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The huge number of hardware and software components, together with a large number of

parameters affecting the performance of each parallel application, makes ensuring the efficiency

of a large scale supercomputer extremely difficult. In this situation, all basic parameters of the

supercomputer should be constantly monitored, as well as many decisions about its functioning

should be made by special software automatically. In this paper we describe the tight connection

between complexity of modern large high performance computing systems and special techniques

and tools required to ensure their efficiency in practice. The main subsystems of the developed

complex (Octoshell, DiMMoN, Octotron, JobDigest, and an expert software system to bring fine

analytics on parallel applications and the entire supercomputer to users and sysadmins) are actively

operated on the large supercomputer systems at Lomonosov Moscow State University. A brief

description of the architecture of Lomonosov-2 supercomputer is presented, and questions showing

both a wide variety of emerging complex issues and the need for an integrated approach to solving

the problem of effectively supporting large supercomputer systems are discussed.

Keywords: supercomputer, peak performance, sustained performance, efficiency, parallel com-

puting, supercomputer center, software tools, scalability, monitoring, system level data, data ana-

lytics.

Introduction

From the very beginning of the appearance of the first computers, there were always large

computing systems at Lomonosov Moscow State University. The first domestic mass-production

computer Strela [1] was installed at the Computing Center of Moscow State University in 1956.

Basic parameters of the machine were: 500 µs cycle time, performance of 2 thousand operations

per second, 300 square meters of footprint area, power consumption of 150 kW. After Strela,

there were several dozens of systems in the computer fleet of the Computing Center with various

architectures, including self-developed machines based on the ternary number system.

In 1999, the first computing cluster was deployed, consisting of 12 dual-processor compute

nodes connected by a fast SCI network, with a peak performance of 12 GFlops. This cluster

marked the beginning of a new stage in the development of the computing resources of Moscow

University, based on the active use of parallel computing technologies. These are new technologies

that are more difficult to use than the conventional sequential approach, but parallel computing

is a serious modern trend with enormous potential which is used in modern computers and will

be used in all future computing systems.

In 2009, the first petaflops range supercomputer Lomonosov [2] produced by the T-Platforms

company was installed at MSU. The supercomputer was built in several stages, and its final con-

figuration has the following parameters: 12346 multi-core Intel processors, 2130 NVIDIA Tesla

X2070/2090 graphics processors, 92 TB of RAM, QDR Infiniband as the primary intercon-

nect, parallel data storage system, power consumption of 2.6 MW. The peak performance of

the supercomputer is 1.7 PFlops, performance on the Linpack test — 901 TFlops. This is an

1Lomonosov Moscow State University, Moscow, Russian Federation
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exceptionally large system, which requires about 1000 square meters (including the engineer-

ing infrastructure), serving hundreds of users from different organizations that solve tasks from

various areas.

The huge number of hardware and software components, together with a large number

of parameters affecting the performance of each application, makes ensuring the efficiency of

the Lomonosov supercomputer extremely difficult. In this situation, all the basic parameters of

the supercomputer should be constantly monitored, and many decisions about its functioning

should be made by special means automatically. And this is not a unique feature of this particular

supercomputer: an increase in the degree of parallelism and grow of complexity are objective

trends of all high-performance computing systems [3]. To confirm, it is enough to analyze the

list of the Top500 most powerful supercomputers in the world [4]. In practice, this fact cannot

be ignored; otherwise, the efficiency of systems of this scale will be negligible. This was the

reason, together with the advent of the supercomputer Lomonosov, to start research aimed at

developing technologies to ensure the quality of large supercomputer systems at the Research

Computing Center of Moscow State University.

The appearance of Lomonosov-2 supercomputer at MSU fully confirmed this decision. In

this paper we would like to describe the tight connection between complexity of modern large

high performance computing systems and special techniques and tools required to ensure their

efficiency in practice. Further in the paper, Section 1 will be devoted to a brief description of the

architecture of Lomonosov-2 supercomputer. In Section 2, we discuss questions showing both

a wide variety of emerging complex issues and the need for an integrated approach to solving

the problem of effectively supporting large supercomputer systems. Conclusion summarizes the

study.

1. Lomonosov-2 Supercomputer

The first stage of Lomonosov-2 supercomputer was installed at Lomonosov Moscow State

University in 2014. This system was also created by the T-Platforms company and had four

stages in its development:

1. Year 2014, May: Intel Xeon E5-2680v2 10C 2.8GHz, NVIDIA K40s, 6400 cores, Infiniband

FDR, peak performance 423 TFlops.

2. Year 2014, October: Intel Xeon E5-2697v3 14C 2.6GHz, NVIDIA K40s, 37120 cores, Infini-

band FDR, peak performance 2.575 PFlops.

3. Year 2016, May: Intel Xeon E5-2697v3 14C 2.6GHz, NVIDIA K40s, 42688 cores, Infiniband

FDR, peak performance 2.962 PFlops.

4. Year 2018, April: Intel Xeon E5-2697v3 14C 2.6GHz, NVIDIA K40s, Intel Xeon Gold 6126

12C, 2.6 GHz, NVIDIA P100, 64384 cores, Infiniband FDR, peak performance 4.946 PFlops.

5. Year 2019, June: data storage upgrade by 2.5 PBytes up to 3 Pbytes.

Since its inception in 2014, Lomonosov-2 has been included in the global Top500 ranking

with the highest position #22 in November of 2014. Since spring of 2015, Lomonosov-2 steadily

has been ranking #1 in the Top50 of the most powerful CIS supercomputers [5], thus confirming

its leading position in the Russian supercomputer industry.
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1.1. System Overview

Today Lomonosov-2 contains 1679 compute nodes in 7 racks (logically divided into three

partitions “Compute”, “Pascal” and “Test”), 6 management nodes, 10 service nodes, 14 dis-

tributed file system servers and 2 storage system appliances. Each compute node is an A-Class

solution by the T-Platforms company. There are 7 T-Platforms A-Class racks, 6 of them are

fully equipped with 256 compute nodes, and the 7th rack is partially equipped with 160 compute

nodes. Infiniband and Ethernet switch systems are also installed in the A-Class system rack. All

equipment in these racks excluding PSUs are liquid-cooled by hot water (up to 45 degrees Cel-

sius inlet temperature) to provide better energy efficiency. Key parameters of the Lomonosov-2

system are presented in Tab. 1.

Table 1. Lomonosov-2 supercomputer features
XXXXXXXXXXXXXPartition

Feature
Compute / Test Pascal

Nodes 1487 / 32 160
X86 cores 20818 / 448 1920
GPUs 1487 / 32 320
Memory per node 64 GB 96 GB
GPU memory 11.56 GB 16.3 GB
GPU model NVidia Tesla K40s NVidia Tesla P100
CPU model Intel Haswell-EP E5-2697v3, Intel Xeon Gold 6126, 2.6 GHz

2.6 GHz

All compute nodes of the Compute and Test partitions have the same configuration described

in Tab. 1. One rack contains up to 256 compute nodes (grouped by four on the one assembly

with a single coldplate) organized into 8 pools, 2 assemblies of management node, Ethernet

switch and auxiliary network Infiniband switch. Each pool contains up to 32 compute nodes

(in the 8 assemblies), four 36 ports FDR Infiniband switch systems for communication network

connectivity, up to 2 Ethernet switches and one FDR Infiniband switch system to provide

auxiliary network connectivity. Compute nodes are connected to the switches via backplane

without extra cables.

Compute nodes of the Pascal partition have the same form-factor but they are equipped

slightly differently: each node of the partition has 96 GB memory, one Intel Xeon Gold 6126

processor with 12 physical cores and two NVIDIA P100 GPUs.

Mellanox dual-ports ConnectIB-based network module is installed in each compute node as

well as the Gigabit Ethernet controller. There are two independent FDR Infiniband networks:

communication network for MPI-like exchanges and auxiliary network for I/O operations for

Lustre file system.

The communication network is used for MPI communications. Only compute nodes are con-

nected to this network. The network is implemented using 36 ports FDR Infiniband switches

which are installed in the A-Class racks. These switches are connected using the flattened but-

terfly topology 4 × 8 × 8, which allows to extend up to 4D flattened butterfly 4 × 8 × 8 × 8.

This topology was chosen for the system after different topologies simulation based on the re-

quirement for extending the cluster up to 16K compute nodes. Each switch has 8 internal ports

connected to the backplane for compute nodes connections and 28 external FDR Infiniband

ports for switch-to-switch connectivity.

Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the...

6 Supercomputing Frontiers and Innovations



Management and Service network is based on the 10G/1G Ethernet protocols and used

for compute nodes boot, job scheduling, monitoring and remote control. Additionally, Panasas

storage system is accessible via the management network.

1.2. System Software and Programming Systems

The operating system of Lomonosov-2 is Centos-7. The only additions are Mellanox Infini-

band drivers, Panasas drivers and Lustre drivers. Lomonosov-2 uses xCAT to control all boot

images for all nodes and power control via IPMI.

Several OpenMPI versions are available (1.8.4, 1.10.7 and 2.1.1), as well as other MPI

implementations, but only OpenMPI supports the flattened butterfly topology of the Infiniband

network. Compiling can be done with GNU GCC/GFortran 4.8.5 or Intel Compiler. Intel MPI

is not officially supported due to lack of support for the flattened butterfly topology.

For GPU utilization, CUDA versions 5.5, 6.5 and 8.0 are installed. Jobs control on

Lomonosov-2 is secured by SLURM 15.08.1 [6] and the GLURMO custom job scheduler. Sys-

tem statistics are collected by collectd and nmond monitoring systems and then processed by

Octotron [7] (anomaly detection). Data about actually compiled and used applications and com-

putational packages are collected by XALT software [8].

A wide variety of preinstalled packages are available for users: abinit, espresso, lammps,

namd, nwchem, vasp, cp2k, gromacs, magma, etc. Most packages are compiled with CUDA

support, all of them support MPI. Intel MKL is available for users to improve performance of

their applications.

Lmod [9] compatible with Environment modules was used to control environments for dif-

ferent versions of software.

User access to the supercomputer via ssh and sftp is possible using key-based authentication

only. For users management and troubleshooting, Octoshell [10] system is actively used.

Table 2 sums up the software configuration of Lomonosov-2 supercomputer.

2. Lomonosov-2 Supercomputer and Efficiency Issues

As in any large supercomputer system with hundreds of users, there are a lot of components

in Lomonosov-2 that affect the efficiency (in a broad sense) of its work, and the state of the

components must be carefully controlled. Here are just some of them:

• hardware components (∼25000 units);

• software components (∼100 units);

• applications (600);

• partitions (10);

• projects (400);

• licenses (100);

• users (2500);

• organizations (300);

• queues (15);

• statuses (20);

• quotas (30);

• jobs (1000 per day). . .
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Table 2. Lomonosov-2 basic software components

Component Software

Access Node OS CentOS 7.1

Compute Node OS CentOS 7.1

Home Filesystem Panasas

Scratch Filesystem Lustre 2.11

Compilers Intel Compilers (C,C++,Fortran) 15.0;

GCC Compilers (C,C++,Fortran) 4.8.5;

CUDA 5.5; CUDA 6.5; CUDA 8.0

MPI OpenMPI 1.8.4; OpenMPI 1.10.7; OpenMPI 2.1.1

Libraries Intel MKL 2019.2

Resource Manager Slurm 15.08.1

Job Scheduler GLURMO

Cluster Manager Octoshell 2

Monitoring and Analysis Tools Collectd, nmond, Tentaviz, Octotron, XALT,

DiMMoN

Packages, Libraries, Applications Abinit, Amber, AmberTools, Athena, Charm++,

CP2K, CRYSTAL-17, DL POLY, Firefly (PC-GAMESS),

Flow Vision, FMMLIB3D, Gmsh, Gromacs, Lammps,

Magma, Materials Studio, Matlab, Molpro, Namd,

netCFD, NWChem, Octave, OpenFOAM, Quantum

Espresso, Rosetta, Schrodinger, SPILADY,

Turbomole, VASP, WIEN2k, WRF. . .

Analyzing this list, it is necessary to take into account an important feature: there are

not only many different types of components in a supercomputer, but the number of different

entities within each type varies from tens of units to tens and hundreds of thousands. We already

mentioned earlier a large number of components in supercomputers, and here this property

becomes obvious: the numbers of entities for Lomonosov-2 are shown in brackets, and the state

of each entity of each component must be controlled to ensure the supercomputer as a whole

works effectively.

It may seem that some positions of this list are obvious and their processing is simple, but

the guarantee of the effectiveness of a supercomputer requires not only maximum details, but

also constant monitoring of changes in their state. Let us consider “licenses” and other issues

related to software. For each package, library, and tool we have to keep and track all necessary

details to ensure ready-to-use status for each software component:

• title and version;

• license current status;

• contacts on license;

• contacts on technical support;

• license key, license activation code;

• license expiration date;

• support termination date;

• restrictions and limitations of the license;

• license update cost, support update cost;

Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the...
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• path to the package, home directory;

• description of installation and fine tuning procedures, basic parameters in use;

• description of testing and checking procedures after upgrades;

• path to reference guides and users manuals;

• person responsible for installation and upgrades;

• contacts of local experts on the software;

• users, projects and organizations who are eligible to use the software.

If the license is not updated on time, or the necessary budget for software update for the

next year is not allocated, or the new version of the package has not been tested by an expert

in this field, then the efficiency of users, and, consequently, of the supercomputer center as a

whole, decreases.

Constant control of the state of each component should be designed in such a way that at

any moment it would be possible to find answers to the whole set of questions concerning the

efficiency of the supercomputer. To give a feeling of a huge variety of issues that are important

to control a status of a supercomputer, we give only a few examples of questions:

• What is a distribution of CPU hours consumed by different software packages for the last

year? (Should we spend money for the package X next year?)

• What is average intensity of Infiniband interconnect usage for different partitions? (How

large should Infiniband island be in future configurations of supercomputers?)

• How many nodes/cards/disks/cables fail every month?

• How often has Infiniband re-sent packages for the last week?

• How often does LoadAVG exceed number of cores on computing nodes?

• What is a min/max/average level of cache misses for applications of a particular user?

• What is the distribution of waiting time in queues?

• How does LoadAVG behave in my application during execution?

• Who are 5% of the most inefficient applications/users? (regarding CPU load, or LoadAVG,

or cache misses, or. . . )

• What software packages consume 80% of supercomputer time?

• What software components being used in the supercomputer center run with efficiency less

than 10%?

• What projects of the supercomputer center use Gromacs with minimal efficiency?

• What is the Top10 list of projects with the lowest CPU load?

• What is the variation in the efficiency of the supercomputer among all the projects when

using the Lammps package?

• What is the Top5 list of projects of the supercomputer center by the total amount of

consumed CPU hours which do not use the Infiniband interconnect network for MPI-

communications?

• What is the total amount of CPU hours consumed by projects of the supercomputer center

with highly intensive usage of the fast Infiniband interconnect network?

• What is the Top10 list of users by the maximum number of jobs with abnormal behavior?

There are indeed many questions that arise, since all the components mentioned above need

to be considered in close relationship with each other. To guarantee complete control over the

operation of supercomputers and prompt responses to all such questions, a set of tools has been

developed in the RCC MSU. The main subsystems of the complex are:

• Octoshell — HPC center management system [10];
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• DiMMoN — a system for deep monitoring of supercomputer parameters [11];

• Octotron — a system to ensure reliable and autonomous functioning of supercomputers [7];

• JobDigest — a visual tool to analyze the dynamic characteristics of parallel applica-

tions [12];

• an expert software system to bring fine analytics on parallel applications and the entire

supercomputer to users and sysadmins [13, 14].

The subsystems of the complex are actively used on Lomonosov-2 supercomputer, providing

operational data for users and administrators of the supercomputer center [15].

Conclusion

The main objective of this paper is to show the strong correlation between the high complex-

ity of large scale HPC systems and their proper support. There are thousands of components in

modern supercomputers that affect the efficiency of parallel applications, and therefore they all

require constant deep monitoring. The increasing complexity of computer architecture and the

growth of the degree of parallelism are characteristic features that are typical for all, without ex-

ception, modern large supercomputer systems. This fact must necessarily be taken into account

in any supercomputer center, otherwise its productivity will be in doubt. A set of advanced soft-

ware tools aimed at solving this problem was developed at MSU Research Computing Center,

and the first experience of its use on Lomonosov-2 supercomputer showed both the correctness

of the proposed approach and the need to continue and expand work in this direction in the

future.
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The work undertaken in this paper was done in the Centre of Excellence for Global Systems
Science (CoeGSS) – an interdisciplinary project funded by the European Commission. CoeGSS
project provides a computer-aided decision support in the face of global challenges (e.g. develop-
ment of energy, water and food supply systems, urbanisation processes and growth of the cities,
pandemic control, etc.) and tries to bring together HPC and global systems science. This pa-
per presents a proposition of GSS benchmark which evaluates HPC architectures with respect to
GSS applications and seeks for the best HPC system for typical GSS software environments. The
outcome of the analysis is defining a benchmark which represents the average GSS environment
and its challenges in a good way: spread of smoking habits and development of tobacco industry,
development of green cars market and global urbanisation processes. Results of the tests that have
been run on a number of recently appeared HPC platforms allow comparing processors’ archi-
tectures with respect to different applications using execution times, TDPs3 and TCOs4 as the
basic metrics for ranking HPC architectures. Finally, we believe that our analysis of the results
conveys a valuable information to the broadened GSS audience which might help to determine the
hardware demands for their specific applications, as well as to the HPC community which requires
a mature benchmark set reflecting requirements and traits of the GSS applications. Our work can
be considered as a step into direction of development of such mature benchmark.

Keywords: Global Systems Science, HPC benchmarks, parallel applications, e-Infrastructure
evaluation.

Introduction
Global Systems Science (GSS) is a branch of science which uses specific knowledge and tech-

niques to evaluate the impact of policies and people’s relation on various global phenomena such
as climate change, financial crises, pandemic spread, growth of the cities, human migration, etc.
This document addresses the question of “which HPC architectures among the recently intro-
duced are best to run GSS applications most effectively?”. Such aliases as “the best” or “most
effectively” may obviously have different meanings for different people. While some people might
consider it to be the fastest execution time, others might be interested in the price-performance
ratio calculated as the price of a processor multiplied by total execution time (for given archi-
tecture) or the least carbon footprint left, calculated as a product of TDP and total execution
time. For the purpose of this study, the authors acquired cutting-edge processors from four major
vendors – Intel, AMD, HiSilicon, and IBM. In particular, we benchmarked GSS applications on
Intel R©Xeon R©Gold 6140 [31] 2-node cluster, AMD EpycTM 7551 single node, ARM Hi1616 2-node
cluster, IBM Power8+ [28] single node, and – as a reference testbed – Eagle cluster located at
Poznan Supercomputing and Networking Center (Poland) equipped with Intel R©Xeon R©Haswell
E5-2697 v3 processors. The set of tested applications (called a GSS benchmark here) covers many
research areas from the entire GSS field. The rest of the paper is organised as follows. Section 1 de-
scribes benchmark and the experimental setup. More specifically, we introduce applications chosen
1Poznan Supercomputing and Networking Center, Poznań, Poland
2High-Performance Computing Center Stuttgart, Stuttgart, Germany
3Thermal Design Power
4Total Cost of Ownership
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for the benchmark and substantiate this choice, present a technical overview of the testbeds where
the tests were launched, and discuss the approach selected for measuring the performance met-
rics. In Section 2, we shortly overview the main benchmarking results. In particular, we emphasise
applicability of those results for the hardware/software co-design. Section 3 contains statements
for the most relevant conclusions. Finally, we end our paper with a formulation of the directions
for future research.

1. Benchmark and Experimental Setup
1.1. Representative GSS Applications Selected for the Benchmark

Functionally, the benchmarked applications can be categorized into two groups: HPC- compli-
ant social simulation software and large-scale CFD (Computational Fluid Dynamics) applications.
From the perspective of programming languages, GSS benchmark covered applications are written
in C++ and Python, which are the most popular programming languages among GSS experts
who use HPC. This subsection contains a short description of tested applications – ABM4Py/GG,
Pandora/GG, IPF, OpenSWPC, CCTM, CM1, HWRF – and explains why these particular ap-
plications were selected for the benchmark. We refer the interested reader for further technical
details to the reports [23, 24].

1.1.1. HPC-compliant Social Simulation Software

Since GSS deals with evaluating impact of different policies on the society, social simula-
tions constitute a relevant part for the majority of workflows in large-scale GSS applications.
Typical social simulation component consists of pre-processing, simulation, and post-processing
steps. Agent-based modelling and simulation (ABMS) is the most widely accepted tool for the
simulation step. Pre-processing step takes care of collecting and wrangling real-word data, as well
as synthesising inputs for ABMS. As long as fine-grained data about society are rarely available
for public use, large-scale agent-based models usually require synthetic input data – synthetic
populations and synthetic social networks – prepared on the base of partial and marginal infor-
mation. Post-processing includes visualisation, data analytics, model verification, validation and
uncertainty quantification.

