N=64, the number of tasks

per node was n=24. The number of run-time steps of integration was about 110000 and the total

real time of computation was about 12.7 hours.

4.1. MPI in Practice

The distribution of the processes among the physical system directions is provided by

the function MPI Dims create(nprocs, 2, dims); currently it is 2D, but it can easily be gen-

eralized to 3D. According to this routine the divisors are set to be as close as possible

using an appropriate divisibility algorithm, while dims[i] are ordered in decreasing order:

dims[0] ≥ dims[1] ≥ dims[2] ≥ ....
An alternative procedure incorporated also in our schema distributes the number of processes

using two criteria. In order to reduce bottlenecks, the Nx × Ny grid is distributed to the nx ×
ny processes on each direction such as Nx − nx[Nxnx ] processes loaded with [Nxnx ] points and

nx([Nxnx ]+1)−Nx processes with [Nxnx ]+1 ones where the square brackets denote the integer part

Numerical Simulations of Black Hole Accretion Flows

94 Supercomputing Frontiers and Innovations



Figure 5. Performance test results on the Okeanos supercomputer. The code HARM-2D was

run on 8-256 nodes, using MPI parallelization method (blue line), and Hybrid MPI+OpenMPI

method (green line). Also, the pure MPI runs were made with the hyper-threading (on 2x24=48

threads; shown by red line)

of the division; the same holds for the y direction. We then perform an optimization routine

requiring that the grid points load per each process is as balanced as possible, while in addition

the necessary MPI communications between the neighboring domains are minimum. The two

criteria are calculated with different weight allowing us to perform further optimization based

on the specific integrating system and the machine specifications.

The assignment of the Cartesian grid to the MPI communicator is performed with the

default MPI Cart create and MPI Cart coords routines that provide a specific rank per direction

to every process. The latter is of primary importance for identifying the mirror to the rotation

axis points and applying the proper boundary conditions (see Sec. 3).

4.2. Supercomputer Performance Tests

We used both the standard Message Passing Interface (MPI) technique, and also a more

advanced, Hybrid parallelization method. The MPI+hyper-threading was also tested (cf. Fig. 5,

red and blue lines). The computational grid was divided into slices, where every process works

on its own area, and boundaries are exchanged when needed. The pure MPI program running

on the cluster of 1024 nodes and using 24 threads per node creates 24,576 processes in total. It

is a huge number, and the first expectation is that interprocess communication for boundaries

exchange should decrease the overall performance.

The code occurred to be well-scalable for a uniform resolution, e.g. the number of the grid

points in 3 dimensions is equal to Nr × Nθ × Nφ = 192 × 192 × 192. For non-uniform grids,

the dependence on Nnodes and Ntasks/node is not monotonic, due to the properties of function

MPI Dims create. Another method was to use the MPI + OpenMP shared memory, i.e. a Hybrid

approach 3. Here, only one MPI process is created per node and called master. The parallel

execution is done for every loop in the code in fork-join mode. It was rather straightforward

(in comparison to MPI) to add OpenMP calls, using only several pragma statements. Our

preliminary tests were aimed to check if pure MPI-HARM, running on N nodes with 24 cores

each, will be more/less efficient with comparison to MPI+OpenMP hybrid solution running on

3http://bisqwit.iki.fi/story/howto/openmp/ and https://computing.llnl.gov/tutorials/openMP/
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the same number of nodes. The results are in contradiction to the claims published in literature,

which show that the hybrid solution usually works better.

In our code, there is one significant difference with respect to the common MPI usage. We

have computational domain divided into pieces and every MPI process uses only small memory

region. This gives a faster memory access and it might make a difference.

5. Models Specific to Black Hole Accretion Systems

Below, we present some exemplary results of our simulations. Then, in the next Section,

we discuss their results in the context of the visualization and post-processing methods. These

“technical” aspects are by no means trivial from the computational point of view, and proper

analysis of the physics involved is tightly coupled with the post-processing demands. Finally,

these simulations are at the limits of our computational resources, and fine numerical techniques

have to be used to increase the efficiency of the simulations and code performance on the available

computer clusters.