In our benchmark, the group of social simulation software covers applications for pre-
processing and simulation of agent-based models. In the benchmark definition, we intentionally
skipped post-processing step as it frequently heavily depends on the concrete GSS problems in
hand, so it is hard to determine typical use-cases and computational kernels for post-processing.
We selected two ABMS frameworks – ABM4Py is implemented in Python and follows graph-
based ABMS methodology particularly suitable for large-scale social simulation, while Pandora is
written in C++ and uses regular meshes to simulate the environment. The pre-processing step
is represented by HPC-compliant implementation of the IPF method for generating synthetic
populations. The text below shortly describes each application and the specific inputs used into
benchmark.

IPF (iterative proportional fitting) is a “technique that can be used to adjust a distribution
reported in one data set by totals reported in others. IPF is used to revise tables of data where
the information is incomplete, inaccurate, outdated, or a sample” [6]. This procedure reconstructs
a contingency matrix based on the known marginals in an unbiased way. Nowadays, IPF and
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its derivatives (e.g., IPU) constitute the computational core of the most popular techniques for
generating synthetic data which serve as an input for agent-based social simulations [18].

Despite its popularity, we are not aware of any HPC-compliant open-source implementation
of IPF. In order to overcome this obstacle, we coded a simple IPF process using linear algebra
kernels from ScaLAPACK. This simple implementation was a baseline for our IPF benchmark.

Note: The above-mentioned IPF codes are not published with open access on the Internet
yet.

ABM4Py/GG (ABMS for Python) is a distributed agent-based modelling and simulation
framework for fast prototyping agent based components of GSS models [17]. Agent-based models
implemented in ABM4Py follow the graph-based representation [17, 29]. Namely, agents and loci of
interactions are interconnected into a complicated dynamic network, and agent-based simulation
reflects possible temporal evolution of this network. This network is further split into subgraphs
with graph partitioning software and distributed between MPI processes.

In order to benchmark this framework, we implemented the green growth agent-based model,
first proposed in [7], within ABM4Py framework. The green growth model is an innovation-diffusion
model for electric cars with a global scope and a fine-scale spatial data resolution. This model
allows measuring the most relevant performance metrics for ABM4Py, including elapsed time, I/O,
waiting time, and synchronisation time. In order to enable comparison of the ABM4Py framework
with Pandora frameworks (see below), our toy implementation uses 2D mesh as a topology of the
environment. More specifically, we test against two cases – the one where layer-shape size is set
to 64x64, and the second with a size of 128x128. The project’s repository is available at [19].

Pandora/GG application serves for benchmarking of Pandora agent-based modelling and sim-
ulation framework. In contrast to ABM4Py, Pandora only supports raster inputs, which restricts
this framework to agent-based models with 2D mesh as a topology of the environment. Pandora
parallelises the simulation process via splitting of rasters on even pieces and distributing them be-
tween MPI processes. On the other hand, Pandora is implemented in C++, which allows reaching
higher performance compared to Python-based ABM4Py framework.

Similarly to the ABM4Py use-case, our Pandora/GG application implements the green growth
agent-based model from [7]. The project’s repository is available at [12].

1.1.2. Large-scale CFD Applications

A wide variaty of GSS applications – from evacuation planning [21] to air quality control [15] –
rely on coupling of ABMS with CFD. The group of benchmarked CFD applications includes large
scale tools that simulate GSS-related scenarios like natural disasters (hurricanes, earthquakes),
spread of air pollution, and weather forecast. We selected 4 exemplar open-source codes for large-
scale CFD simulations:

• OpenSWPC – an integrated parallel simulation code for modelling seismic wave propagation
in 3D heterogeneous viscoelastic media which is applicable for evacuation planning in case
of earthquakes;

• CMAQ – a community multiscale air quality modelling system, which was successfully
used for conducting large scale air quality simulations and policy making for air pollution
control [15];
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• CM1 – a model for studying processes in the Earth’s atmosphere, which can be used for
weather forecast in different GSS applications where behaviour of agents in ABMS compo-
nent of GSS model depends on weather (e.g., predicting refugee destinations [30]);

• HRWF – parallel implementation of the hurricane weather research and forecasting which
is suitable for evacuation planning in case of hurricanes.

OpenSWPC (Open-source Seismic Wave Propagation Code) is an open-source software from
large-scale simulation of seismic waves propagation (2D or 3D) by solving motion equations using
the finite difference method (FDM) [8]. OpenSWPC is widely used in seismology. It ports easily
and delivers good performance on different distributed systems varying from small PC clusters to
large-scale supercomputers. The project’s repository is available at [10].

CMAQ/CCTM (Community Air Multiscale Quality Modelling System) is an active open-
source project of the U.S. EPA (Environmental Protection Agency) that delivers a suite of pro-
grams for conducting the air quality model simulations. CCTM (The CMAQ Chemistry-Transport
Mode) is a parallel implementation of the advanced chemical transport model in CMAQ which is
often used in computer-aided policy making for improving air quality [15]. It is the only CMAQ
program that can be run in parallel.

CCTM runs require large input datasets with a complicated file structure. In our study, we
used the official single day simulation benchmark dataset distributed by EPA [5]. Both the project
description and the application are available at [1].

CM1 is a three-dimensional, time-dependent, non-hydrostatic numerical model. CM1 is de-
signed primarily for idealized research, particularly for deep precipitating convection and for
studies of relatively small-scale processes in the Earth’s atmosphere, such as thunderstorms [11].
Both the project description and the application are available at [9].

WRF (Weather Research and Forecasting model) is an example of a well-scalable application,
which motivated us to add it to the set of tests in order to increase the variety of requirements
of the GSS benchmark. The Hurricane Weather Research and Forecasting (HWRF) model is a
specialised version of the WRF model [16]. It is used to forecast the track and intensity of tropical
cyclones. Both the project description and the application are available at [2].

This document does not go further into theory as it is beyond its main subject.

1.2. Configuration of Testbeds Used for the Benchmark

We executed our benchmark on four testbeds using cutting-edge processors recently intro-
duced by four major processor vendors: Xeon R©Gold 6140 from Intel [31], AMD EpycTM 7551
from AMD [3, 25], ARM Hi1616 from HiSilicon [4, 20], and Power8 from IBM [13, 14]. While
Tab. 1 summarises relevant technical characteristics of our testbeds, the following paragraphs
describe important architectural improvements introduced into the processors.

Intel R© Xeon R© Gold 6140 (SkyLake SP). The new core for Skylake-X, technically called
the Skylake-SP core architecture, delivers new improvements compared to the previous Broadwell-
E platform. One of those “upgrades” has been targeted at a better SIMD performance: clustering
multiple data entries into a single element and performing the same operation to each of them at
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Table 1. Testbed characteristics
Intel R© Xeon R© Gold 6140 AMD EpycTM 7551 ARM Hi1616 Power8+ S822LC

No. of nodes 2 1 2 1
Cores per node 36 64 64 20
CPU Frequency [GHz] 2.3 2 2.4 2.92
L1 (data) cache 1.125 MB 2 MB 2 MB 1.25 MB
L2 cache 36 MB 32 MB 16 MB 10 MB
L3 cache 49.5 MB 128 MB 64 MB 160 MB
RAM type (channels) DDR4 (6) DDR4 (8) DDR4 (4) DDR3 (4)
RAM frequency [MHz] 2666 2400 2400 1333
RAM capacity [GB] 192 512 128 512
I/O and disks type SSD SSD SSD SSD
Network 10Gb Ethernet –∗ 10Gb Ethernet –∗

TDP [W] 140 180 70 190
Processor price [USD] 2450 3743 300 1500

OS version Ubuntu 16.04.03 LTS CentOS 6.9 EulerOS release 2.0 (SP2),
Ubuntu 16.04.3 LTS

Ubuntu 16.04.2 LTS

Total bandwidth estimates (per node) [GBps]
L1 (data) cache 15897 6144 19660 2803
L2 cache 5299 8192 19660 2803
L3 cache 5299 8192 19660 3738
Total memory 119.21 158.95 71.53 230
SMP interconnect 62.4 37.92 48 38.4
I/O (maximum theoretical, simplex∗∗) 96 128 92 64

∗ These testbeds have only one node, therefore, network is not used in this case;
∗∗ All testbeds use PCIe interconnect, thus, for total I/O bandwidth at full-duplex simply multiply by 2.

once in one go. This has evolved in many forms, from SSE and SSE2 through AVX and AVX2 and
now into AVX-512-F. Other important changes available in Intel R© Xeon R© Gold are presented
separately in [31].

AMD EpycTM7551. This processor is based on the Zen microarchitecture and is manufactured
on a 14 nm process. This microarchitecture was designed from the ground up with data centres
in mind, for optimal balance and power. The new core design can process four x86 assembler
instructions per cycle and introduces Simultaneous Multithreading (SMT). Zen microarchitecture
also introduces a considerable number of improvements and design changes over Bulldozer includ-
ing wider instruction set, larger cache system, 2x higher bandwidth, better branch predictions,
etc [3, 25].

ARM Hi1616. The HiSilicon Hi1616 V100 products are based on ARM Cortex-A72 cores.
These are high-performance, low-power processors based on the ARMv8-A architectural platform.
Hi1616 features several major microarchitectural improvements in memory performance, as well as
in integer and floating point arithmetics that build on top of the current generation of ARMv8-A
cores [4, 20].

Power8+ S822LC. Being designed for “accelerated workloads in high-performance computing
(HPC), high-performance data analytics (HPDA), enterprise data centers, and accelerated cloud
deployments” [13, 14], IBM 8335 Power System S822LC for High Performance Computing server
Model GTB (8335-GTB) perfectly suits for all kinds of GSS applications. S822LC brings together
two POWER8 CPUs with four NVIDIA Tesla P100 GPUs through novel NVLink Technology.

HPC Processors Benchmarking Assessment for Global System Science Applications
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1.3. Measuring and Reporting the Performance Technique

In the process of preparing and launching the benchmark, we faced a number of technical
difficulties, which significantly influenced the approach we have chosen to measure and report
performance. This subsection highlights our approach to tackling those difficulties.

Since the analysed testbeds represent brand-new architectures, we encountered a limited num-
ber of tools for measuring metrics of interest which were strait available for all testbeds. In particu-
lar, many popular performance measuring tools – VampirTrace, Scalasca, etc – were not ported to
the ARM Hi1616 by the time of performing benchmark. Moreover, tested applications are written
in different languages – C/C++, Fortran, and Python – which reduces the range of performance
measuring tools suitable for all applications at once. On the other hand, our study is focused on
overall performance of the code and does not require instrumentation to measure and analyse
performance. Thus, we decided to omit specialised benchmarking libraries (e.g., LibSciBench [22])
and performance analysis tools (e.g., VampirTrace) in favour of standard Linux toolset available
out-of-the-box. The metrics of interest were measured by means of /usr/bin/time Linux utility.
This utility allows measuring the following metrics for the application as a whole and for each
separate MPI process: total elapsed real time, the number of filesystem inputs and outputs, maxi-
mum resident set size of the process, average total (data+stack+text) memory use of the process,
etc. We used measurements of the above-mentioned metrics and the data from Tab. 1 to compute
dependent metrics (like TDP and TCO) and to build all charts and plots in this paper. In or-
der to keep conditions of the experiments even, the system caches were flushed by calling sync;
echo 3 > /proc/sys/vm/drop caches before each experiment. All C/C++ and Fortran codes
were compiled with gcc version 5.4.0 using -O3. Python 3.5.2 was used as a Python interpreter
for the ABM4Py application.

In addition, we experienced issues with different orders of magnitude in elapsed times of the
applications. Even though we adjusted the input files to keep the elapsed time scales closer for all
application, we still had significant differences in total elapsed times between social simulation and
CFD software: each individual benchmark for social simulation codes consumed less than 3 hours
on any testbed, while benchmarks for some CFD application required more than 30 hours. The
latter fact prevented us from performing many repetitions of time-consuming CFD application
runs. More specifically, in order to reduce the number of repetitions, we started with 2 runs and
repeated the experiment until the ratio of the sample standard error to the sample mean of the
elapsed time was less than 5% in each test configuration. Since the number of measurements
generated with this approach, it is sometimes insufficient to construct meaningful confidence
interval as suggested in the performance reporting guidelines [22], Fig. 1 and 2 report sample
means of the measurements without confidence interval.

Last but not least, our testbeds were limited by 1–2 nodes, which is not enough to conduct full
scalability experiments with some of the selected applications. In order to overcome this obstacle,
we used the Eagle cluster equipped with 50 nodes containing 2, 14-core Intel Haswell E5-2697 v3
CPUs each, as a reference testbed, where we performed tests up to reaching the scalability bound.
This allowed us to get an impression on the scalability of the applications reflected in Tab. 2.

2. Benchmarking Results
Figures 1 and 2 summarise major benchmarking results for social science and CFD applica-

tions respectively. For each application, we include two plots: the first one – scalability plot –

D. Kaliszan, N. Meyer, S. Petruczynik, M. Gienger, S. Gogolenko

2019, Vol. 6, No. 2 17



illustrates the change in the total elapsed time with the grows of the number of MPI processes for
all testbeds, whereas the second one – the metrics plot – presents all metrics measured for Intel
Xeon Gold 6140 with different number of MPI processes. Intel Xeon Gold 6140 has been chosen to
report details on measured metrics since it demonstrated the best performance compared to other
testbeds (see Section 3). Besides the plots for Intel Xeon Gold 6140, reports [24] and [23] contain
similar plots and supplementary information for the remaining testbeds. Both Fig. 1 and 2 share
identical legends. Note that scalability plot for HWRF application (Fig. 2g) lacks information
about ARM Hi1616 and IBM Power8+. We failed to port HWRF on those architectures.

2.1. HPC-compliant Social Simulation Software

Our benchmarks demonstrate high performance of IPF on different architectures. The appli-
cation scales to a number of available cores on all testbeds in out study (see Fig. 1a). On the
reference testbed, we observe the scalability bound for more than 1400 cores. Neither RAM, nor
I/O of modern architectures are the limiting factors for IPF performance (see Fig. 1b). The reason
of such good results is in a heavy use of highly optimised ScaLAPACK kernels in the IPF imple-
mentation. In contrast to other applications, in case of IPF, the least elapsed time is observed for
AMD EpycTM 7551 testbed (see Fig. 1a).

Along with IPF, we benchmarked a green growth agent-based model (ABM) of diffusion
implemented in ABM4Py and Pandora frameworks.

In both cases, despite a strong difference in parallelization strategies, we observe the same
pattern: ABMS applications produce a big amount of output which has a strong negative impact
on application performance (see Fig. 1d and 1f). As a consequence, according to our green growth
ABM, being I/O bound, current ABMS frameworks for HPC have moderate requirements to
CPU performance. Nevertheless, we must emphasise that the results can look differently for more
complex models with sophisticated agent activities and for simpler models which can be reduced to
iterative applying of sparse matrix-vector or matrix-matrix operations (e.g., random surfer model
and PageRank). Thus, our benchmarks for ABMS frameworks are not very illuminative and must
be extended with more sophisticated and more simple models to provide more evidences and draw
stronger conclusions. But discussion of the new representative ABMS models for benchmarking
goes beyond the scope of this text.

2.2. Large-scale CFD Applications

Our measurements demonstrate that CFD applications are in general CPU-bound (see Fig. 2).
Nevertheless, we observed that at some architectures, memory is also a bottleneck for some specific
choices of the number of MPI processes. In particular, we noticed that OpenSWPC is memory-
bound for a small number of MPI processes and CPU is bound for a large number of utilised cored,
as the memory consumption monotonically decreases with the number of MPI processes in this
application (see Fig. 2b). All benchmarked applications except for HWRF demonstrate the same
monotonic decrease in memory consumption (see Fig. 2). At the same time, system files’ outputs
make a solid contribution to the total elapsed time for such applications as CCTM and CM1 (see
Fig. 2d and 2f), which, in turn, imposes additional performance constraints on architectures with
low I/O bandwidth.
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Note: Both figures 1 and 2 share identical legends
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Figure 1. Results for social simulation applications
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Figure 2. Results for CFD applications
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Intel R© Xeon R© Gold 6140 provides the least elapsed time for all CFD applications from our
benchmark with one minor exception (see Fig. 2). AMD EpycTM 7551 beats Intel R© Xeon R© Gold
6140 in OpenSWPC for the small number of cores (see Fig. 2a). Nevertheless, performance of
AMD EpycTM 7551 degrades quickly compared to Intel R© Xeon R© Gold 6140 if the number of
utilised cores grows.

2.3. Implications for the Hardware/Software Co-design

Table 2 shortly summarises information about scalability of the benchmarked social simulation
software and about hardware bottlenecks revealed in the previous subsection. In this table, rows
from group “Bottlenecks” reflect which of the following – CPU, memory consumption, system files’
inputs or system files output – appeared to be limiting factors for performance of the benchmarked
applications, whereas the “Scalability” row presents the maximum number of utilised CPU cores
where we observed a decrease in the total elapsed time on the reference testbed – the Eagle cluster.

Table 2. Bottlenecks in the hardware and scalability of the benchmarked applications
Social simulation software CFD software

IPF
Pandora ABM4Py

HWRF OpenSWPC
CMAQ

CM1
Europe World 128x128 CCTM

B
ot

tl
en

ec
ks CPU X X X X X

RAM X

Inputs X

Outputs X X X X X

Scalability∗ ≈700 ≈128 ≈700 ≈64 ≥128 ≥128 ≥128 ≥128
∗ maximum number of utilised cores of Xeon E5-2697 v3 cluster that leads to reduction of the total elapsed time.

As Tab. 2 illustrates, most of the distributed GSS applications are memory-bound. Even
large-scale CFD codes can be bound by I/O and RAM under special circumstances. It allows
us to conclude that the fast memory is an essential requirement to HPC clusters for GSS ap-
plications whereas high CPU clock frequency plays a less important role. Moreover, since many
state-of-the-art GSS applications deal with large input and output files, we believe that GSS
software developers should invest more time into design of file-avoiding applications. Our scala-
bility tests show that hyper threading provides little performance improvements for most of the
GSS applications. Therefore, it makes little sense to invest money in expensive massively mul-
tithreaded chips (like Power8) for GSS users. We also recommend avoiding clusters with GPU
accelerated nodes since only a few popular GSS applications benefit from GPUs. In particular,
among widely used general-purpose ABMS frameworks and problem-specific ABMS codes for
HPCs, only the FLAME-GPU (Flexible Larg-scale Agent Modelling Environment) framework
utilises GPUs [26, 27]. Seldom use of GPUs is also partially related to the fact that most social
science applications are memory-bound. Being more specific, among the architectures used in
benchmarking, we recommend to build clusters upon ARM Hi1616 in case that energy efficiency
is a crucial requirement, or upon Intel R© Xeon R© Gold 6140 in case that performance is a first
priority while relatively high operating expense and capital expenditure are not an issue.

According to our benchmarks, the scalability of GSS applications is rather diverse. All appli-
cations from the social simulation software stack demonstrate poor scalability with one notable
exception – the IPF implementation. Moreover, even though our benchmarks do not demonstrate
this explicitly, it is also known that social simulation software scales are worse than the large-scale
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CFD codes. On the other hand, due to stochastic nature of ABMs, a typical social simulation
workflow assumes many simultaneous simulation runs, whereas the fitting step in reconstruction of
a synthetic population should normally be performed only once for a given dataset. Therefore, the
optimal number of nodes for the state-of-the-art should be defined by scalability of the synthetic
population and CFD codes (if the latter ones are of interest for the target GSS audience). We can
always bypass the gap in scalability of the synthetic population and ABMS codes and reach full
utilisation of clusters by making several simultaneous simulation runs (and treating simulation
results in a file-avoiding way).

Unfortunately, our results do not allow for drawing solid conclusions about node interconnec-
tions since the benchmarks had been done on the testbeds with only one or two nodes.

3. Discussion
The findings of this work allowed the authors to formulate the following conclusions:

• Among all tested applications, IPF is the least I/O demanding. For the reference architecture
it shows, the scalability is up to 700 cores. On the other hand, other selected processors scale
in the range of a number of physical cores, so we expect that using them in a multinode
configuration will result in a behaviour similar to the reference testbed.

• Green Growth-pilot applications are dominated by I/O operations (mostly output) where a
large HDF5 file is created and to which all processes save data;

• Results obtained for ABMS4py – another social simulation application-prove that it should
be subject to major improvements. For instance, the best execution time on Intel R© Xeon R©
Gold 6140 is observed for only 9 MPI processes, whereas the testbed includes 72 physical
cores (2-node configuration with 2 chips each, 18 cores per one chip)

• OpenSWPC benchmark for given input configuration reports good scalability. It is especially
illuminative in case of the reference testbed where the execution time decreases along the
number of cores used until the maximum number of 1400 is used. Other processors show
similar behaviour. Using hyper threads (where possible) does not provide any further time
improvements.

• CCTM is I/O dominated (especially output) application and, thus, the impact on the exe-
cution times is high

• CM1 results indicate a relationship between the problem size (weather map grid) and the
processors mesh, as well as the dependence between the number of threads and nesting of
cores in different levels of cache.

• HWRF demonstrates very similar results to CM1 in terms of scalability on processors
equipped with the implementation of simultaneous multithreading

• Best execution time gets usually achieved (when considering single nodes) for the number
of processes equal to the number of cores: 64 for 2-node ARM Hi1616 and 1-node AMD
EpycTM, 72 for 2-node Intel R© Xeon R© Gold 6140, 20 for 2-processor 1-node Power8+;

• In most cases, hyper threading does not bring any performance improvements.

For the final comparative analysis, two additional metrics have been introduced:
• Energy efficiency calculated as a product of walltimes and TDP products which scales and

binds the achieved timing results by processors by the theoretical heat generated during the
tests and/or the energy consumed by processors.
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• Cost efficiency using scaled timing results by the cores price falling on the given number of
cores (cores price is calculated by dividing processor price by a given number of processor
cores).
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Figure 3. Benchmarking summary results

In the scope of aggregated execution times for the given number of cores, it can be noted that
among the whole range of the number of cores, the winner is Intel R© Xeon R© Gold 6140 (Fig. 3a).
Surprisingly, the AMD EpycTM is slower than the ARM Hi1616 when 64 or more cores are used
(it is mostly because hyperthreading degrades the performance in some cases) and is also slower
than the reference Intel R©Xeon R© E5-2697 when 9 or more cores are used.

By looking at the aggregated execution time across all tested applications, the winner turned
out to be Intel R© Xeon R© Gold 6140 (Fig. 3b).
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For the estimated cumulative energy consumption (calculated as a sum of walltimes and TDP
per used cores products expressed in kilowatt-hours) metric, the winning processor is ARM Hi1616,
representing the current tendency in HPC, where attention generally speaking is turned to energy-
efficient technologies. The second-place holder is Intel R©Xeon R© Gold 6140 and Power8+ brings
up the rear (Fig. 3c).

The estimated power consumption chart is a good point of view when talking about green HPC
computing. The presented results are not exact because they are only dictated by the estimated
values based on the CPU’s TDP. Nevertheless, assuming the fact that almost all architectures use
the same memory model - DDR4, - it can be considered that most of the energy consumed is the
energy utilised by the processor. In this scope, the best energy consumption ratio is characterised
by the ARM architecture, which is absolutely designed for energy-saving solutions which are
also widely used in mobile devices. The results for the new Intel Skylake architecture were a big
surprise, which took the second place with a very similar result of about 20% more. The AMD
EpycTM demonstrated a much worse result, but from our observations, its internal architecture is
better suited to applications in which I/O systems play an important role.

Another valuable finding is based on GSS cost efficiency analysis (Fig. 3d). ARM Hi1616
turned out to be approximately 9 times better than for Power8+ (equipped with DDR3, NVLinks
were not utilised) and 15 times better than the reference Intel R© Xeon R© E5-2697 processor, mostly
due to its small number of expensive cores and relatively average timing results. Additionally,
when talking about general processor characteristics extracted from all the tests performed, IBM
Power8+ demonstrates particularly good performance for the applications with a big number of
I/O such as Pandora, OpenSWPC, CMAQ/CCTM. The best results are obtained when the total
output dominates over the input and RAM consumption. In many cases, it outperforms ARM
Hi1616, Intel R© Xeon R© E5-2697, and AMD EpycTM for I/O intensive applications. On the other
hand, Power8+ shows worse results than the above-mentioned processors if the applications are
computationally extensive while producing a relatively small amount of output. This is the case
of the IPF and ABMS applications. On all processors, all benchmarks show the highest efficiency
if the number of MPI processes is between 2 and the total number of physical cores. After that,
the efficiency usually drops remarkably as hyper threading is not utilised properly. At the same
time, it is quite often that the highest speedup is reached when the number of MPI processes is
significantly more than 20. It would be interesting to perform the tests on the testbeds including
more nodes.

When analysed simultaneously, all the abovementioned results proved that the most promising
ARM processor in the context of cost and energy consumption is the slowest one (mostly due to the
low clock frequency). Other competitor, Intel R© Xeon R© Gold 6140, is 5 times less cost-efficient
for GSS benchmark and slightly worse in energy consumption but it is approximately 3 times
quicker regarding the aggregated execution time. In other words, the future HPC investors with
the above information in place have the ability to decide which direction to follow: whether to
reach high compute intensity, minimise costs, or try to find the golden middle.

Table 3 presents the summarised results for each individual architecture in three separate
domains: walltime, energy efficiency and cost efficiency. The numbers reflect the weighted points
referring to the overall applications results in a given category (in this case, the less the better).
In general, the most promising processor is Intel R© Xeon R© Gold 6140 but those individuals for
whom the cost and environmental aspects are the most important should look closely at ARM
Hi1616.
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Table 3. Ranking of all tested architectures (the less the better)

Walltime Energy
efficiency

Cost
efficiency

ARM Hi1616 1.0 0.2 0.1
Intel R© Xeon R© Gold 6140 0.3 0.3 0.4
AMD EpycTM 7551 0.6 0.4 0.7
Intel R© Xeon R© E5-2697 v3 0.7 0.7 1.0
Power8+ S822LC 0.9 1.0 0.6

In general, it can be said, the most promising processor is Intel R© Xeon R© Gold 6140 but
those individuals for whom the cost and environmental aspects are the most important should
look closely at ARM Hi1616.

Conslusions and Future Work
The proposed benchmark gives a good evaluation tool for a relatively automatic way of pro-

ceeding with tests and receiving results which will directly allow using the best HPC architecture.
It means that the end user or the resource owner may finally have different criteria to fulfil their
requirements. The resource owner will focus on parameters which are globally efficient (all ap-
plications running on the machine), cost-efficient (TCO shown as CAPEX and OPEX, i.e. the
investment costs vs. maintenance costs of the HPC). The end user will, however, concentrate on
the fastest way to receive results and the most efficient way of parallelisation.

From that point of view, the benchmark could be extended by testing the scalability of the
e-Infrastructure and the energy consumption of the running benchmark automatically. A final
step of the benchmark could interpret the results for both groups of users and propose the best
HPC system in terms of size and architecture (CPU, memory size, aggregated speed to external
memory, if necessary).
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On large-scale clusters, tens to hundreds of applications can simultaneously access a parallel

file system, leading to contention and, in its wake, to degraded application performance. In this

article, we analyze the influence of file-access patterns on the degree of interference. As it is by

experience most intrusive, we focus our attention on write-write contention. We observe consider-

able differences among the interference potentials of several typical write patterns. In particular,

we found that if one parallel program writes large output files while another one writes small

checkpointing files, then the latter is slowed down when the checkpointing files are small enough

and the former is vice versa. Moreover, applications with a few processes writing large output files

already can significantly hinder applications with many processes from checkpointing small files.

Such effects can seriously impact the runtime of real applications—up to a factor of five in one

instance. Our insights and measurement techniques offer an opportunity to automatically classify

the interference potential between applications and to adjust scheduling decisions accordingly.

Keywords: performance, I/O, file-access pattern, interference, benchmarking.

Introduction

The computational demand of HPC applications is continuously growing, raising the per-

formance expectations of cluster users to unprecedented levels. In order to accommodate such

demands, HPC systems frequently employ specialized designs such as multi-dimensional torus

networks, GPU-based accelerators, and powerful parallel file systems. The latter are needed to

provide service for an enormous amount of file accesses in parallel. Such parallel file systems

are installed as centralized resources with a middle layer of I/O servers connected to storage

devices at one end and to compute nodes at the other. Decoupling compute resources from

I/O resources allows for better management and scalability of the I/O subsystem. However, the

centralized design also means that multiple applications may share the same file system. This

can lead to contention in the event of simultaneous file access and can substantially degrade ap-

plication performance. Applications that perform frequent file access requests or access massive

amounts of data are especially sensitive to such conditions, adding an element of variability to

their performance [36].

HPC applications that perform frequent or massive file access requests are quite common.

Examples include data-intensive codes such as MADCAP cosmic microwave background ana-

lyzer [34] and GCRM global cloud system resolving model [40]. They both write massive amounts

of data during execution, resulting in numerous write requests. In contrast, OpenFOAM contin-

uum mechanics solver [17] and Community Atmosphere Model (CAM) [22] of the Community

Earth System Model (CESM) [33] frequently checkpoint their state, resulting in small but re-

curring writes. Overall, very different classes of file-access patterns can be distinguished. Not

only do these patterns access the file system in unique ways, but their sensitivity to interference
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from other applications that access the file system at the same time also varies widely. Likewise,

they actively interfere with other I/O-intensive applications in different ways. All this makes ac-

cess patterns to be an important factor for file-system contention. Our initial experiments with

different access patterns revealed negligible interference in the case of read-read and read-write

contention. These results are also consistent with word-of-the-mouth understanding in the HPC

community. Therefore, we concentrated our investigation on write-write contention and the most

common access patterns involved.

File system contention and the associated performance degradation are well-known [8]. In

this context, the influence of request size and process count has already been studied from a

single-application perspective [21], while process count has been identified as a factor of domi-

nance when two applications compete for the file system [29]. Similarly, file-access patterns have

been studied in various contexts [12, 14, 20, 25, 37]. The novelty of our research is that we

study common write patterns found in HPC applications from the perspective of simultaneous

access from different applications. To this end, we first developed a micro-benchmark capable of

producing three distinct file-access patterns, simulating those of real applications. Two of these

patterns mimic application checkpointing and out-of-core processing, while the third pattern

mimics writing large files. We explored the interference potential of these patterns by running

them simultaneously against each other, in the form of either micro-benchmarks or realistic

applications covering check-point-intensive and data-intensive access patterns. We not only ob-

served different levels of interference between different patterns, but also identified some general

rules such as writing large output files dominating checkpointing at smaller checkpoint sizes,

with the trend being reversed for larger checkpoint sizes.

In our previous work, we analyzed write access patterns and their effect on interference [6].

In this work, we expand on the topic with a more realistic checkpointing pattern, evaluate how

the interference potential depends on the number of processes the application runs with, and

confirm our findings with a larger set of production codes. We summarize our contributions as

follows:

• An experiment design that allows the quantification of interference between different file-

access patterns.

• An I/O-server monitoring capability added to the hitherto purely application-centric in-

terference profiler LWM2 [9], enabling us to isolate distinct interference phenomena even

in noisy environments.

• An analysis of the interference potential of common file write patterns in HPC applications,

including the identification of a typical combination with high interference potential.

Taken together, our results pave the way for an effective reduction of interference in the

future. Specifically, it brings us much closer to the automatic recognition of applications with

high interference potential, allowing their I/O to be separated either in space or time.

The remainder of the paper is organized as follows. First, we provide the necessary back-

ground information on parallel file systems in Section 1. In Section 2, we present our approach,

including a taxonomy of file-access patterns, an explanation of our experiment design, an intro-

duction to the interference profiler LWM2, and a description of the I/O server monitor added to

LWM2 for the purpose of this study. After that, we present our results in Section 3, ranging from

micro-benchmark-only experiments to measurements with realistic applications. Finally, we re-

view related work in Section 4 before we draw our conclusions and outline future perspectives

in Conclusion section.
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1. Parallel File Systems

In order to accommodate an increasing number of concurrent file accesses, cluster file systems

evolved from a simple client-server model in the style of NFS into usually dedicated clusters

of servers and storage devices called parallel file systems. In the most common configuration,

a parallel file system connects servers and storage devices via a dedicated network, while it

connects servers to compute nodes via a shared message-passing network, as shown in Fig. 1.

Clients running on compute nodes forward file-access requests to the I/O servers. Then I/O

servers then distribute them to the attached storage devices—according to the mapping of files

onto storage devices. This allows handling simultaneous file accesses with better performance.

Additionally, striping individual files across multiple storage devices supports efficient parallel

access to a single file. Following these general design principles, several implementations such

as Lustre, GPFS, FhGPS, PVFS, PanFS, and HDFS emerged. Below, we describe two popular

parallel file systems used in our experiments in more details.

1.1. Lustre

Lustre is a file-storage system for clusters used by many of the Top500 HPC systems [24].

It offers up to petabytes of storage capacity and provides multiple gigabytes per second of I/O

throughput. Its architecture distinguishes two basic types of servers: metadata servers (MDSs)

and object storage servers (OSSs), as shown in Fig. 1. An MDS stores file-system structure

information, including directory layout and file attributes. An OSS stores the actual file-data

stripes on the attached object storage targets (OSTs). When an I/O request is made, MDS and

OSS internally perform different types of file accesses. The MDS performs search and small read

and write operations on the file structure information, while the OSS performs potentially large

reads and writes on the actual file. Decoupling metadata from data makes it possible to optimize

each server type for its most frequent access pattern.
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Figure 1. A typical Lustre configuration, with separate I/O servers for metadata and file storage
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1.2. GPFS

General Parallel File System (GPFS) is a proprietary parallel file system developed by

IBM [3]. It is often found on Blue Gene systems but is also available on other HPC clusters

such as TSUBAME 2.5. It supports multiple configurations, including the shared-disk-cluster

configuration, in which every compute node manages a part of the file system. However, on large

HPC systems, a separate I/O subsystem is more common. In such a configuration, GPFS can

span an I/O subsystem with thousands of nodes. GPFS stores data files and their associated

metadata on the same block-based devices called network shared disks (NSDs). This makes

GPFS also suitable for applications with small file accesses such as Web servers. GPFS stripes

data files across all disks in a storage pool, achieving high performance. In addition, internal

storage pools can be defined to provide different levels of availability and performance for certain

files.

2. Approach

Many HPC applications are data-intensive, that is, they perform extensive I/O operations.

They employ different I/O libraries and file formats and produce different process-to-file ratios.

Because of the fact that a significant proportion of applications still use POSIX-IO or MPI-IO

in the classic one-file-per-process manner [15], we concentrate our experiments on this configu-

ration, while also evaluating MPI shared-file scenarios. Given that using MPI-IO with one file

per process is essentially equivalent to POSIX-IO [34], at least on our test systems and on many

others, our micro-benchmarks exercise only MPI-IO.

Algorithm 1 Open-Write-Close

loop

Open New File

Write chunksize

Flush I/O Writes

Close File

end loop

Algorithm 2 Write-Seek

Open File

loop

Seek to the beginning

Write chunksize

Flush I/O Writes

end loop

Close File

Algorithm 3 Aggregate-Write

Open File

loop

Write chunksize

end loop

Close File

Figure 2. Three I/O access patterns

2.1. File Access Patterns

HPC applications exhibit a variety of file access patterns, whose frequent checkpointing,

file accesses for out-of-core processing, and writing of large output files are considered here.

We implemented three characteristic patterns corresponding to these three use cases as micro-

benchmarks, ran them with a range of file sizes, and measured their interference potential when

executed against each other as well as against realistic applications. Figure 2 shows the pseudo-

code of the three patterns.
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Open-write-close. The first considered pattern we consider is called open-write-close (OWC)

(Listing 1). In this pattern, each process creates a new file, writes data to it and then closes it.

In the next iteration, a new file is created again for data writing. The pattern is commonly used

for checkpointing in many applications, such as Flash [30], CESM [33] and OpenFOAM [17].

This access pattern generates a large number of metadata operations, while the actual amount

of data written to files can be small. On systems with limited metadata resources such patterns

can quickly create a bottleneck at scale. Compared to our previous work [6], we have updated

the open-write-close pattern to create a new file in each iteration, mimicking the checkpointing

pattern in a more realistic fashion.

Write-seek. In the write-seek (WS) pattern (Listing 2), a process opens a file at the beginning.

It then writes a chunk of data to it, and then seeks back to the beginning of the file. At the end

of execution, the process closes the file. This pattern is similar to the open-write-close pattern

in the sense that it performs a massive number of small file accesses. However, it generates less

metadata traffic as it reuses the same file, keeping it continuously open. Between individual

writes, only seek operations take place. The write-seek pattern captures a simplified version of

file accesses during out-of-core processing of HPC applications, such as in MADCAP [28]. Facing

memory capacity pressure, HPC applications often have to resort to out-of-core processing. This

means they write data they cannot hold in the main memory temporarily to a file, and read

it back once it needs to be processed. This results in a write-seek-read pattern. The pattern

can have many different instantiations with respect to write size, seek size, and read size. For

simplicity as our goal is measuring write-write interference potential, we have reduced the pattern

to a write followed by a complete seek.

Aggregate-write. In the aggregate-write (AW) pattern (Listing 3), a process opens a file at

the beginning and then continues to append chunks of data to it. The file gets closed at the

end of execution. This pattern is similar to large writes in such applications as MADCAP [34]

and GCRM [40]. The pattern involves a few metadata operations but many write operations,

resulting in large file sizes. At scale, this pattern can substantially challenge the performance of

an I/O subsystem.

Client-side I/O caching requires flushing the I/O traffic after every write operation for the

open-write-close and the write-seek patterns. Otherwise, writes of small chunks remain cached

in buffers for each OST in the Lustre client and are overwritten with the next write. We have

also found flushing of write buffers in real applications to be a common practice. Therefore, our

addition of buffer flushes is not unusual. The need for flushes does not arise for writes of large

chunks if the chunk size is larger than the OST buffer size. Moreover, this issue does not affect

aggregate-write, in which small writes are initially collected in the OST buffer and eventually

are committed to the file system. In order to have a consistent benchmark, writes were flushed

for both Lustre and GPFS, and for all chunk sizes.

2.2. Capturing Interference

To capture incidents of interference, we run the patterns side by side and measure the

change in throughput in comparison to an isolated run. We call the benchmark whose throughput

degradation we are interested in the probe. The throughput degradation serves as a quantification

of the passive interference it suffers. The benchmark causing this degradation through active
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interference is called the signal. To study the way that interference effects evolve over the runtime

of a specific, more complex probe application, we let the signal benchmark to also produce its

pattern in a periodic fashion, with I/O activity being interrupted by silent phases without the

I/O activity. Whenever the signal shows activity, the probe may suffer a dent whose depth

indicates the severity of the interference.

In order to measure how the I/O throughput of an application changes, we use the profiler

LWM2 [9] after extending it to suit our requirements. LWM2 is a lightweight profiler designed to

collect the most basic performance metrics with as little overhead as possible. The I/O metrics

relevant to our study are all measured in dynamically loaded interposition wrappers. One aspect

important to our study is the ability of LWM2 to represent performance dynamics in time slices.

In addition to production of a compact performance summary covering the entire runtime, LWM2

splits the execution into fixed-length time slices and generates a profile for each of them. The

time slice boundaries are synchronized across the entire system by aligning them with the system

time. As a result, the simultaneity of performance phenomena occurring in different applications

can be easily established. This is useful because it may indicate a causal relationship between

these phenomena. The duration of time slices is configurable. In our experiments, we use a

time-slice length of 4 seconds and a period length of 24 seconds for the periodic version of our

micro-benchmarks. In this way, each period covers at least a few time slices.

However, the mostly application-centric perspective of LWM2 confronts us with two chal-

lenges: noise from other applications not related to our experiments and irregular behaviors of

the I/O servers themselves. Ideally, I/O interference experiments should be conducted in a fully

controlled, noise-free environment. In practice, however, reserving an entire production cluster

for an extended period of time is too expensive. Moreover, the throughput delivered by I/O

servers is often non-uniform. For example, the exhaustion of cache space may result in a sudden

throughput drop. As a consequence, such irregularities may further blur the interference effects

we want to study.

In order to be able to keep our measurements as clean as possible from these two effects, we

extended LWM2 to monitor activities of the I/O server during execution of an application as

well. The server activities are captured in every time slice, allowing us to correlate events across

applications and I/O servers. In particular, this allows runs to be filtered out where the file-

server load is 10% higher than the application I/O traffic captured by POSIX/MPI-IO wrappers.

In addition, server-side monitoring allowed us to learn more about certain non-uniform but to

some degree predicable behaviors, which we are now able to exclude from our measurements, as

explained in Section 2.3. For both GPFS and Lustre, we estimated the I/O traffic to and from

the servers by profiling the InfiniBand counters of the servers. Moreover, for Lustre, we parsed

the diagnostic data updated by the Lustre client software running on each node to capture the

amount of reads and writes from/to the I/O servers.

2.3. Server-side Imbalance

In some experiments, we observed substantial differences among the execution times of

individual processes of an application that occurred sporadically with both file systems. In such

cases, most processes finished within the expected time, while the remaining ones had to keep

performing I/O for a significantly longer duration, sometimes more than twice as long, as shown

in Fig. 3a. Such observations are not uncommon and have been reported before [5]. One major

factor revealed in a closer investigation of the imbalance effect was unbalanced load on the file-
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Figure 3. Mapping one file to one OST reduces the runtime imbalance among processes

server side, as shown in Fig. 4. In particular, this happened with Lustre, where files are randomly

assigned to an OST in the one-file-per-process mode.