5.1. Magnetized Torus

For the purpose of better understanding of the black hole accretion and jets variability,

we investigate the role of magnetically arrested disks (MADs) [32], as producer of turbulence

in relativistic jet. MADs state occurs when the magnetic pressure force, pushes outward on

the accretion disk gas. Because we need a certain amount of magnetic flux surrounding the

black hole, to have enough magnetic pressure balancing the accretion, we need a large initial

magnetized torus. To do this, we implement a thick disk model as an intial condition in HARM

using the Chakrabarti’s prescription [4]. In this model, the angular momentum distribution is

chosen to have a power law distribution. Alternatively, the default disk model of Fishbone &

Moncrief [8], is assuming the angular momentum to be constant in the disk. This model allows

to create an initial torus configuration with a large amount of poloidal magnetic flux. The initial

and evolved state of the trous, seeded by the poloidal magnetic field, is visualized in Fig. 6.

5.2. Ejection of Relativistic Jets

If the black hole starts rotate fast, the jet ejection is inevitable. The presence of magnetic

fields and/or neutrino-antintineutrino pairs provide the mechanism for jets acceleration. The

Blandford–Znajek process, which allows for the extraction of rotational energy of the black hole

and transports it to the remote jets via magnetic fields, can be quantified in our simulations

with the following expression

Ė ≡
∫
dθdφ

√−g T rt. (7)

Here, in Eq. (7) the magnetic part of the stress-energy tensor is integrated over the black hole

horizon. In addition, the magnetic fields transport angular momentum in the accretion disk and

allow accretion. In Fig. 7 we show the resulting power available for the jets, as dependent on

the black hole rotation spin.

The jets are accelerated at the vicinity of the black hole due to the central engine activity,

and at large distances their kinetic energy has to be ultimately transferred to the emitted gamma
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Figure 6. 2D simulation of a black hole-torus accretion system, with resolution of 512 x 512 grid

points in the r and θ direction. The left panel shows the initial condition, while the right one

presents a snapshot t = 1, 000M . The x and y axes are in rg units (gravitational radius). The

black hole is represented with a dashed circle. Magnetic field lines are plotted in white contours,

and the color scale shows the normalized density

Figure 7. Power available to accelerate the relativistic jets, produced within the accretion torus

in the GRB central engine. Several results are plotted, for a varying black hole spin parameter,

a, as denoted in the figures. Two mechanisms are compared: Blandford–Znajek process (left)

and neutrino anihillation (right). Note, that the latter has to be reduced by an efficiency factor,

on the order of ην ∼ 0.01, due to the uncertainties in the neutrino pair annihilation process.
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ray radiation. To achieve this, the jet speed, expressed with the dimensionless Lorentz factor,

γ =
1√

1− (vc )2
,

has to be on the order of 100. This is required to avoid so-called “compactness problem”, since

the observed gamma ray spectra in GRBs are non-thermal. If the Lorentz factors in jets were

small, the huge optical depth due to electron-positron pair creation would rather produce thermal

emission [24]. The Lorentz factors of the jet estimated at ’infinity’ in our simulations can easily

reach the values around 80-100 (see Fig. 2).

5.3. Formation of Heavy Nuclei in the Neutron-rich Plasma

In the hyper-accreting disk at the GRB central engine, the conditions in the degenerated

Fermi gas allow for substantial overabundance of the neutrons over protons. This is quantified

with so-called “electron fraction” ratio:

Ye =
1

1 + nn/np
,

which in the highly neutronized matter is much smaller than 0.5.