When an OST was shared by many processes, its performance dropped, which in turn

affected the throughput of the associated I/O server. We confirmed this observation by artificially

enforcing an equal number of files per OST in a small experimental run, which reduced the

disparity of execution time by more than 75%, as shown in Fig. 3b. However, such enforcement

is not feasible in a real world scenario, as it requires the number of processes to be a multiple of

the number of OSTs. With GPFS, the process imbalance effect occurred to a lesser extent with

large files because they were automatically striped across all NSDs, but more predominantly

with small files below the stripe size presumably for the opposite reason. Besides the OST/NSD

load imbalance, other factors, such as the straggler phenomenon [5], might also contribute to

the imbalance.

To accommodate the variance resulting from this imbalance, while still being able to discern

interference effects, we considered only the balanced part of a run. This approach is justifiable

since the imbalance only affects the later stage of a run, in which only a small portion of the

total I/O volume is written. In practice, we found that the I/O traffic in this tail-off stage is

usually less than 10%. As a result, we calculated the throughput drop and runtime dilation, our

comparison metrics, only up to the moment when the first of the two simultaneously running

programs had written 90% of its data volume. Even though this empirical technique did not

completely remove the effects of the server-side imbalance, it reduced the resulting imprecision

significantly and consistently, while preserving the effect of interference.

3. Evaluation

This section presents the results of our interference experiments. In these experiments, we

first ran pairs of our micro-benchmarks against each other to study the interaction of the different

patterns in their purest form. To confirm our findings, we then executed the micro-benchmarks

against three realistic applications, OpenFOAM, MADbench2, and HACCIO, used for simu-

lations of fluid dynamics, cosmic background radiation, and collisionless cosmic fluid creation,

respectively. Finally, we analyzed the interference effect observable between two instances of

each of these applications.

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 35



0 10 20 30 40

0

1

2

3

Time slices

I/
O

se
rv
er
s

0

2

4

6

8
·109

Figure 4. Write throughput of I/O servers. The performance of server 3 is degraded, leading to

a longer execution time of I/O operations and hence the application

3.1. Environment

The results were obtained on the TSUBAME 2.5 supercomputer hosted at Tokyo Institute

of Technology, Japan. The cluster comprises nodes in different configurations. The nodes used

in our experiments make up the majority of the cluster and are equipped with two Intel Xeon

X5670 (Westmere-EP, 2.93 GHz) 6-core processors, three NVIDIA Tesla K20X (GK110) GPUs,

and 58 GiB DDR3 main memory. The cluster employs a two-rail fat-tree InfiniBand 4X QDR

network, used both for message passing and file I/O traffic. The peak performance of the cluster

is 2843 TFLOPS.

TSUBAME 2.5 offers GPFS and Lustre file systems for parallel I/O at different mount

points, which are frequently updated. The configuration used in our experiments is as follows.

GPFS on /data0 is hosted on four file servers (NSD servers), each connected to 14 RAID

storage devices (NSDs), while Lustre on /work1 is hosted on eight file servers (OSSs), each of

them connected to 13 RAID storage targets (OSTs). We used only these mount points in our

experiments. On Lustre, metadata requests are handled by one MDS server with one additional

standby server. The qos threshold rr parameter of Lustre has been set to 16%, meaning

that storages are selected mostly in a round robin fashion. Additionally, TSUBAME 2.5 also

provides 120 GB SSDs on compute nodes as scratch space. All file servers are equipped with two

InfiniBand 4X QDR adapters, connecting them to one of the two rails of the fat-tree network.

Table 1 provides a summary of the two file systems on the mount points we used.

Table 1. Specifications of the file systems on TSUBAME 2.5

used in our experiments

PFS Mount Metadata File disks Bandwidth

point server server per server

GPFS /data0 N/A 4 14 20 GB/s

Lustre /work1 1 8 13 50 GB/s

3.2. Experimental Setup

Except for the experiments comparing patterns at different process counts, a single instance

of a mirco-benchmark or an application consisted of 256 processes, utilizing 64 compute nodes.
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As the experiments were carried out on a production system, we took care of filtering out runs

with more than 10% external noise. The filtering was done using the I/O server monitoring

module of LWM2. We also repeated each experiment five times and took the best-performing

run (i.e., with the lowest degree of external interference).

We executed patterns with file sizes ranging from 1 MiB to 256 MiB on a logarithmic scale.

For the open-write-close pattern and write-seek pattern, this meant that a file of the specified

size was written repeatedly, while for the aggregate-write pattern this meant that each write

operation had the specified buffer size.

3.3. Micro-benchmarks

In order to understand the interaction of different I/O access behaviors, we first paired up

the three access patterns to form a collection of interference scenarios. We ran each of the three

patterns against itself and against the other two, resulting in six experiments. For the purpose of

interference quantification, however, we had to consider each micro-benchmark once as a signal

and once as a probe, resulting in a total number of nine scenarios (i.e., {OWC,WS,AW}2).

Table 2. Write bandwidth observed in an experimental run on Lustre when probe

open-write-close is exposed to three different signal patterns at a chunk size of

1 MiB

Signal

Open-write-close Write-seek Aggregate-write

Standalone Bandwidth [GB/s] 28.4 31.6 42.2

Signal
Bandwidth [GB/s] 16.1 19.8 3.8

Degradation [%] 43.31 35.76 9.95

Probe
Bandwidth [GB/s] 16.3 16.8 9.6

Degradation [%] 42.61 40.85 66.2

Table 2 shows the write throughput when an open-write-close probe is exposed to three

different signal patterns. For both the probe and the signal patterns, we show the standalone

and the interfered throughput. We also quantify severity of the interference effect in terms of

the percentage degradation of the throughput T , defined as:

T =
Tstandalone − Tinterfered

Tstandalone
× 100.

A high value of the degradation indicates severe interference inflicted by the signal pattern.

As the focus of this paper is the severity of the interference, we restrict ourselves to relative

throughput degradation figures in the remainder of the paper.

3.3.1. Access Patterns

We executed the complete set of combinations on both GPFS and Lustre for chunk sizes

of 1 MiB, 16 MiB, and 256 MiB. Figure 5a shows a throughput drop observed with all pattern

combinations, for chunk sizes of both 1 MiB, 16 MiB, and 256 MiB. With the smaller chunk

sizes, we found aggregate-write to have a clearly higher interference potential than the other two
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Figure 5. Throughput drop when the patterns are executed against each other. A higher bar

means lesser throughput and higher passive interference. The top patterns indicate the probe,

while the patterns below the x-axis indicate the signal

patterns. When open-write-close and write-seek are executed against each other, their through-

put drops by about 45% to 55%. This can be explained by the equal sharing of I/O resources

between them. However, concurrent execution of aggregate-write against the other two patterns

reduces the latter’s throughput by more than 80%, while the effect of the two other patterns on

aggregate-write itself is much smaller. This indicates that aggregate-write dominates these two

patterns at a chunk size of 1 MiB and 16 MiB, occupying most of the I/O resources. At a chunk

size of 256 MiB, the I/O resources are distributed more evenly among the patterns. It can be

seen that open-write-close is less affected by aggregate-write compared to the 1 MiB case, while

aggregate-write is more affected by the other two patterns. Open-write-close, at chunk sizes

16 MiB and 256 MiB, when executed against itself, becomes serialized, that is, one pattern of

the pair executes first, almost completely degrading the second pattern during first’s execution.

We repeated the same set of experiments on Lustre. The results from the nine pair-wise

combinations of patterns for 1 MiB, 16 MiB, and 256 MiB are shown in Fig. 5b. The general

trend of the interference potential for the three chunk sizes is the same as on GPFS but with

different intensities. At a chunk size of 1 MiB, aggregate-write generates most of the interference,

How File-access Patterns Inuence the Degree of I/O Interference between Cluster...

38 Supercomputing Frontiers and Innovations



1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

Chunk size [MiB]

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

open-write-close
aggregate-write

1 2 4 8 16 32 64 128 256

Chunk size [MiB]

write-seek
aggregate-write

a) GPFS

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

Chunk size [MiB]

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

open-write-close
aggregate-write

1 2 4 8 16 32 64 128 256

Chunk size [MiB]

write-seek
aggregate-write

b) Lustre

Figure 6. Effect of chunk size on throughput degradation

again while itself being the least affected one. However, the disparity is not as strong as on GPFS.

As the chunk size is increased to 16 MiB and 256 MiB, respectively, the interference potential of

aggregate-write decreases, whereas that of open-write-close and write-seek increases. At a chunk

size of 256 MiB, write-seek causes most of the throughput reduction, more than 60% for the

other two patterns.

3.3.2. Chunk Size

As chunk size seems to be a crucial parameter for the interference potential of the above

mentioned patterns, we investigated this more closely by running open-write-close and write-

seek against aggregate-write for chunk sizes ranging from 1 MiB to 256 MiB on a logarithmic

scale. The results for GPFS are shown in Fig. 6a. Open-write-close seems to share I/O resources

with aggregate-write more evenly as the chunk size increases, with 256 MiB being the break-even

point. Write-seek shows a similar trend but with the slope shifted to the right. The convergence

here begins when a chunk size of 32 MiB is reached. Beyond this point, the progression is similar

to open-write-close, as I/O resources start to be shared more evenly. At the last data point of

256 MiB, the two patterns break even.

We also studied the sensitivity of interference to chunk sizes on Lustre. The results are

summarized in Fig. 6b. The trend of open-write-close on GPFS, where, at small chunk sizes,

aggregate-write dominates over open-write-close, reappears on Lustre. As the chunk size in-
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Figure 7. Throughput drop when the patterns are executed against each other. A higher bar

means less throughput and a higher passive interference. The pattern above each chart represents

the probe, whereas the patterns below the x-axis represent the signal. The signal pattern is

executed in a periodic fashion

creases, open-write-close starts to perform better. The trend culminates at 256 MiB, where

open-write-close and aggregate-write experience the same amount of throughput drop. In the

case of write-seek, aggregate-write dominates at small chunk sizes. However, as the chunk size

is increased, the trend is quickly reversed. Both patterns suffer the same amount of throughput

degradation at 16 MiB, beyond which write-seek starts to dominate aggregate-write.

3.3.3. High Frequency vs. Low Frequency

As the sensitivity to chunk size shows, the trend of interference among the patterns depends

on their specific characteristics. To evaluate this further, we consider the file access frequency of a

pattern. However, covering the whole breadth of possible write access frequencies is prohibitively

expensive. Instead, we expose the unaltered probe to a periodic signal, in which write activity

phases alternate with computational busy-wait phases, mimicking bursty I/O. The period length

of the signal was set to 24 seconds so that multiple consecutive time slices of LWM2 fall in one
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Figure 8. Effect of process count on the passive degradation produced by patterns on GPFS

and Lustre

period. Note that the write activity phases are repeated multiple times in a run. The results of

the experiments are shown in Fig. 7.

Overall, the interference trend, both for GPFS and Lustre, is similar to what was observed

for the sustained activity patterns, but with a lower intensity. Aggregate-write still dominates

over open-write-close and write-seek at a chunk size of 1 MiB. Similarly, at the larger 16 MiB

chunk size, aggregate-write causes a lesser degradation while finding itself being victimized to

a higher degree. On GPFS, at a chunk size of 16 MiB, open-write-close suffers less throughput

degradation against itself and against write-seek. One of the reasons it can be like this is at

lower frequencies and at larger write chunk size, is that the metadata operations cease to be

the I/O bottleneck, while, additionally, the low frequency prevents the write bandwidth of the

system from being saturated. As a result, the performance of open-write-close degrades to a

lesser degree.

3.3.4. Process Count

It has been previously observed that an application with higher process count dominantly

occupies the I/O resources of a system when run against an application with lower process

count [29]. However, does this relationship hold true if the two applications have different file

access patterns? We investigated this by running open-write-close and aggregate-write against

each other with a chunk size of 1 MiB. Because write-seek is similarly dominated by aggregate-

write at this chunk size, we have concentrated our study on open-write-close. For each run, we

executed the open-write-close pattern with 256 processes and the aggregate-write pattern with

64, 128 and 256 processes. The results of the experiments are shown in Fig. 8.

The blue line shows the throughput degradation of open-write-close while the red line shows

the throughput degradation of aggregate-write. For GPFS, we see in Fig. 8a that open-write-

close is degraded severely, even when aggregate-write occupies only one fourth of the space. As

we increase the process count of aggregate-write, open-write-close degrades even more severely.

Figure 8b shows the trend for Lustre, which is similar to that of GPFS, but with a lesser

degradation. Again, we see that open-write-close suffers higher degrees of degradation when run

against aggregate-write, even when aggregate-write is one fourth of the size. The throughput
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Figure 9. Throughput drop in MPI shared-file mode when the patterns are executed against

each other. A higher bar means less throughput and higher passive interference. The pattern

above each chart represents the probe, whereas the patterns below the x-axis represent the signal

of open-write-close decreases even further as the process count of aggregate-write increases.

From these experiments we can conclude that, when it comes to sharing I/O resources between

applications, the write-access pattern can play a bigger role than the application process count.

3.3.5. Shared File

Not to ignore this increasingly common mode, we also performed a set of experiments

on shared files. The file was shared in such a way that each process occupied a contiguous

portion of the file. For open-write-close and write-seek, the size of the contiguous portion exactly

matched the chunk size of the benchmark. For the aggregate-write pattern, the contiguous

portion matched the size of the total data written by a process.

Figure 9a shows the interference potentials on GPFS. At a chunk size of 16 MiB, aggregate-

write dominates the other two patterns significantly, while at 256 MiB, even though being still

dominant, it generates comparatively less interference for other patterns. These observations are

similar to the results with one file per process. However, we observed some cases in the pairwise
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execution of the patterns, in which one instance would completely dominate over the other

instance, effectively serializing the I/O traffic between the pairs. This near-serialization of the

I/O traffic was observed when running patterns against themselves as well as against different

patterns. Figure 9b presents the results on Lustre, where we observed that aggregate-write

dominates open-write-close at a chunk size of 16 MiB, while becoming slightly dominated by

write-seek itself. At a chunk sizeof 256 MiB, open-write-close and write-seek are evenly interfered

in all the runs but dominate aggregate-write. The behavior of aggregate-write is again consistent

with the one-file-per-process case. Open-write-close, however, is less prone to interference at

larger chunk sizes. Based on these observations, and considering that writing shared files is a

topic of research in its own right with its own characteristic set of access patterns, we believe

that a full coverage of shared files would justify a separate study.

3.3.6. Discussion

From the above results, it is clear that different I/O access patterns show different inter-

ference potential. The chunk size is also an important factor in determining which pattern is

dominant. At smaller chunk sizes, aggregate-write prevails over open-write-close and write-seek,

causing a notable degradation of throughput for the latter two while showing little impact on the

former. However, as the chunk size increases, the balance is shifted in favor of open-write-close

and write-seek. At a certain point, open-write-close and write-seek suffer as much as aggregate

write, beyond which the trend may even become reversed. On GPFS, open-write-close and write-

seek show similar degradation trends, while on Lustre, open-write-close has comparatively less

interference potential. The precise reason for our observations is unclear, but it seems that both

metadata operations including open, close, and seek on the one hand and the number of different

file blocks an application writes make it sensitive for interferention. At least, this would explain

the trend reversal shown in Fig. 6b. As the chunk size, increases together with it the number of

different blocks written by aggregate-write, the density of metadata operations shrinks.

3.4. Applications

After establishing an interference relationship among the access patterns through micro-

benchmarks, we investigated the same effects using realistic applications. First, we verified the

interference trend for micro-benchmarks against applications, and later confirmed it for appli-

cation vs application. In our previous study [6], we considered two typical I/O-intensive HPC

applications, OpenFOAM and MadBench2. Here, we extend the work by also evaluating our

approach with HACCIO, a code-writing large checkpoints, against the micro-benchmarks and

the other two applications. All three together of them provide one realistic use for each of the

three access patterns, as summarized in Tab. 3.

Table 3. Applications and the access pattern they

represent including the chunk size

Application Access pattern Chunk size

OpenFOAM open-write-close a few kilobytes

MADBench2 write-seek 74 MB

HACCIO aggregate-write 386 MB
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Figure 10. Throughput degradation of OpenFOAM when run against the patterns at different

chunk sizes

3.4.1. OpenFOAM

OpenFOAM [17], which stands for Open source Field Operation And Manipulation, is a free,

open source computational-fluid-dynamics (CFD) software package developed by OpenCFD Ltd

of ESI Group and distributed by the OpenFOAM Foundation. It was one of the first scientific ap-

plications to leverage C++ for a modular design. The package provides parallel implementations

of a rich set of libraries, from mathematical equation solvers to general physical models. Open-

FOAM uses standard C++ I/O for checkpointing at regular intervals. At each checkpoint, new

files of around a few kilobytes are created and written by every process, making its I/O behavior

similar to the open-write-close pattern. As LWM2’s C++ I/O profiling is still in progress, we

were only able to capture file-close counts for our runs. In our experiments, OpenFOAM closed

more than 14000 files per time slice. As this count is significantly larger than the process count

of the application, it indicates that most of those files were written to and closed in the same

time slice, making the file-close count an indicator of I/O throughput. Similarly, we used the

dilation of execution time, which occurs as a consequence of I/O performance drop, to gauge

the interference potential.

In our experiment, we ran the cavity example from the official tutorial of OpenFOAM

version 2.3.0 using 256 processes. Cavity involves processing of an isothermal, incompressible

flow in a two-dimensional square domain. Specifically, we used the icoFoam solver, in which

the flow is assumed to be laminar. We executed the cavity example in parallel with each of the

three pattern micro-benchmarks. We set the chunk size of the patterns to 1 MiB, the smallest

chunk size we used in our pure micro-benchmark experiments. We executed the runs on both

GPFS and Lustre, and adjusted the runtime of the patterns to fully overlap with OpenFOAM’s

execution.

OpenFOAM experienced degraded I/O performance when executed concurrently with all

the three patterns. The throughput drop caused by each of the patterns is shown in Fig. 10a.

As OpenFOAM’s I/O pattern is similar to open-write-close with a small chunk size, the large

interference potential of aggregate-write at such a small chunk size is immediately visible, leading
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Figure 11. Time-slice view of OpenFOAM when executed concurrently with two patterns on

GPFS

to more than 80% drop for Lustre and 90% for GPFS. Unlike the micro-benchmark, OpenFoam

also suffered about 80% throughput drop against open-write-close. One reason for this behavior

might be the unequal chunk size of the patterns and OpenFOAM. To verify this, we executed the

patterns at 2 KiB chunk size. The results are shown in Fig. 10b. Aggregate-write still dominates

over OpenFOAM, with a throughput drop of more than 90% for GPFS. Lustre, on the other

hand, shows a slightly reduced drop of 70% in throughput. Open-write-close now degrades

OpenFOAM’s throughput by around 60%, similar to what the micro-benchmark allowed us to

see. The interference of write-seek on Lustre remains at 30% for both chunk sizes. However, it

declines from around 50% for 1 MiB to 10% for 2 KiB on GPFS. Overall, the interference trend

is similar to that of our purely micro-benchmark-based observations.

To further understand the I/O interference dynamics during concurrent execution, we exe-

cuted OpenFOAM against periodic modes of open-write-close and write-seek. In this mode, the

micro-benchmark’s I/O access phases alternate with silence. This periodic mode highlights the

effects of interference during the I/O access phases. Figure 11a and Figure 11b show the time

slice view when OpenFOAM is concurrently executed with open-write-close and aggregate-write,

respectively. Against open-write-close, OpenFOAM’s performance degrades by 60%–70% during

active phases of the pattern in comparison to the silent phases. On the other hand, OpenFOAM

against aggregate-write degrades by up to 95% when the pattern performs I/O accesses. This is

clearly visible, as the file-close rate of OpenFOAM exhibits intermittent behavior under interfer-

ence. Comparing OpenFOAM to our open-write-close micro-benchmark, we see that it suffers in

a similar way when exposed to aggregate-write, that is, its performance degrades significantly.
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Figure 12. Throughput degradation of MadBench2 when run against different patterns

3.4.2. MadBench2

MADbench2 is derived from MADCAP cosmic microwave background radiation analysis

software. MADbench2 performs dense-linear-algebra calculation using ScaLAPACK [13]. It has

very large memory demands and its required matrices generally do not fit in the memory. As a

result, the calculated matrices get recorded to a disk and re-read when required. This means that

MadBench2 performs complex I/O operations in four phases. For our experiments, as the scope

of our study is write-write contentions, we concentrate on the first phase, which has only writes

and seeks. The other phases are either reads or a mixture of reads and writes. We henceforth

use MadBench2 to refer to the build with the first phase only.

For the experiments, we setup MadBench2 to use POSIX I/O in the one-file-per-process

mode. To maximize performance, we used the configuration recommended by Borill et al. [34],

which is: WMOD=1, NPIX=50,000, NBIN=36, NGANGS=1, SBBLOCKSIZE=1, FBBLOCK-

SIZE=128. Furthermore, as our focus is on file-access patterns, MadBench2 is configured to run

in I/O mode. In I/O mode, MadBench2 acts as a pure I/O benchmark, replacing computation

with busy-wait cycles. With this configuration, and using 256 processes, MadBench2 writes

670 GB of data, with each process, performing seeks with an offset of about 74 MB during

execution. This makes the I/O behavior similar to the write-seek pattern with a chunk size of

74 MB. For this reason, we executed MadBench2 against the three patterns at a chunk size of

64 MB. The results are shown in Fig. 12.

The throughput degradation on both file systems is quite different for MadBench2. On

GPFS, aggregate-write generates the most interference, reducing the throughput by about 80%.

Similarly, write-seek degrades the throughput of MadBench2 by about 40%. However, in the case

of open-write-close, MadBench2’s runtime improves. For a chunk size of 64 MiB, the higher inter-

ference aggregate-write generates is consistent with our micro-benchmarks results. On Lustre, all

the patterns generate similar interference levels, with aggregate-write degrading the throughput

of MadBench2 slightly less compared to others. The reason is that, for write-seek, the interfer-

ence trend already reverses at a chunk size of 64 MiB, as shown in Fig. 6b. Overall, the passive

interference behavior of MadBench2 resembles that of our write-seek micro-benchmark.
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Figure 13. Throughput degradation of HACCIO when run against different patterns

3.4.3. HACCIO

HACCIO is an I/O benchmark code derived from a cosmology software framework called

HACC (Hardware Accelerated Cosmology Code). HACC simulates the formation of collisionless

fluids under the influence of gravity using N-body techniques. HACC has very high I/O demands,

where a small simulation can write terabytes of data [7].

HACCIO writes large checkpoint files during its execution. It creates one file per process,

and incrementally writes data to it. During checkpointing, the files are written, read back, and

verified. As our work concentrates on write-write contention, we removed the read-back and

verification part in our experiments. HACCIO can use different I/O modes during execution,

including POSIX I/O, MPI with one-file-per-process or MPI with one or more shared-file.

In our experiments, we ran HACCIO with 256 processes and with POSIX I/O. During

execution, each process wrote 3.6 GiB of data to its file, in chunks of 381 MiB. The I/O behavior

can be equated to the aggregate-write pattern with a chunk size of 381 MiB. We ran HACCIO

against the three patterns with chunk sizes of 1 MiB and 256 MiB, respectively. The results are

shown in Fig. 13.

With 1 MiB, on both GPFS and Lustre, open-write-close and write-seek degrade HAC-

CIO’s performance to a smaller degree than aggregate-write. This trend is consistent with our

micro-benchmark results. In the case of aggregate-write, the degradation that HACCIO suffers

on GPFS is slightly higher than the one on Lustre (60% vs. 40%). In our micro-benchmark ex-

periments for 1 MiB and 16 MiB, we also saw aggregate-write suffering a degradation of around

40% on Lustre and one between 50% and 60% on GPFS. With 256 MiB on Lustre, the degra-

dation caused by write-seek grows to about 60%, while open-write-close and aggregate-write

cause around 50% degradation. This is again similar to what has been observed with micro-

benchmarks. Write-seek dominates aggregate-write at large chunk sizes. On GPFS, open-write-

close degrades HACCIO by less than 10%. On the other hand, write-seek and aggregate-write

cause about 50% degradation of the HACCIO write throughput. Overall, the trend is similar to

our micro-benchmark-based observations.
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3.4.4. Application vs. Application

With our knowledge of how isolated access patterns interfere with realistic applications,

we also investigated the interference between realistic applications, as it can occur in a live

production system. For this purpose, we ran OpenFOAM, MADBench2, and HACCIO first

against themselves and later against each other, always using 256 processes per application.

The results are shown in Fig. 14. In the figure, the x-axis shows the probe applications whose

runtime dilation is reported. For each probe application, we show a separate bar for each signal

application that is causing a degraded performance. In these figures, each application represents

an access pattern; however, each one of them has a different chunk size and access frequency.

Therefore, the interpretation of our results requires consideration of the pattern type, chunk

size, and access frequency.

On GPFS, HACCIO generates the biggest interference of all, with OpenFOAM being de-

graded by more than 90% and MadBench2 by more than 60%. The values are similar to open-

write-close against aggregate-write at a chunk size of 1 MiB and write-seek against aggregate-

write at 256 MiB. MadBench2 degrades OpenFOAM by more than 80% and HACCIO by more

than 10%. Here, MadBench2’s behavior diverges from write-seek, with high degradation for

OpenFOAM and low degradation for HACCIO. A possible explanation for OpenFOAM against

MadBench2 can be the large chunk-size difference, while for HACCIO it can be low access fre-

quency, as was observed for periodic probe signals in Fig. 7a. OpenFOAM against the other

two applications generates a comparatively small throughput degradation. This is similar to our

observation of open-write-close at small chunk sizes.

On Lustre, HACCIO degrades OpenFOAM by about 60%, while being degraded itself by

less than 10%, similar to what was observed with micro-benchmarks. HACCIO degrades Mad-

Bench2 by about 55%, while being degraded itself by about 40%. This is again similar to

micro-benchmark results, where for chunk sizes greater than 16 MiB, write-seek dominates over

aggregate-write. Looking at MadBench2 against OpenFOAM, we see that OpenFOAM’s runtime

is dilated by about 70%. This is because of the large chunk-size difference between OpenFOAM

and MadBench2.

Considering the different access patterns, write chunk sizes, and access frequencies, the

overall results are in line with our observations of synthetic micro-benchmarks.

4. Related Work

Several earlier studies identified typical I/O access patterns of HPC applications. Miller

et al. found I/O to be bursty and cyclic [23]. They also distinguished three access patterns,

namely required I/O, checkpointing, and data staging as the most common I/O types. These

patterns roughly correspond to our aggregate-write, open-write-close, and write-seek patterns,

respectively. However, they were studied to optimize I/O from a single-application perspective,

while we look at their interference potential when executed concurrently.

Byna et al. classified file access patterns to generate I/O-access signatures of applica-

tions [12]. These signatures were then used to improve data prefetching. Shan et al. created

a parameterized I/O benchmark called IOR that can mimic the file access pattern of realis-

tic applications [14]. Lofstead et al. found six common read patterns in the analysis part of

simulation software [37]. The read patterns were used to compare end-to-end performance of

logically contiguous and log-based files. Congiu et al. manually analyzed the I/O behavior of
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Figure 14. Throughput degradation when the applications are run against each other

applications to identify their patterns [20]. A framework, transparent to the application, then

translated the knowledge of these patterns into hints to the parallel file system. Lu et al. ana-

lyzed patterns in collective I/O and found that the access pattern of a process can be lost after

aggregation, negatively impacting cache performance [1]. To mitigate this effect, they proposed

a cache-management policy aware of collective I/O. In our work, we evaluate the interference

potential of I/O access patterns in concurrent execution.

Similarly, as part of the SIO initiative, Smirni et al. classified I/O accesses according to their

spatial and temporal patterns [18, 25]. Nieuwejaar et al. classified file accesses with respect to

access size, file size, access frequency, sequentiality, etc. in the CHARISMA project [39]. These

studies are orthogonal to our work and part of the broader field of file-access characterization.

More recent work on the topic includes characterizing read access patterns of applications with

the goal of optimizing reads for subsequent data analysis and visualization [37]. Liu et al. an-

alyzed server-side logs to identify I/O intensive applications and characterize their workloads,

providing recommendation to an I/O-aware scheduler [4]. Our work studies the effects of write

patterns on the I/O performance of other co-scheduled applications.

I/O performance has been the subject of several studies, looking at the performance from

a single application perspective [34], from the file-system perspective [26], and from the overall

system perspective [2, 11]. Further studies considered I/O interference between different jobs,

identifying variability [36], uncovering performance problems with statistical techniques [32],

and mitigating I/O interference through application coordination and scheduling [29]. In this

paper, we analyze how file writes of concurrently running jobs interfere and determine factors

that influence the magnitude of interference. While the application process count is already

known as one of the factors [29], we consider process count in the context of access patterns and

examine the influence of further parameters such as write-chunk size and access frequency on

write performance.

SIOX records I/O accesses at each level of the I/O stack, identifies access patterns, and

characterize the I/O subsystem [27, 38] with the objective of pinpointing I/O bottlenecks. Our

work contributes insights into write performance variation as a result of access patterns and

request sizes.
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Yildiz et al. studied the root cause of inter-application I/O interference in HPC storage

systems by comparing the impact of different factors [19]. They found that bad flow of control

in the I/O path caused interference in most cases. Whereas they looked at I/O interference from

the storage perspective, this paper takes an application-centric view.

Inter-application interference in general has also been subject of several studies. Skinner

et al. identified it as one of the five sources of performance variability [31]. Shah et al. estab-

lished a framework for correlating application performance across job boundaries and found I/O

to be highly susceptible to the overall system load [9]. Bhatele et al. observed communication

performance to be strongly influenced by co-scheduled applications on Hopper, a Cray XE sys-

tem [35]. Finally, Shah et al. developed a framework to estimate the impact of inter-application

interference on the execution time of bulk-synchronous MPI applications [10].

Several tools have been used to profile and monitor I/O performance of applications. Carns

et al. used Darshan to characterize I/O of applications at the system level [15, 16]. Uselton et

al. extended IPM for their statistical study of I/O performance variation [32]. We used LWM2

for our study because of its ability to generate synchronized, segmented profiles that allow the

performance of co-scheduled applications to be precisely correlated [9].

Conclusion

In this study, we analyzed inter-application interference effects caused by the interaction be-

tween various I/O access patterns, classified by their behavior, write chunk size, access frequency,

process count, and sharing mode. Specifically, we found that at small chunk sizes data-intensive

applications may significantly slow down checkpointing-intensive applications, even at smaller

process counts, but not vice versa. In one case, the runtime of a checkpointing-intensive applica-

tion was dilated by a factor of five. But the direction of the interference is continuously reversed

as the chunk size is increased.

Given the shared nature of the majority of parallel file systems, preventing I/O interference

altogether is challenging. As a general strategy to reduce it, one should try to separate I/O traffic

with high interference potential either in space or in time. However, in order to make such a

separation successful, it is important to decide what traffic should be separated. Leveraging

techniques demonstrated now with LWM2, file systems could be extended in the future to

recognize aggressive or sensitive patterns automatically, and dynamically separate them either

in space or in time. For example, traffic to a specific set of files could be (re-)routed to a specific

group of file servers or buffered locally to be written back at a later point in time.

In order to support the future interference-aware file-system designs, we plan to further

extend LWM2 to recognize application I/O access patterns automatically and suggest some

appropriate I/O resource scheduling policies. To this end, we want to take more complicated

patterns, chunk sizes, and I/O frequencies into account with the objective of building a reliable

I/O performance interference model based upon quantifiable application I/O characteristics.

The interference model would also pay attention to higher-level file formats such as NetCDF

and HDF5. Finally, with LWM2’s global time-slice view and the ability to detect interference

through correlation, we also see machine learning techniques as a promising research direction

for the prediction of interference and ultimately for its avoidance.
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In recent years, computational capacity of single Field Programmable Gate Array (FPGA)

devices as well as their versatility have increased significantly. Adding to that fact, the High Level

Synthesis frameworks allowing to program such processors in a high-level language like C++,

makes modern FPGA devices a serious candidate as building blocks of a general-purpose High

Performance Computing solution. In this contribution we describe benchmarks which we performed

using a kernel from the Lattice QCD code, a highly compute-demanding HPC academic code for

elementary particle simulations on the newest device from Xilinx, the U250 accelerator card. We

describe the architecture of our solution and benchmark its performance on a single FPGA device

running in two modes: using either external or embedded memory. We discuss both approaches

in detail and provide assessment for the necessary memory throughput and the minimal amount

of resources needed to deliver optimal performance depending on the available hardware. Our

considerations can be used as guidelines for estimating the performance of some larger, many-

node systems.

Keywords: high performance computing, FPGA, lattice QCD, Dirac operator evaluation.

Introduction

Quantum Chromodynamics is the theory describing the interactions of quarks and gluons,

explaining why the latter form bound states such as protons and neutrons. One of the charac-

teristic features of this theory is that quarks and gluons form a strongly coupled system in the

low energy regime. As a consequence, it is difficult to extract predictions for the properties of

such a system from First Principles of Physics. Up to now, the only available computational

tool allowing for such calculations are numerical simulations (Monte Carlo simulations) of a

discretized version of the theory, called Lattice Quantum Chromodynamics (LQCD). Tradition-

ally, physicists working in the field of LQCD searched for the most performant, vector machines

consisting of a large number of compute nodes, and have designed many new HPC solutions:

QCDOC [5], APE [1], QPACE [3], just to name a few. Currently, GPU and ARM processors

are considered for the next generation of supercomputing machines and it is an open question

whether FPGA devices could be used as an alternative.

In the discretized version of Quantum Chromodynamics the basic degrees of freedom are as-

sociated to each point of a four-dimensional grid representing a finite volume of four-dimensional

space-time. Sizes of such volumes vary from V = 106 up to V = 108 points. The most compute-

intensive part of any such simulation is the inversion of the Dirac matrix, which is of size

(24V ) × (24V ). The matrix has a sparse structure because it describes the nearest-neighbour

interactions. The Dirac matrix D(n,m)ABαβ acting on the vector ψ(n) can be written down as

follows [9]

1Department of Information Technologies, Faculty of Physics, Astronomy and Applied Computer Science, Jagiel-

lonian University, Kraków, Poland
2Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany
3M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków Poland

DOI: 10.14529/js�190204

56 Supercomputing Frontiers and Innovations



D(n,m)ABαβ ψ
B
β (m) = (mq + 4)ψAα (n)+

+
1

2

3∑
µ=0

[
UABµ (n)P−µαβ ψ

B
β (n+ µ̂) + U †,AB(n− µ̂)P+µ

αβ ψ
B
β (n− µ̂)

]
. (1)

The most elementary computational block is the evaluation of the single stencil, i.e. eval-

uation of the right hand side of (1) for a given value of index n. Note that the coefficients of

D(n,m)ABαβ matrix differ for each m, i.e. U complex-valued 3×3 matrices and ψ complex-valued

3-element vectors depend on position m. Therefore, each stencil involves loading of eight U(n)

matrices and nine spinor fields from the neighboring lattice sites, which in total corresponds to

360 input words. In case of double precision, this amounts to 2880 input bytes. One can exploit

the structure of SU(3) matrices and parametrize them in terms of 10 input words each, instead

of 18 in the naive formulation (9 real and 9 imaginary entries). We return to this point in Sec-

tion 2.2. U ×ψ matrix-vector multiplications require 1464 floating point operations for complex

additions and multiplications. P± are real-valued 4 × 4 constant matrices, mq is a real param-

eter corresponding to the quark mass, µ labels directions in the four-dimensional space-time.

Repeated indices are summed within the ranges: α, β = 1, . . . , 4, A,B = 1, 2, 3. For unexplained

notation, please see [9] or [7]. One of the simplest algorithms allowing to invert such a matrix

is an iterative conjugate gradient algorithm. The relevance of this algorithm is demonstrated by

the fact that HPCG benchmark has been introduced since November 2017 as a new ranking of

supercomputers published by TOP500 organization. Such benchmark differs from the tradition-

ally used Linpack benchmark where the employed matrix was dense. The argument behind the

HPCG benchmark is that sparse matrix computations in many cases are more representative of

the variety of HPC applications which run on a supercomputer. Indeed, the iterative solver of

the type of conjugate gradient is, for instance, at the heart of Monte Carlo simulation of QCD.

The rest of this article is organized as follows. In the next section we specify the details of

the implemented algorithm as well as summarize the description of the kernel which is being

hardware-accelerated. Subsequently in the following Section, we propose two implementations

on the FPGA devices which differ by the location where the main data is stored, either these

are registers in the programmable logic, or an external DDR memory bank attached to the

programmable logic. In Section 3, we compare and discuss the achieved performances using

both approaches. Eventually, we conclude and point out future research directions.

1. Kernel Description

In this work, we consider an improved version of the conjugate gradient algorithm which

allows us to test different floating and fixed point precisions without a deterioration of the ulti-

mate solution. Similar considerations for GPU were presented in [4]. The algorithm intertwines

iterations in low and high precision, working mainly in low precision and correcting a possible

systematic error by a high precision iteration. Our algorithm follows the one suggested in [8]

and is shown in Algorithm 1. We provide an exact form of the mixed precision conjugate gra-

dient algorithm implemented in this work to show which parts have been hardware accelerated

and what is the interplay between parts of the algorithm requiring implementations in different

precision. In both cases, the most time consuming part is matrix multiplications in lines 2, 14

and 24 of Algorithm 1.
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Algorithm 1 Residual Guided CG algorithm

1: ψhigh ← ψhigh
0

2: rhigh0 ← ηhigh −
(
D†D

)high
ψhigh

3: shigh0 ← ||rhigh0 ||
4: r0 ← rhigh

0

shigh0

5: l← 0

6: while shigh ≥ rhighmin do

7: n← 0

8: ψ0 ← 0

9: r0 ←
rhighl+1

shighl+1

10: p0 ← pk −
(
r0 · pk

)
r0

11: α0 ← 0

12: β0 ←
shighl+1

shigh
l ρk

13: while n < k do

14: qn ← D†Dpn

15: αn ← ρn
pn·qn

16: ψn+1 ← ψn + αnpn

17: rn+1 ← rn − αnqn
18: ρn+1 ← rn+1 · rn+1

19: βn ← ρn+1

ρn

20: pn+1 ← rn+1 + βnpn

21: n← n+ 1

22: end while

23: ψhigh
l+1 ← ψhigh

l + shighl

(
ψk + αkpk

)
24: rhighl+1 ← bhigh −

(
D†D

)high
ψhigh
l+1

25: shighl+1 ← ||r
high
l+1 ||

26: l← l + 1

27: end while

We would like to hardware accelerate them and briefly summarize the FPGA implementation

of these kernel functions. We follow what was presented in [7]. In particular that Reference

contains a description of C++ data structures used for the implementation as well as relevant

details of the memory allocation which allows for a fully pipelined execution of the kernel.

Fragments of C++ and HLS directive codes are provided and discussed in that Reference.

For both high and low precisions of the kernel, implementation is similar: a single function

involves a loop over a subvolume and an evaluation of the stencil for each site of the lattice.

Evaluation of a single stencil is fully parallelized as far as data dependencies allow, this and all

stencils are pipelined.

All operations involved in the estimation of a single stencil are graphically shown in Fig. 1.

The evaluation naturally splits into 4 stages. The clock cycles provide an estimate of the amount

of parallelization and correspond to the number of clock cycles required to finish the computation

at a given stage in double precision. In the first stage, all the necessary data is copied from the

BRAM memory blocks to local registers which only requires one clock cycle. In stage 2, linear

combinations of input data, 8 additions and 8 subtractions of vector type are evaluated. They are
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Figure 1. Computation sequence of the stencil solver

all performed in parallel, taking 14 clock cycles, which corresponds to a single addition of double

numbers in programmable logic. The most compute-intensive stage 3 involves SU(3) matrix by

vector multiplications. In total, 1152 operations are performed. Complete parallelization allows

to execute them in a 5-layer operation cascade, taking in total 5 ∗ 14 = 70 cycles. Finally,

at stage 4, all contributions are added up to the final result. Because of the dependencies

between consecutive partial results, a 4-layer operation cascade gets created, which in total

takes 57 = (4 ∗ 14) + 1 clock cycles, 4 additions plus one data copy. Overall, the kernel requires

142 clock cycles and a total of 1464 basic operations to compute the final result since the

reception of the input data. The kernel is fully pipelined: i.e. it can accept new input data at

each clock cycle and produce results with latency of 142 cycles.

2. Two Approaches

There are two approaches one can follow in order to provide required data to the kernel.

One can divide the entire problem into small parts so that the entire set of data for a single part

fits into the BRAM memory of the device. Alternatively, one can store the entire set of data

in the DDR die attached to the programmable logic and stream the data through the link. We

discuss performances of the both solutions below.

2.1. A Smaller Lattice Stored in BRAM Memory

This is the approach we followed in [7]. We showed that lattices up to the size of 12×83 data

points in each direction in double precision can fit into the internal memory of the programmable

logic of the FPGA devices available currently on the market. In Fig. 2, we show the required

number of URAM blocks for a given size of the lattice for single and double precision. As one

can in that figure, the storage requirements are not linear because it is crucial to store data

in PL in as many separate PL local registers blocks as possible in order to allow the compiler

to take advantage of the natural parallelism of FPGA devices. This is due to the fact that in

a single PL clock cycle only one memory element can be read from the BRAM block. In the
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Figure 2. Memory usage as a function of the initiation interval

computation of a single stencil, one needs eight different U matrices and we insist that they are

stored separately. Although this requires duplicating the amount of stored data, the matrices

U(n) and U †(n) are stored separately, the gain is considerable. The HLS directives ensuring

such memory allocation were described in [7]. Thanks to that, the stencil evaluation can be fully

pipelined, i.e. the hardware block can accept new input data at each clock cycle. The resulting

performance simulated in software is 812 GFLOPs for single precision and 406 GFLOPs for

double precision with the PL running at 300 MHz.