The electron fraction distribution, together with the density and temperature, serve as an

input for the subsequent nuclear reaction network computations [13, 21, 22, 34]. The network

allows for production of heavier isotopes (beyond Helium, and in fact beyond the Iron peak), due

to the rapid capture of neutrons on the nuclei. The nuclear reactions may proceed with 1 (decays,

electron-positron capture, photodissociacion), 2 (encounters), or 3 (triple alpha reactions) nuclei.

Abundances of the isotopes are calculated under the assumption of nucleon number and charge

conservation for a given density, temperature and electron fraction (T ≤ 1MeV ).

In the GRB engine, along with the abundant light elements such as Carbon, and then Silicon,

Sulfur and Calcium isotopes, we also found copious amounts of Titanium, Iron, and Nickel. The

X-ray emission originating from the radioactive decay of isotopes, such as 45Ti, 57Co, 58Cu,
62Zn, 65Ga, 60Zn, 49Cr, 65Co, 61Co, 61Cu, and 44Ti, might give the signal in the 12-80 keV

energy band.

The r-process elements have been found to enrich the interstellar gas, first in our Solar

system, and recently in the circum-burst environment of several Gamma Ray Bursts [30, 31]

As discussed now in the literature, the dynamical ejecta launched during the compact binary

mergers may be responsible for the of r-process nuclei. In addition, the ejecta subsequently

produced by an accretion disk formed after the merger, may add a contribution to this “kilonova”

lightcurve [19]. Thus observational verification of our computations results will now be much

more robust, thanks to the new data. The observed effect is discussed briefly below in Sec. 6.

6. Summary

Numerical modeling of black hole accretion flows in extremely high energetic systems, such as

the gamma ray bursts, is essential from the point of view of the recent observational discoveries.

The discovery of gravitational waves in 2015, which was awarded the Nobel Prize in Physics in

2017, boosted the research also in high energy astrophysics, while it is related to the “multi-

messenger” astronomy. An example of the recently announced event is the kilonova signal, and

the short gamma ray burst accompanied by the gravitational wave emission.
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Kilonova effect

• Optical and near-infrared emission, powered by radioactive decay of r-process nuclei [19].

• Kilonova candidates can be distinguished from supernova by faster time evolution, fainter

absolute magnitudes, and redder colors.

• Dynamical ejecta from compact binary mergers, Mej ∼ 0.01M�, can emit about 1040−1041

erg/s in a timescale of 1 week.

• Subsequent accretion can provide bluer emission, if it is not absorbed by precedent

ejecta [30].

• In the GRB 130603B afterglow, the excess NIR flux corresponds to absolute magnitude

M(J) ∼ 15.35 mag at ∼ 7d after the burst, consistent with the kilonova behavior. The

lightcurve is in agreement with predicted r-process kilonova optical emission [31].

Electromagnetic counter part: GW 170816

• Gravitational waves were discovered with the detection of binary black hole mergers and

they should also be detectable from lower mass neutron star mergers.

• NS-NS are predicted to eject material rich in heavy radioactive isotopes that can power a

kilonova.

• The gravitational wave source GW170817 arose from a binary neutron star merger in the

nearby Universe with a relatively well confined sky position and distance estimate.

• A rapidly fading electromagnetic transient in the galaxy NGC4993, is spatially coincident

with GW170817 and a weak short gamma-ray burst [6, 29].

Conclusion

With our simulations, we found that the proper microphysics treatment in GRMHD simula-

tions of hyper-accretion is essential for determining the disk structure: thickness, chemical com-

position of torus and its ejecta. Furthermore, we concluded that the neutrinos and Blandford–

Znajek process have comparable role in powering the GRB jets. As the large scale jets in GRBs

are concerned, the variability of these jets is related to the disk’s magneto-rotational turbulence

timescale. The ultimate Lorentz factors are found to be on the order of few 100. Thus, the late-

time X-ray and high frequency radio emission can provide constraints on the properties of the

disk-jet system for a particular source, e.g. GW+EM170817. Finally, the magnetically driven,

low Ye winds from accretion disks in GRB engine can provide power to kilonova emission, which

was found in this source.
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