2.2. A Larger Lattice Streamed from the DDR Memory

The way to operate on larger data sets is to keep the data in the DDR die attached to

the programmable logic and process the data in a streaming mode. This was investigated on

the Maxeler system in [6]. The U matrices and ψ spinors are prepared beforehand into sets

corresponding to consecutive stencils and are streamed continuously from the DDR into the

logic. The limitation of this solution is the throughput of the memory link between the DDR

and the logic. Using SDAccel and an openCL implementation of the CG algorithm, we verified

that one can send 256B for the Xilinx U250 device from the DDR memory to the PL part

per clock cycle, working at the frequency of 300 MHz. Four channels are available aggregating

to 77 GBps throughput. In order to decrease the amount of data transferred, we change the

representation of U matrices, and following [2], we use a 10 parameter parametrization. We

trade two more parameters and avoid computing trigonometric functions in the programmable

logic. The reduced set of data translates to an initiation interval of 5 and 9 clock cycles for the

compute kernel for single and double precision respectively, i.e the programmable logic has to

wait 5/9 clock cycles to gather enough data to start a new computation. The performance in that

case would approximately be equal to 86 and 46 GFLOPs respectively, which is comparable to

the one quoted in [6] on the Maxeler system. However, if we also count the additional operations

needed to recover U matrices from their reduced form, the achieved sustained performance

reaches 194 GFLOPs for single precision. In Fig. 3, we show how the required throughput

depends on the initiation interval. The calculation assumes the reduced form of U matrices. The

smaller the initiation interval is, the shorter is the time in which the data has to be transferred.
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Figure 3. Transmission rates as a function of the initiation interval

Figure 4. Performance as a function of the initiation interval

We show the throughput estimates for single and double floating point precision. Knowing the

throughput between the DDR and the programmable logic on a given device, one can easily read

the corresponding minimal initiation interval and henceforth the resulting performance, which

is shown in Fig. 4 for both the single and double precision case.

Finally, in Fig. 5 we show how the hardware resource consumption depends on the initiation

interval for single and double floating point precision but also for a more FPGA friendly 32 bit

fixed point data format. In this streaming scenario one can relax the initiation interval of one

clock cycle imposed in the first approach. The memory throughput being the bottleneck, one

can implement the kernel with a lower initiation interval because in any case several clock cycles

are needed to collect all the necessary data for a single stencil computation. The figure shows

an indicative percentage of all available resources counting together all DSP, LUTs and BRAM

blocks. We see that in the described case where the memory throughput imposes an initiation

interval of 5 clock cycles the compute kernel uses only 20% of the available resources for double

precision.
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Figure 5. Resources consumption as a function of the initiation interval

3. Discussion

The presented results allow understanding various constraints limiting performance of the

investigated kernel on FPGA devices. Starting from the embedded memory scenario, the prac-

tical problems that are being analyzed are larger by a factor of the order of 4096. One would

probably use that amount of FPGA devices running in parallel and exchanging boundary data

directly from and to the programmable logic through the embedded transceivers. On the other

hand, in principle, the entire set of data could be stored in the DDR in the external memory

scenario. However, the wall clock time to the solution on a single FPGA device would be imprac-

tically long. In that case, one would also resort to a many-node system where the computations

could be speed up by running them in parallel. In principle, neither of the two scenarios is

obviously superior. The number of required nodes can be different in both solutions and the

details would depend essentially on the memory throughput of the FPGA device used. With the

numbers provided above, such estimations can be put on a solid ground.

Conclusions

In this contribution, we discussed the applicability of FPGA devices to High Performance

Computing solutions. We used the academic code for Monte Carlo simulations of Quantum

Chromodynamics as a benchmark. In traditional computer architectures, this code is memory-

bound due to the unfavorable ratio of the amount of data to be loaded to the amount of

floating point operations to be executed be the most elementary kernel function. On the available

programmable logic hardware, the problem turns out to be memory bound in the scenario where

data is streamed from the DDR die, which will be considerably improved with the arrival of

Xilinx Alveo U280 cards with a 480 GB/s memory bandwidth between DDR and programmable

logic. In the scenario where data is stored in the embedded memory, the problem’s limitation is

the available size of the internal memory. Both cases seem to be scalable and thus offer a viable

proposal for a larger scale infrastructure.
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Development of a RISC-V-Conform Fused Multiply-Add

Floating-Point Unit

Felix Kaiser1, Stefan Kosnac2, Ulrich Brüning2

c© The Authors 2019. This paper is published with open access at SuperFrI.org

Despite the fact that the open-source community around the RISC-V instruction set archi-

tecture is growing rapidly, there is still no high-speed open-source hardware implementation of

the IEEE 754-2008 floating-point standard available. We designed a Fused Multiply-Add Floating-

Point Unit compatible with the RISC-V ISA in SystemVerilog, which enables us to conduct de-

tailed optimizations where necessary. The design has been verified with the industry standard

simulation-based Universal Verification Methodology using the Specman e Hardware Verification

Language. The most challenging part of the verification is the reference model, for which we in-

tegrated the Floating-Point Unit of an existing Intel processor using the Function Level Interface

provided by Specman e. With the use of Intel’s Floating-Point Unit we have a “known good” and

fast reference model. The Back-End flow was done with Global Foundries’ 22 nm Fully-Depleted

Silicon-On-Insulator (GF22FDX) process using Cadence tools. We reached 1.8 GHz over PVT

corners with a 0.8 V forward body bias, but there is still a large potential for further RTL opti-

mization. A power analysis was conducted with stimuli generated by the verification environment

and resulted in 212 mW.

Keywords: floating-point, multiply-add, risc-v, hardware-design, verification, uvm, synthesis,

asic, gf22fdx, ieee754.

Introduction

The open-source RISC-V Instruction Set Architecture (ISA) has gotten great attention in

the last years and continues to thrive. However, it has yet to enter the realm of High-Performance

Computing (HPC). To enable high-performance processors based on RISC-V, it is crucial to pro-

vide fast hardware Floating-Point Units (FPUs). Arguably, the most considered ranking of HPC

systems is the TOP500 [17]. The criterion for this list is the floating-point-performance based on

the benchmark LINPACK [12]. LINPACK is a numerical library for linear algebra. Therefore,

floating-point multiplication with subsequent additions need to be performed. This corresponds

to the function of the so called Fused Multiply-Add (FMA) units. FMA units implement a

multiplication and a consecutive addition without intermediate rounding in hardware. Conse-

quentially, the high throughput and energy efficient FMA units count to the essentials in HPC

hardware. That is the reason why we are focussing on them within this paper.

Due to the standardization of floating-point called IEEE 754-2008, modular FPUs and espe-

cially FMAs have already been on the market for decades. The need for a new RISC-V-specific

implementation lies in the nature of that standard: For historic reasons not each statement

it contains is unique. To keep the design of the ISA clean and the results of different imple-

mentations reproducible, RISC-V makes these decisions fixed, but different from the existing

implementations [20].

The latter enables the possibility to develop a universal verification environment for FPUs.

This is another challenging point we are tackling within this work. Due to the high number of

possible input patterns, we applied a simulation-based approach following the industry standard

Universal Verification Methodology (UVM). UVM intends to generate constraint-random stimuli
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2Heidelberg University, Heidelberg, Germany
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for the Design Under Test (DUT). The same stimuli is distributed to one or more reference

models to generate the expected result that is to be compared with the DUT output. As a

key component of this approach a reference model has to be “known good”. So we used Intel

Intrinsics to get low level access to the Intel FMA unit of the processor running the verification

tasks. Since some details were not covered by this model, we decided to integrate Berkeley

SoftFloat, which is a software implementation of the IEEE floating-point standard.

Besides the Register Transfer Level (RTL) further optimizations for speed and power can

be done in the Semi-Custom part of the flow. For the last step of the implementation, we

performed this Back-End design flow for Global Foundries’ 22 nm Fully-Depleted Silicon-On-

Insulator (FDSOI) process. This includes synthesis, floorplanning, placement, scan insertion,

clock tree synthesis and routing. Therewith, we are able to analyze which target frequencies

are reachable with and without Forward Body Bias (FBB) and estimate the expected power

consumption.

This article is organized in four parts. Section 1 gives an overview of the state of the art,

followed by Section 2, which presents the FMA unit architecture. In Section 3 we discuss our

verification approach, and in Section 4 the synthesis results are presented. Last but not least a

conclusion summarizes our work.

1. State of the Art

As the presented work consists of three major parts, namely the design, the implementation,

and the verification, different explorations need to be done. For the goal of a high-performance

unit, design and implementation have to go hand in hand. Hence, the exploration is split up

into development, which consists of design and implementation, and verification.

First of all, it has to be mentioned that not each IEEE 754-2008-conform FPU can be

compared with every other one. This comes from the fact that IEEE 754-2008 leaves some

decisions to the designer [2]. The RISC-V Foundation decided to avoid differences in functionality

between different RISC-V compliant FPUs by making these decisions fixed within their standard.

Following that, we only take other RISC-V-conform FPUs in consideration.

1.1. Development

The arguably most known implementation of a RISC-V FPU is the HardFloat of the Uni-

versity of California, Berkeley (UC Berkeley) [19]. It is used within different cores, or core gener-

ators, like the System-on-Chip (SOC) generator Rocket [4] and the Out-of-Order core Berkeley

Out-of-Order Machine (BOOM) [8]. The fastest Rocket Implementation is SiFives’ U54 Rocket

on the TSMC 28 nm HPC process with 1.5 GHz [7]. Due to its multiple usages and even Tape-

Outs, HardFloat can be counted as reliable. However, when it comes to high-performance, it

has disadvantages. HardFloat is developed using the high-level hardware generation language

Chisel [5]. Generally, Chisel does not take the opportunity to optimize a design completely, but

in case of HardFloat a descriptive approach instead of an optimized architecture is chosen. Fol-

lowing that, the whole optimization is done within the Back-End. This restricts the potential of

optimizing at the RTL.

Another open-source RISC-V-conform FPU is from Parallel Ultra Low Power (PULP) [11].

PULP is a platform of the ETH Zürich, where a set of RISC-V cores and peripherals they

developed are provided. There is also an FPU designed in SystemVerilog [16]. Unfortunately,
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it does not provide double-precision. It is also missing the rounding mode roundTiesToAway,

which is obligatory for RISC-V.

1.2. Verification

The common issue with verification is that not each possible input and state can be tested.

The provided design does not have a complex state, but, due to the wide inputs, it still can

not be verified by iterating through all possible values. Realizable approaches are formal or

simulation-based verification. Although there have been formal verifications of FPUs in the last

years [10, 14], the proposed design is verified simulation-based, due to the larger amount of time

needed for the corner cases in the execution of the formal methods [6, 9].

Since a verification environment for an FMA unit does not have to react to the internal state,

it can be verified by generating the stimuli statically. Also it can be generated offline, which both

increases the performance of the tests. An example of such a generator is IBMs FPGen [3], which

works using a constraint solver. Unfortunately, the actual generator, or constraint solver, is not

open-source, only a set of pre-generated single-precision inputs. Another approach, which is

even a part of the RISC-V ecosystem, is the so called TestFloat [15]. TestFloat is a similar

approach, that makes use of the SoftFloat model. SoftFloat is a software implementation of the

IEEE 754-2008. Even though TestFloat would work for our design, we are using an UVM-based

approach as it enables an efficient integration into system- respectively chip-level testbenches.

2. FMA Unit Design

Currently, the FMA unit supports all four double-precision fused operations defined in the

RISC-V ISA (Tab. 1) as well as add, subtract, and multiply. It supports all rounding modes re-

quired by the IEEE 754-2008 standard and additionally roundTiesToAway, which is mandatory

for RISC-V. Divide and square root will be implemented in the future using a Newton-Raphson

algorithm.

Table 1. Supported RISC-V floating-point instructions

Instruction Description Operation

FADD Add A + C

FSUB Subtract A− C

FMUL Multiply A ·B
FMADD Fused Multiply-Add A ·B + C

FMSUB Fused Multiply-Subtract A ·B − C

FNMSUB Negative Fused Multiply-Subtract −A ·B + C

FNMADD Negative Fused Multiply-Add −A ·B − C

Figure 1 shows the interface and architecture of the FMA unit, which is based on [18]. It

comprises three 64-bit inputs port a, port b, and port c for the operands, and the 64-bit wide

output port res for the result. The type of operation is determined by op, the rounding mode

by rm and exceptions are signaled at the output exception flags. A forward flow control (not

shown here) is implemented via valid in and valid out. valid in can also be used for clock-

gating inside the FMA unit. In the following, the main components of the design are described

in more detail. The Sign-/Exponent Transformation transforms the operand exponents from the
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Figure 1. FMA unit architecture (the dashed lines represent the three pipeline stages)

biased representation into 2’s complement and checks if the operands are normal, i.e. have no

special values. Furthermore, it calculates the difference between the products’ exponent (eA+eB)

and the addends exponent (eC). It also generates an effective subtraction bit indicating if the

absolute values of A · B and C are added or subtracted. The Result Classifier handles opera-

tions with special values, such as qNaN, sNaN, zero, infinity, and subnormal numbers. Product

Generation and Compression Tree perform the main part of the multiplication. Therefore, they

take the mantissas of operands A and B and provide the product in carry-save representation.

This allows to take the additional 3:2 Compressor Row to add another operand (mantissa of

C) at low cost and is one of the reasons to perform FMA operations at all. For a floating-point

addition, it is necessary to align the addends according to their exponent by shifting one of

them relative to the other. This is done by the Shift Alignment in parallel to the compression

tree. There is the case where one addend is much larger than the other, so the smaller one

is completely absorbed and does not change the result. The Adder and Complement resolves

the carry-save representation, as well as the following 2’s complement into an 1’s complement

intermediate result. In parallel to the Adder, a so called Leading Zero Anticipator estimates

the leading zeros of the intermediate result for the normalization. The latter is then done by

the Normalization Shift. Afterwards the result is finalized by the Rounding, Overflow and Sign

Handling unit, which determines if there is an overflow and performs rounding based on this

information.
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3. FMA Unit Verification

The verification of an FMA unit is a challenging task since a reference model is not easily

developed, and not all input combinations can be tested within a reasonable time. The latter

is mitigated with the simulation-based UVM, which we applied for the FMA unit. To avoid

missing test cases that would show an erroneous behavior, the test cases are not predefined but

instead generated constrained-random, which additionally facilitates automation. To keep track

of which parts have been tested, code coverage, as well as functional coverage is used. The last

important aspect is the checking. Due to its many special behaviors, the most challenging task

in the verification of an FMA unit in general is to automatically generate the answer to the

question whether a behavior is correct or not. Behavioral models, which are the common way

to solve that issue, are usually developed by a verification engineer for the specific design. Since

floating-point is standardized by IEEE 754-2008, other units can be used for this purpose.

One attempt of getting a reference for floating-point operations is to execute them in the

applied language for the testbench. In last instance, such an operation maps onto the FPU within

the utilized CPU. Since a higher level programming language and the instructions executed by

a processor are separated by abstraction layers, this introduces a lack of controllability. For

instance, the operation D = A · B + C may be compiled to a single multiplication followed by

an addition or to an FMA operation. In our approach, we force the processor to execute the

intended operation by using the programming language C and implementing the operations as

intrinsics [1]. Therewith, we get the reliability of a “known good” Intel FPU.

Monitor

Intel
Reference
Model

Softfloat
Reference
Model

Scoreboard

=

Coverage
Collector

=In-
Packet

Out-
Packet

TLM TLM

Figure 2. UVM Monitor applying the Intel Intrinsics reference model and the SoftFloat reference

model

This approach alone is not sufficient as a reference model for a RISC-V FPU. As mentioned

before, IEEE 754-2008 left some decisions to the implementer and Intel and the RISC-V Foun-

dation took different choices. For these situations, we integrated another reference model, the

already mentioned SoftFloat model [15]. Instead of just filling the holes using this model, we

integrated both models in parallel and checked them for common cases against each other as

shown in Fig. 2. Functional coverage is collected concurrently.
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4. FMA Unit Back-End

For the Back-End implementation, we chose a recent technology: Global Foundries’

22 nm FDSOI process. It applies an additional insulator layer to remove the diodes between

drain/source and the substrate. Furthermore, the channel is fully depleted, i.e. it is not weakly

doped, to reduce leakage current. The insulator layer acts like a back-gate, which can be used

to modify the transistor’s threshold voltage. A back-gate bias voltage generator can later be

used to apply a voltage to the back-gate, called Body Bias (BB). This allows to tune the circuit

for either more performance or lower leakage or compensate process corners. The latter already

emphasizes that this bias needs to be treated like process, voltage and temperature in static

timing analysis. The GF22FDX process offers four types of transistors for different applications:

high (HVT), regular (RVT), low (LVT), and super low (SLVT) threshold voltage devices. Since

we are looking for performance, we decided to use the SLVT standard cell library.

4.1. Synthesis Results

The floorplan was kept rather simple for this first implementation. We only defined the

height to be 119.68 µm. The length was adjusted to yield a utilization of 80%. A more detailed

placement will be part of future work, when more submodules are described at a lower abstraction

level. This will allow for more control about what is synthesized. Pin placement was done with a

later application in a RISC-V processor implementation in mind. RISC-V suggests a dedicated

floating-point register file, which will need three read- and one write-port to provide the operands

for fused operations. Assuming the register file will be located left of the FPU in a pipeline, we

placed the operand and result pins on the left side in an interleaved manner using metal layers

3 to 6 and a spacing of 0.35 µm. The remaining pins are also placed on the left side with a

spacing of 1.4 µm on metal 3 following the pins of port a. This is shown in Fig. 3a. Depending

on the exact register file size, this spacing may need to be changed in the future. To get a

realistic timing we already performed scan insertion for this first synthesis run. This replaces

all Flip-Flops (FFs) with Scan Flip-Flops (SFFs) that have a multiplexer in the datapath to

switch between the regular input (D) and the scan input (SI). The additional multiplexer delay

reduces the time available for other logic, but a scan chain is needed for chip testing. The effect

of the clock distribution was also considered by performing Clock Tree Synthesis (CTS). This

adds a buffer tree to the design to distribute the clock to all clock inputs and assures that the

rising clock edge reaches every FF within a defined time window. Subsequent to CTS the design

was routed. After routing the timing was met for a cycle time of 666 ps, i.e. 1.5 GHz over all

recommended implementation corners without using FBB. Figure 3b shows more details of our

results.

The synthesis results for the lower frequencies (blue curve) were obtained using the rec-

ommended corners for setup and hold analysis. These are slow (SS) and fast (FF) process,

10% voltage deviation around the nominal voltage of 0.8 V and a temperature of −40 ◦C and

125 ◦C. From these recommended corners the tools identified the combination (SS, 0.72 V, 125 ◦C,

RC max) to be most timing critical. The currently only partially optimized design suffers from

a significant area increase with rising target frequency. Figure 3b shows that the area roughly

doubles from 1.2 GHz to 1.5 GHz. Despite 1.5 GHz being our target frequency for now, we con-

ducted some tests for higher frequencies. For a real design, we could apply a FBB to increase

the performance. So we switched the corners to the corresponding recommended corners with
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Figure 3. Synthesis results

FBB. This allowed us to reach frequencies up to 1.8 GHz (red curve). To see where the design

performs typically, we synthesized with typical (TT) corners only (brown curve) and also with

their forward body biased versions (black curve). Typical corners are available for 25 ◦C and

85 ◦C. Here the tools identified (TT, 0.8 V, 85 ◦C, RC nominal) to be most timing critical. This

allowed us to reach up to 2.3 GHz. The tools used were Cadence Genus and Innovus.

Another observation is, that we can reach higher frequencies with only typical corners, than

with the recommended corners using FBB. This shows it is not possible, at least for this design,

to compensate a worst case corner completely by using FBB.

4.2. Power Analysis

For all points presented in Fig. 3b, a power analysis based on a value change dump (vcd)

file containing stimuli was conducted. The stimuli were generated with a modified test from our

verification environment using Cadence Xcelium. The testbench contained the netlist, derived

after all the previously described synthesis steps where executed, and a clock signal of the

corresponding target frequency. As a side effect we also got some confidence in the synthesis

procedure by running some stimuli through the implemented netlist. The test itself applied new

operands every clock cycle and performed a random operation with a random rounding mode.

The total power consumption for every design is shown in Fig. 4. The values were calculated for

the (TT, 0.8 V, 85 ◦C, RC nominal) corner for all points, with the ones implemented with FBB
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having their power determined with the corresponding FBB corner. We chose this corner for the

power analysis, since all parameters are closest to real operating conditions. The clock tree makes

up between 0.77 % and 1.56 % of the total power from high to low target frequencies, which

seems plausible for a small design. The power analysis was done with Cadence Innovus/Voltus.
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Figure 4. Power over target frequency for different corner setups

Figure 4 shows that the power scales with area and frequency. Figure 5 shows the power

consumed by the 2.3 GHz implementation operating at frequencies from 1.0 GHz to 2.3 GHz.

The linear rise of power with frequency is expected, but the values also show that a faster

design, which uses more area, also consumes more power at lower operating frequencies than a

design implemented for that particular target frequency. Besides the total power (black curve),

Fig. 5 also shows the three parts which make up the total power. There is the switching power

representing the loading/unloading of nets and the power used internally in the standard cells.

They make up the linear part. The third part (brown curve) is the leakage power, which is

constant at 33.6 mW over the operating frequency. This high leakage current is caused by using

SLVT standard cells and FBB.
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Figure 5. Power of the 2.3 GHz implementation over operation frequency
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To evaluate our synthesis results we compared them to [13]. Table 2 compares the two closest

FMA implementations in terms of the metrics used in [13]. We calculated the performance of our

design by assuming two floating-point operations per clock cycle, i.e. assuming the maximum

throughput possible. This was also done in [13]. Their design runs with 1.81 GHz in a 45 nm

technology using low threshold devices and six pipeline stages. Compared to our synthesis result

at 1.8 GHz for a typical process with super-low threshold devices, we have a similar power per

performance but are roughly a factor of 3 smaller in terms of area per performance. The latter

is contributed to technology scaling. The former is probably due to the low pipeline depth of

three versus six. A lower number of pipeline stages makes it harder to achieve timing, thus

requires the synthesis tool to use additional logic to fit the combinational logic into the cycle

time. Furthermore, our design is not optimized for power in any way yet.

Table 2. Comparison of our synthesis results with [13]

Property 45 nm FMA [13] Our 22 nm Design

Vth low super low

VDD in V 0.9 0.8

Pipeline Depth 6 3

Frequency in GHz 1.81 1.8

Area in µm2 49839 19066

W/GFLOPS 0.0253 0.0264

mm2/GFLOPS 0.0145 0.0053

W/mm2 1.75 4.98

Another interesting fact is seen in Fig. 6, which shows power per area over target frequency.

Firstly, power density scales linearly with frequency as expected. But the second observation is

that using FBB keeps the power density constant, whereas going from slow to typical corners

reduces power more than one would expect from the area shrink alone. This shows again, that

FBB is not enough to compensate worst case corners.
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Conclusion

This paper presents a design of a RISC-V- and IEEE 754-2008-conform FMA unit, which

passed the complete ASIC design flow. This work’s target is to lay the foundation for a high-

speed FPU. Although it is still work in progress, it reaches 1.8 GHz using FBB - which is faster

than the HardFloat of the U54 Rocket chip [7]. However, we do not have information on how fast

other FPUs could be implemented standalone, without the corresponding CPU core. In terms

of power, we still have room to improve, but power efficiency was not our goal. Still, we will

certainly have a closer look at it in the future.

Additional to design and Back-End flow, we ensured functional correctness by performing a

verification in which we checked the FMA unit against Intel’s FPU and the Softfloat reference

model. We also performed a small number of tests on the gate level during generation of the vcd

file used for the power analysis.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Fully Implicit Time Stepping Can Be Efficient on Parallel

Computers

Brandon Cloutier1, Benson K. Muite2, Matteo Parsani3
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Benchmarks in high performance computing often involve a single component used in the full

solution of a computational problem, such as the solution of a linear system of equations. In many

cases, the choice of algorithm, which can determine the components used, is also important when

solving a full problem. Numerical evidence suggests that for the Taylor–Green vortex problem

at a Reynolds number of 1600, a second order implicit midpoint rule method can require less

computational time than the often used linearly implicit Carpenter–Kennedy method for solving

the equations of incompressible fluid dynamics for moderate levels of accuracy at the beginning

of the flow evolution. The primary reason is that even though the implicit midpoint rule is fully

implicit, it can use a small number of iterations per time step, and thus require less computational

work per time step than the Carpenter–Kennedy method. For the same number of timesteps, the

Carpenter–Kennedy method is more accurate since it uses a higher order timestepping method.

Keywords: incompressible Navier–Stokes equations, parallel computing, spectral methods, time

stepping.

Introduction

Benchmarks in parallel computing are often micro-benchmarks or computationally expensive

components of full applications, such as solvers for linear systems. It is often the case that

the choice of numerical method can be as important as the optimization of the component

subroutines. To be able to compare different choices of numerical methods, full application

benchmarks are also very useful. The International Workshops on High Order Computational

Fluid Dynamics methods [7, 12] are a conference series with the aim of comparing the speed and

accuracy of computational fluid dynamics software for solving particular well defined problems.

One of the considered cases is the Taylor–Green vortex at a Reynolds number of 1600. This is a

case where there is a vortex instability which is difficult to compute correctly using low resolution

or a poor numerical method [24]. While there are a wide range of spatial discretization methods

suitable for solving the Navier–Stokes equations, Fourier spectral methods are a class of methods

where the choice of time stepping procedure on the effectiveness of solving a partial differential

equation can be easily investigated [20]. By comparing two different time stepping regimes, one

can also determine whether discretization methods which have conserved discrete analogues of

the continuum conserved quantities are well suited for approximating turbulent flows, and will

be useful in engineering applications where time and cost to solution are important.

Following this introduction, Section 1 introduces the incompressible Navier–Stokes equa-

tions; the numerical algorithms which use the Fast Fourier transform as a component are de-

scribed in the Section 2. A description of the massively parallel computational platform used is

in Section 3. The results of the computational experiments are described in Section 4. This is

then followed by the conclusion.
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1. Incompressible Navier–Stokes Equations

The incompressible Navier–Stokes equations written in dimensionless form are:

∂u

∂t
+ u · ∇u = −∇ · p+

1

Re
∆u, ∇ · u = 0, (1)

where u ∈ R3 is the velocity vector and p ∈ R is the pressure. Here Re denotes the Reynolds

number that characterizes the flow and it is defined as

Re =
ρref |uref |Lref

µref
, (2)

where ρref , |uref |, Lref , µref and are the (constant) density of the fluid, the modulus of a

representative velocity, a characteristic length and the dynamic viscosity, respectively.

2. The Numerical Method

A Fourier spectral method is used to perform a direct numerical simulation of the Taylor–

Green vortex for the incompressible Navier–Stokes equations. For the Taylor–Green vortex flow,

given the periodic square box [−mπ,mπ]3 (which defines the computational domain) and the

initial velocity field, the representative length scale and velocity module are set equal to the mul-

tiple m of the “standard” box width 2π (i.e., Lref = m) and the maximum velocity component

of the initial flow field.

The parallel codes are available at [9, 10]. They use MPI and are similar to the example

programs available at [4]. The library 2DECOMP&FFT is used for the domain decomposition

and the parallel fast Fourier transforms [21].

In both implicit midpoint rule (IMR) and Carpenter–Kennedy [5] (CK) time stepping

schemes, the time advancement is done in Fourier space and the nonlinear terms are calcu-

lated by transforming to real space, multiplying and then transforming back to Fourier space.

Following [6], we do not de-alias our schemes because the simulations are fully resolved. Visual-

ization is done using Octave [15], Matlab, Python (Matplotlib [19]), Paraview [2] and VisIt [8].

2.1. Implicit Midpoint Rule

The implicit midpoint rule is

un+1,j+1 − un

δt
+

un+1,j + un

2
· ∇
(
un+1,j + un

2

)
=
∇
[
∆−1

(
∇ ·
[
(un+1,j + un) · ∇(un+1,j + un)

])]
4

+ ∆
un+1,j+1 + un

2Re
, (3)

where j is the iterate and n is the timestep. Note that the implementation of the IMR in this

study uses fixed point iteration with the stopping critera that the change between successive

iterations is less than 10−10 in the sum of the l∞ norms of the components of the individual flow

field components. The method requires three levels of storage for un+1,j+1, un+1,j and un, and

uses 15 Fast Fourier Transforms per iteration.

The IMR method also has discrete analogues for energy and enstrophy dissipation:

1

2

∫
Ω

d(u · u)

dt
= − 1

Re

∫
Ω
∇u · ∇u, (4)
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∫
Ω

un+1 · un+1 − un · un

2δt
= − 1

4Re

∫
Ω
∇
(
un+1 + un

)
· ∇
(
un+1 + un

)
, (5)

1

2

∫
Ω

d(ω · ω)

dt
= − 1

Re

∫
Ω
∇ω · ∇ω, (6)

∫
Ω

ωn+1 · ωn+1 − ωn · ωn

2δt
= − 1

4Re

∫
Ω
∇
(
ωn+1 + ωn

)
· ∇
(
ωn+1 + ωn

)
. (7)

2.2. Carpenter–Kennedy Method

The CK method consists of splitting the equation into linear and nonlinear parts,

l(u) =
1

Re
∆u, (8)

g(u) = −u · ∇u +∇
[
∆−1 (∇ · [u · ∇u])

]
(9)

and then solving the linear part implicitly, and the nonlinear part explicitly, using the steps

detailed in Algorithm 1, where in line 5

α = [0.0, 0.1496590219993, 0.3704009573644, 0.6222557631345, 0.9582821306748, 1.0],

β = [0.0,−0.4178904745,−1.192151694643,−1.697784692471,−1.514183444257]

and in line 6

γ = [0.1496590219993, 0.3792103129999, 0.8229550293869, 0.6994504559488, 0.1530572479681].

The algorithm requires two levels of storage h and u and uses 70 FFTs per timestep. Thus, if

the IMR method requires 4 or fewer iterations per timestep, it can require less time to complete

than the CK method.

Algorithm 1 The CK time stepping algorithm for the 3D incompressible Navier-Stokes equa-

tions

1: input un

2: u = un

3: h = 0

4: for k = 1 to 5 do

5: h← g(u) + βkh µ← 0.5δt (αk+1 − αk)

6: Solve v − µl(v) = γkδth + µl(u) for v

7: u← v

8: end for

9: un+1 = u

10: return un+1
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3. Computational Platform

Numerical experiments have been performed on a variety of computational platforms, which

are listed in the acknowledgements. The results reported here were obtained on Hazelhen [18] a

Cray XC 40 supercomputer with dual Intel R© Xeon R© CPU E5-2680 v3 (30M Cache, 2.50 GHz)

processors per node. This supercomputer uses an Aries interconnect [17]. As this computer has a

network where congestion effects can change runtime, reported results were run on 768 cores for

which repeated short runs showed that the typical standard deviation in the runtime was 20% [3],

see also Fig. 10. Access to a computer system with a network that isolates communication for a

particular job to a particular subnetwork (such as found on supercomputers with torus networks)

was not available for this study.

The source codes [9, 10] were compiled with GCC GNU Fortran compilers using the Cray

provided wrappers (ftn) and optmization flag -O3. 2DECOMP&FFT [21] was used as the parallel

Fourier transform and domain decomposition library, with FFTW 3.3.4.7 as the one dimensional

Fast Fourier transform library.

4. Results

4.1. Verification

To ensure verifiability of the computed results, the benchmark case requires production of

data for the kinetic energy (Fig. 1), kinetic energy dissipation rate (Fig. 2) and enstrophy (Fig. 3)

evolution for the Taylor–Green Vortex between times of 0 and 10. Also required is a plot of the

midplane vorticity (Fig. 4) at a time of 8, when the enstrophy and kinetic energy dissipation rates

are at their peaks. Reference values for these are given by the organizers to allow for comparison

with submitted solutions. Many previous submissions have typically reported solutions with 2-3

digits of accuracy. The programs and data to produce all figures except Fig. 4 are in [11].
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Figure 1. Kinetic Energy. Legend indicates time stepping scheme and number of timesteps
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Figure 2. Kinetic energy dissipation rate. Legend indicates time stepping scheme and number

of timesteps
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Figure 3. Enstrophy. Legend indicates time stepping scheme and number of timesteps

4.2. Comparison between the Implicit Midpoint Rule and

Carpenter–Kennedy Methods

The IMR requires 15 fast Fourier transforms per iteration, while the CK method requires 70

iterations per timestep. Thus for a single timestep, if 4 or fewer iterations are needed, the IMR

method will require less time to solution than the CK method. The IMR method is a second

order method, while the CK method is a third order method, though for high Reynolds number

flows, behaves like a fourth order method. Nevertheless, the IMR method should be good at

capturing statistical behavior of turbulent flows.

Figure 5 shows the number of fixed point iterations required for the IMR during the com-

putation, and Tab. 1 shows the average number of fixed point iterations, as well as the total

core hours required for a computation. The number of iterations is smaller when the timestep

is small and increases as the enstrophy (Fig. 3) and kinetic energy dissipation rates (Fig. 2) in

the flow increase. Figure 6 and 9 show that the IMR method gives levels of accuracy of 10−3

for enstrophy and 10−6 for the kinetic energy dissipation rate, and the CK method gives levels

of accuracy of 10−6 for enstrophy and 10−9 for the kinetic energy dissipation rate.
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Figure 5. Iterations required for convergence to the required tolerance for the IMR scheme

during the temporal flow field evolution. Legend indicates the number of timesteps

Table 1. Performance on Hazelhen [18]. All computations are done from a time of 0

to a time of 10 on 768 cores for a 5123 discretization

Method Time steps Time(s) Core hours FFTs/Timestep

IMR 2000 10369 2212.1 254.8

CK 2000 2513 536.1 70

IMR 4000 8295 1769.6 112.7

CK 4000 5176 1104.2 70

IMR 8000 13199 2815.8 88.9

CK 8000 10722 2287.4 70

IMR 16000 21918 4675.8 72.45

CK 16000 20608 4396.4 70
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Figure 6. Differences between the enstrophy computed with the IMR scheme using 16000

timesteps and CK and IMR schemes. Legend indicates the number of timesteps
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Figure 7. Differences between the enstrophy computed with CK schemes. Legend indicates the

number of timesteps

Finally, Fig. 10 shows that for the first 20 timesteps of a 2000 timestep run, the IMR and

CK methods have the same runtime.

Conclusions

In the initial phase of the Taylor–Green vortex flow, the second order implicit midpoint rule

is efficient for moderate accuracy simulations because it requires only a few fixed point iterations

to converge. Despite the fact that the implicit midpoint method preserves the energy dissipation

structure of the equations, the current results show that for the time scale and Reynolds numbers

considered here, the higher order Carpenter–Kennedy method is more accurate at capturing the

global kinetic energy and enstrophy evolutions. Structure preserving schemes, like the implicit

midpoint rule are often used in computer graphics simulations [16]. These can be coupled with

spatial discretization methods that have lower communication requirements than the fast Fourier
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Figure 8. Differences between the kinetic energy dissipation rates computed with the IMR and

CK schemes. Legend indicates the number of timesteps
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Figure 9. Differences between the kinetic energy dissipation rates computed with the CK

method. Legend indicates the number of timesteps

transform, such as finite difference or finite element methods, to give moderate accuracy results

with relatively low computation times.

Relying on classical schemes may be inappropriate, especially for computationally costly

simulations where statistical reproducibility but not point wise accuracy is required. Thus in

addition to semi-implicit schemes such as the Carpenter–Kennedy method, fully implicit schemes

should also be considered as they may be computationally efficient [23]. This is because for time

evolutionary schemes (as opposed to stationary problems as considered in other studies [1, 13,

22]), a good initial iterate obtained from the numerical approximation at the previous time step

can make the number of iterations required for convergence of the iterative scheme small. In the

atmospheric simulations [25] it has also been observed that implicit schemes may give a faster

time to solution than explicit schemes, despite having lower scalability and a lower floating point

efficiency.

For many computer scientists, algorithm/subroutine optimization is a common task, but

full application optimization typically also requires domain specific knowledge. At present, it
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Error bars represent maximum and minimum runtimes

is challenging to find studies that combine both domain specific and high performance com-

puting knowledge. Domain specific community benchmarking efforts, such as the International

Workshop on High Order Computational Fluid Dynamics serve as a very useful complement

to traditional high performance computing benchmarks such as Linpack [14]. Such efforts will

become much more relevant in the future as most scientific computing will necessarily be parallel.
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GPGPUs
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We study the performance limits of different algorithmic approaches to the implementation

of a sample problem of wave equation solution with a cross stencil scheme. With this, we aim to

find the highest limit of the achievable performance efficiency for stencil computing.

To estimate the limits, we use a quantitative Roofline model to make a thorough analysis of

the performance bottlenecks and develop the model further to account for the latency of different

levels of GPU memory. These estimates provide an incentive to use spatial and temporal blocking

algorithms. Thus, we study stepwise, domain decomposition, and domain decomposition with

halo algorithms in that order. The knowledge of the limit incites the motivation to optimize the

implementation. This led to the analysis of the block synchronization methods in CUDA, which is

also provided in the text. After all optimizations, we have achieved 90% of the peak performance,

which amounts to more than 1 trillion cell updates per second on one consumer level GPU device.

Keywords: stencil computations, parallel algorithm, GPU, CUDA, Roofline model.

Introduction

The theoretical performance peak of the modern GPU exceeds 10 TFLOPS for single pre-

cision, and this could be a trillion cell updates per second for a variety of stencil schemes.

However, it is well known that this performance can not be achieved, since the stencil codes are

not compute-bound [7]. The global memory throughput limit for modern GPU corresponds to

approximately 1% of their peak computing performance. Furthermore, in the implementations of

the stencil codes, other factors, such as data access overhead and latency, limit the performance.

In this paper we study the performance limits of different algorithmic approaches, applied

to a sample problem, and aim to find the highest limit of the achievable performance efficiency

for the stencil computing. For this, we develop the implementation using the accumulated ex-

perience of CUDA programming so as to minimize the performance losses. We use an advanced

quantitative performance model to make a thorough analysis of the performance bottlenecks,

and develop it further to account for the latency of different levels of GPU memory.

Increasing the performance efficiency of the stencil implementation is an intricate task,

and multiple factors should be take into account. The cell update requires its data and the

data from its neighbours to be accessed. Thus, each cell data is accessed multiple times during

one time iteration, and the exact way this access is performed depends on the algorithm. The

cache hierarchy is developed so as to accelerate the data accesses with high locality in time and

space. To take advantage of it in the stencil computing, the tiling and blocking techniques are

used [5, 8–10, 13, 14, 20, 27, 30]. These involve a modification of the data space traversal and

decomposition of this task into subtasks that may be given to different processing units. Various

polyhedral optimization techniques are based on this idea [6, 22].

Spatial tiling [5, 8–10, 13, 14, 20, 27, 30] involves only spatial directions and may be hierar-

chical to incorporate different levels of cache.

Temporal tiling [5, 8, 13, 14, 20, 27, 30] is the method to perform several cell updates on

the same data portion that is located in the fast memory. After this, more data will be sent,
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although, there are less synchronization events. Hierarchical temporal tiling is a part of the

Locally Recursive non-Locally Asynchronous (LRnLA) algorithms approach [25, 26].

The idea of the tiling applies to any system with hierarchical memory and levels of paral-

lelism. It may be made cache-aware or cache-oblivious [12].

Concerning the stencil performance optimization on GPU, in the classical CUDA imple-

mentation [32] the tiling is inherent and is obtained by tuning the CUDA kernel parameters so

as the data of the tile fits shared memory. This foreshadowed the trend for 2.5D blocking 1D

streaming algorithm [13, 24, 31], which may be used in conjunction with temporal blocking [20].

The best performance of the applied stencil codes reaches about 30% of the peak theoretical

performance [17, 18, 29].

The algorithmic optimization is often not enough for the best performance, the programming

tools should be used with care. This includes the knowledge of the compiler optimization trends

and hardware specifics. This becomes the center point of some optimization strategies [11, 24]

and promotes the development of stencil code generation frameworks [4, 23, 28].

Since the stencil computing is considered as a memory-bound problem, the performance

limits and bottlenecks in most of the aforementioned works are studied from the consideration

of the ratio of the cell updates that may be performed per data access operation and the

memory throughput. This analysis has become more convenient with the introduction of the

Roofline model [21]. We use it in this work, and propose the modification to form an image

of the latency Roofline. In sum, this work combines the use of the most advanced algorithms,

CUDA implementation techniques and performance analysis to provide a model for maximizing

the performance of the stencil code implementation on GPU. For this purpose, we choose the

finite-difference cross-stencil scheme for 1D wave equation.

The article is organized as follows. Section 1 serves to introduce the kind of numerical

computation that is considered for the current work. In sections 2, 3, and 4 we discuss the

three algorithmic approaches, namely, stepwise algorithm, recursive domain decomposition, and

recursive domain decomposition with halo, correspondingly. In each section, we present the de-

scription of the corresponding algorithm, details of its implementation, performance test results

and the theoretical performance model in that order. At the end of sections 2 and 3, we evaluate

the weak spots of each algorithm and propose the direction of further study. In the Conclusion,

we summarize the achievements and propose the practical applications of the presented research.

1. Problem Statement and Cross Stencil

The following (2r + 2)-point stencil computation is constructed (Fig. 1):

un+1
k = −un−1

k + α0u
n
k + α−1u

n
k−1 + α1u

n
k+1 + . . .+ α−ru

n
k−r + αru

n
k+r︸ ︷︷ ︸

(2r+1) terms

. (1)

Here r is the stencil radius (half-width), unk = u(xk, tn), {(xk, tn) = ((k + 1
2)∆x, n∆t), k ∈

[0,K), n ∈ [0, N)}. The values of α±l for specific r may be readily computed manually or

generated with scripts [19].

2. Stepwise Algorithm

By the word “stepwise” we denote the most common way of stencil implementation on

GPU [32]. The data is localized in the global device memory. This algorithm is the most intuitive
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Figure 1. Cross stencils for r = 1, 2, 3: 3 time layers, 2r+ 1 points in space on the middle layer;

the blue dots are read and the green dot is updated in the stencil computation

Figure 2. Stepwise algorithm

to implement with the tools available in CUDA [15]. However, even in this case care must be

taken to get close to the optimal performance.

The two time layers un and un−1 are stored in the global memory. The computation kernel

computes one update for each cell according to the stencil (1). Each thread is assigned to one

cell [32]. In total, K/threads CUDA-blocks are executed, where threads is the number of threads

per block (usually 1024 or 512 or 256). This CUDA-kernel is executed N times in a CPU loop.

The stepwise algorithm is illustrated in terms of the problem dependency graph in Fig. 2. One

point represents one unk computation. Inside the outlined areas there are no data dependencies.

The domain size in x is limited by the size of the device memory, which means that about 109

cells may be stored. There is a data dependency between adjacent outlined areas, as shown by

the arrow. After a CUDA-kernel computes one such area and exits, the data is synchronized,

and the next loop iteration is started.

2.1. Performance Testing

The dependency of the performance of the stepwise kernel on the problem size has been

tested. The number of cell updates per second ( cell·steps ) is chosen as a unit for performance P .

Thus, P = K·N
time where time is the time per program run in seconds.

In Fig. 3 this dependency is shown for r = 1, 2, 3 and for the two GPU: GTX 1070 (Pascal)

and RTX 2070 (Turing). We have tested single precision (32 bit) and double precision (64 bit).

Note, that target applications for desktop GPU require only single precision floating point

operations, since its double precision performance is much lower.
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Figure 3. The stepwise algorithm performance dependence on problem size

At the start the linear increase is observed, due to low occupancy [1] of high parallel GPU

device. The number of threads that may be started on an Streaming Multiprocessor (SM) de-

pends on the required registers number (up to 64 thousand 32 bit registers per SM) and the

shared memory size per thread (up to 48–64KB). The stepwise kernel does not use the shared

memory explicitly and uses no more than 32 registers per thread. Thus, each SM may process

up to 2048 cells simultaneously. There are 15 SM on GTX 1070 and 36 SM on RTX 2070.

Therefore, 30 thousand and 72 thousand cells are required to utilize all resources of GTX1070

and RTX2070 correspondingly. This is in accordance with the cell number K value at which

the performance P stops the linear increase. It gradually saturates, then falls to the constant

P = Psw ∼ 1010 cell·step
s .

We note that in the single-precision computation the performance does not depend on the

stencil radius. This is an evidence that the current implementation is memory-bound, since

the operation count increases with the stencil radius. For double precision a slight variation in

performance for different r is observed. In that case, the problem is closer to compute-bound

domain since the peak computing performance for double precision is much lower.

The peak at K = 105 is clearly seen in the single-precision performance, which is higher

than Psw. It is explained by the use of the L2 cache. Since the problem is memory-bound, P is

determined by the global memory bandwidth. When the data may be localized in the L2 cache

(2MB for GTX 1070, 4MB for RTX 2070), L2 memory bandwidth determines the performance.

It is 1.5-2 times higher. This size corresponds to K = 2.5 · 105 and K = 5 · 105 cells with single

precision, which is exactly the location of the end of the peak and transition to Psw.

2.2. Roofline Model

The Roofline [21] is a visual performance model that provides an estimate of the performance

limit from the two fundamental ceilings: peak computing performance and memory bandwidth:

Πalg ≤ min(Πpeak,Θ · Ialg). (2)

Here Πalg is the algorithm achievable performance, and Πpeak is the theoretical peak com-

puting performance in the elementary operations per unit of time. Θ is the memory bandwidth.
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Ialg = Oalg

Dalg
is the arithmetic intensity of the algorithm, where Oalg is the number of operations

in the algorithm and Dalg is the data traffic to and from memory.

Usually, Πpeak and Θ are taken from the device specification. However, since these values

depend on the frequency which may vary in wide range, they should be calculated accurately as

follows. Arithmetic instruction throughput τ is the number of instructions that may be executed

per cycle. These values can be found in [3], and are determined by the GPU architecture. The

number of SM µ can be obtained by CUDA Runtime API. To get the actual frequency of SM

νSM , the monitoring tools (such as nvidia-smi or nvidia-settings) are run during the code

execution, since the frequency may depend on many factors. Then, Πpeak = τµνSM . Similarly,

with the use of CUDA Runtime API the memory bus width β can be found out. With the

use of monitoring tools the memory frequency νmem is measured during the code run. Thus,

Θ = 2βνmem. The factor of 2 is explained by the Graphics Double Data Rate SDRAM (GDDR

SDRAM) feature. All these values are collected in Tab. 1 and Tab. 2.

Table 1. GPU characteristics: τ is the arithmetic instruction throughput, µ is the

number of SM, νsm is the clock rate, Πpeak is the peak performance

GPU precision τ [ FMA
clock·SM ] µ [SM] νsm [Gclock

s ] Πpeak = τµνsm [GFMA
s ]

GTX 1070 single 128 15 1.860 3571

GTX 1070 double 4 15 1.860 111.6

RTX 2070 single 64 36 1.875 4320

RTX 2070 double 2 36 1.875 135.0

Table 2. GPU characteristics: β is the memory bus width,

νmem is the memory clock rate, Θ is the memory bandwidth

GPU β [ B
clock ] νmem [Gclock

s ] Θ = 2βνmem [GB
s ]

GTX 1070 32 3.802 243.3

RTX 2070 32 6.801 435.3

The unit for measurement of the performance Π is one Fused Multiply Add (FMA) operation,

which may be one or two floating point operations (FLOP), while the symbol P is used for

performance in cell updates. The compiler might optimize all operations to FMA. However, we

have decided to force compiler to use FMA operations whenever possible via intrinsic (built-in)

functions.

For one cell update Oalg = (2r + 1) FMA
cell·step operations are required. The operations are

grouped manually into FMA as follows:

un+1
k = α±r(

FMA︷ ︸︸ ︷
unk+r + unk−r) + . . .+ α±1(

FMA︷ ︸︸ ︷
unk+1 + unk−1) +

FMA︷ ︸︸ ︷
α0u

n
k − un−1

k︸ ︷︷ ︸
FMA︸ ︷︷ ︸

FMA

.

To compute un+1
k , (2r+ 1) values are loaded from the un layer, one value is loaded from the

un−1 layer, and one value is saved: (2r+3) values total. However, since the update is stepwise, the

neighboring values that are updated by other threads may be stored in the L2 cache. Actually,

each thread only loads un−1
k and unk to, and writes un+1

k from the global memory. To estimate
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the required number of the L2 accesses it is necessary to take into account the possibility of

misaligned access to the cache lines of the neighbor cells. The number of accesses to L1 about

twice more that the number of accesses to L2, and it is much faster than the global memory. Thus,

the L1 exchange may be neglected in the Roofline model. Data throughput is Dalg = 12 B
cell·step

for single precision and Dalg = 24 B
cell·step for double precision. The arithmetic intensity is

Ialg =
Oalg

Dalg
=

2r+1
12

FMA
B , for single precision

2r+1
24

FMA
B , for double precision

. (3)

The performance Πalg [GFMA
s ] is computed from the performance Psw[ cell·steps ], that was

obtained as a saturated performance for large K in the performance tests, and Oalg [ FMA
cell·step ] as

Πalg = Psw ·Oalg. (4)

The Roofline graph for our implementation of the stepwise algorithm with data localization

in the global memory is plotted in Fig. 4.

For single precision, our results fall into the memory-bound domain. The performance is

limited by the global memory bandwidth. The overhead is observed to be negligible, as the

result is close to the ceiling. With the increase of the stencil radius r the performance increases,

due to the increase in the arithmetic intensity. However, peak performance to memory bandwidth

ratio is about 100 times more then optimal ratio for stencil calculations with stepwise algorithm.

The double-precision peak performance on the chosen GPU is 32 times lower than single-

precision peak ones, so performance to memory bandwidth ratio is closer to operation intensity.

At r = 1 the result falls into the memory-bound area, and as the arithmetic intensity increases,

the result comes closer to the compute-bound domain, and reaches it at r = 4. The performance

is 40–50% of Πpeak and does not increase in the compute-bound domain.

It is likely that if a Tesla architecture GPU is used, the Roofline would look similar for single

and double precision, since that architecture is better suited for the general purpose computing.

This means that for the consumer-level GPU even the stepwise algorithm is enough to reach the

compute-bound domain at double precision, since the double precision performance is very low.

Hereafter, only single precision implementations are considered.
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Figure 4. Roofline model for the stepwise algorithm implementation. The markers show the

highest performance result obtained with our code
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3. Recursive Domain Decomposition

For single-precision, to move the problem closer to the compute-bound domain, the arith-

metic intensity should be increased. For this purpose, we propose a Recursive Domain Decom-

position (RDD) algorithm to localize the cell data in the SM registers. The classical Domain

Decomposition (Fig. 5) divides the computing domain into equal domains, and each domain is

assigned to its processor element. The local memory of that processor element stores unk−1 and

unk layer data for its domain, and the element computes cell updates for them layer by layer.

Each step it exchanges data with the neighboring elements.

Figure 5. Domain decomposition Algorithm

However, one device contains at least 2 levels of parallelism, SM and CUDA threads. Thus,

we choose to implement 2-level RDD (Fig. 6). This approach is close to the tiling (blocking)

methods, such as [9], since the performance gain is achieved by the use of the faster memory for

each process.

t

x
Figure 6. Two-level Recursive Domain Decomposition (RDD) Algorithm. Domains of the first

level are outlined in blue, domains of the second level are outlined in orange

Each SM is assigned a domain that corresponds to the size of its register file. In turn, inside

these domains thread-level decomposition occurs. Each thread is assigned with not one, like

in the stepwise algorithm, but a localized group (grp) of cells. Each SM contains 64 thousand

32 bit registers. In the ideal case, two registers per cell are required (unk and unk−1). Thus, up to

32 thousand cells may be stored and processed per SM. Including some possible overhead, the

actual number may be estimated as 20÷ 25 thousand cells per SM. That is, 300÷ 375 thousand

cells total per 15 SM of GTX 1070, 720÷ 900 thousand cells total per 36 SM of RTX 2070. This

is more than enough for many 1D problems.
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3.1. Synchronization

For the data exchange between SMs the L2 cache is used, and for the data exchange between

threads the shared memory is used. The inter-block synchronization was an open issue up to the

release of CUDA 9. Since CUDA 9 for devices with Compute Capability 6.1 or higher, CUDA

Cooperative Groups (CG) is an universal API for synchronization [15]. It may be applied to a

group of threads of arbitrary size, from one warp to all threads of several devices, situated on

one node. This is a barrier synchronization, that is, a chosen group of threads is synchronized

altogether. This mechanism seems convenient for our purposes, and we have applied it to our

code.

Along with it, we choose to manually implement and test the performance gain of the local

block synchronization with a semaphore, the classic synchronization primitive. The semaphore

limits the number of parallel processes that can read and write the shared data. In this case two

neighboring blocks work with the same data: one reads and the other writes. The pointer array

stores the semaphores, assigned to the data section which is subject to the racing condition. The

length of the array is equal to twice the number of blocks, since each domain has two regions,

which are accessed by other blocks: at the start and at the end. The semaphore data type is

integer and it has two states: READABLE (0) and WRITEABLE (1). Before reading the data chunk

from the other block, the corresponding semaphore is checked to be READABLE, using while loop

terminated by a semicolon. After the read from memory, the value WRITABLE is written into the

semaphore, since no other block requires this data. The data can now be overwritten by the

adjacent block.

CUDA CG synchronization appears to be inefficient for our problem (see the comparison in

Fig. 7). It is the possible reason that the synchronization is called for the whole grid of blocks

at once, and all SMs are synchronized. This is superfluous for ensuring the correctness of the

data read. Actually, it is sufficient to wait only for the two blocks (in 1D) to complete the work

up to this point. If the synchronization of one block with only its neighbors was implemented in

CG, it would possibly lead to the acceleration of the memory access.

3.2. Performance Testing

The RDD algorithm is defined by the three parameters: the number of cells per thread

grp, the number of threads in a block and the number of blocks. The number of the domains

of the first level of the decomposition is equal to the number of threads, the number of the

domains of the second level is equal to the number of blocks. The latter is equal to or divisible

by the number of SM in GPU. In the tests we take the maximum possible number of cells, thus

grp ·threads ·blocks ≈ const, any two of the parameters may be varied. We have tested various

threads and blocks parameters. “Heavy” blocks and threads, that is, the blocks that use so

much shared memory and register space that it may be assigned to an SM only one-by-one, have

proven to be more efficient. We fix the number of threads per block to 256, since it is preferable

to use all of the 2562 = 65536 registers, and the CUDA compiler does not allow more than 256

registers per thread.

In Fig. 7 the dependency of P on grp is shown with threads = 256 and maximum possible

blocks. The dashed line in the saturated stepwise performance is Psw. The two groups of lines

correspond to the two types of implemented block synchronization approaches. The cooperative

groups approach seems to be not efficient enough. Indeed, with this type of synchronization, the
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Figure 7. Performance dependency on the number of cells per thread grp parameter in the RDD

algorithm

performance hardly exceeds the performance of the stepwise algorithm. In the following we use

only the manual synchronization method with semaphores.

Low grp provide less performance. The performance grows linearly up to grp = 32. For grp

in the 32 ÷ 80 range the performance shows little variation. It shows that the performance of

the code with grp = 32 and 2 blocks per SM and the performance of the code with grp = 64

and 1 block per SM are close. As grp exceeds some peak value, 64 or 80, the abrupt fall of

performance is seen. At this point, the data could not be localized in the registers, and register

spilling [3] occurs.

In total, the obtained performance is PRDD ∼ (300 ÷ 600) · 109, depending on the stencil

radius r.

3.3. Roofline Model

Since the two memory levels are engaged in the RDD algorithm, the two bandwidths are to

be considered. Thus, the Roofline is first defined by

Πalg ≤ min(Πpeak,ΘL2 · Ialg,L2,Θsh · Ialg,sh). (5)

Here the denominations are as in section 2.2, and the extra subscript denotes the type

of memory (L2 cache or shared). As before, Oalg = (2r + 1) FMA
cell·step . The data throughput is

estimated as follows. In each block, there are grp ·threads cells. Each block exchanges 4r values

of 4B size. Thus, assuming grp = 64 and threads = 256,

Dalg,L2 =
4r

grp · threads
· 4 B

cell · step
∼ r

1000

B

cell · step
.

Similarly, each thread has grp cells and exchanges 4r values,

Dalg,sh =
4r

grp
· 4 B

cell · step
∼ r

16

B

cell · step
.
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Figure 8. The Roofline model against shared memory bandwidth for the RDD algorithm

The operational intensity is

Ialg =
Oalg

Dalg
∼

1000 · 2r+1
r

FMA
B , inter-block via L2 cache

16 · 2r+1
r

FMA
B , inter-thread via shared memory

.

Table 3. GPU characteristics: α is the shared memory efficiency, µ is the number of SM,

ϕ is the number of shared memory banks per SM, β is the bank width, νgr is the graphics

clock rate, Θsh is the shared memory bandwidth

GPU α µ [SM] ϕ [bankSM ] β [ B
clock·bank ] νgr [Gclock

s ] Θsh = αµϕβνgr [GB
s ]

GTX 1070 0.85 15 32 4 1.911 3118

RTX 2070 0.85 36 32 4 2.100 8225

The shared memory bandwidth may be calculated as Θsh = αµϕβνgr, all these parameters

and their descriptions are gathered in Tab. 3. The L2 cache bandwidth may be estimated as

ΘL2 = (3÷ 5)Θ [2], where Θ is taken from Tab. 2.

Now, it is easy to see that Θsh · Ialg,sh � ΘL2 · Ialg,L2 on actual threads values, therefore

the inequality (5) can be reduced to

Πalg ≤ min(Πpeak,Θsh · Ialg,sh). (6)

The Roofline model (6) is plotted in Fig. 8. The markers show the performance for different

values of grp. The color of a marker signifies the value of r.

The resulting performance for highest points is about 50% of the theoretical peak value.

This result was obtained by localization of data in the registers and “heavy” blocks and threads

(grp� 1)

Such efficiency is enough for many applications. However, in the Roofline estimate (Fig. 8)

we see that another limitation acts as a bottleneck. Thus, we propose the following algorithm.
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4. Recursive Domain Decomposition with Halo

Further increase in performance seems to be impeded by the high latency of L2 cache. This

fact prevents the complete use of the L2 memory bandwidth. This may be mitigated by the

introduction of a halo of redundant compute [20, 30].

The key idea of halo is simple: instead of the exchange of D data each step, the exchange

of ∼ H ·D data each H steps takes place (Fig. 9), that is a kind of temporal tiling. Since the

data is required in each step for correct simulation, the domains are overlapped.

SM1

t

x
SM2

H
=

3

2r(H-1)=8

......

r=2   stencil

exchange exchange

halo

Figure 9. RDDHalo algorithms on the dependency graph. The cells that are computed correctly

and stored on the two adjacent SM are shown in two colors. The data that should be sent in

the synchronization is outlined in colored boxes

In the overlapped domain (halo) on the interface of two SMs, the cells are updated on

both SMs (Fig. 9). At start, both SMs store the correct values of all cells, that are assigned to

be updated on them, and r more values at each side that are required for the update. After

the first update, the data is not enough, so r cells on each side of the domain are incorrect

after the second update. The number of correct values is decreased in each step between the

synchronization events each H time steps. Then, the data exchange takes place to actualize both

domains. The size of the halo is 2r(H − 1). The data to be exchanged are the cells of the half

of the halo, and the r more values that are necessary for the stencil computation on the next

step, 2r(H−1)
2 + r total. Since the stencil requires two time layers, 2r(H−1)

2 − r more values are

required from the previous time step. The data required for the exchange from the two time

steps is outlined by the exchange box in Fig. 9.

Thus, we choose to improve the RDD algorithm to the RDD with Halo (RDDhalo) algo-

rithm by introducing the overlapped region in the inter-thread and the inter-block interfaces.

Two important remarks should be made here. First of all, the overhead for redundant computa-

tion appears in comparison to the RDD, since some cells are computed twice. However, the size

of the halo (2r(H − 1)) is smaller than the size of the domain (grp · threads ∼ 15÷ 20 · 103) by

several orders of magnitude. With the increase in H the overhead may become significant, but

the goal of hiding the latency by decreasing the number of synchronization events is achieved

much earlier. Second, while the redundant computations may be skipped, it is better to perform

these computations nonetheless. This is due to the SIMT (Single Instruction, Multiple Thread)

architecture of GPU, which dictates the homogeneity of the thread computing. Thus, the con-

ditional statements are not used in the implementation, and the incorrect cells continue to be

updated until the synchronization event.
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Although the halo was implemented both for inter-thread (Hb) and inter-block (Hg) in-

terfaces, only the inter-block halo has a significant influence on the performance. The shared

memory latency is low enough so that Hb = 1 (no halo) or Hb = 2 is enough to completely

conceal it.

4.1. Roofline Model

The operational intensity is twice lower than in the RDD algorithm, since two time layers are

exchanged each time. Nevertheless, it is still high enough for the problem to be compute-bound.

On the other hand, the latency overhead limits the performance. We may write

Πalg ≤ min(Πpeak,ΘL2Ialg,L2,ΘshIalg,sh, Osync/Λsync), (7)

where Osync = KHOalg is the operation count between synchronizations, K is the number of

cells, Λsync = min
r,grp

tstep is the inter-block synchronization time, where tstep is the elapsed time to

perform one step of RDD algorithm (Hg = 1). Λsync = 0.84µs and Λsync = 0.90µs for GTX 1070

and RTX 2070, respectively. The Πpeak and Osync/Λsync limits are visualized as a Roofline

in Fig. 10. The markers show the performance of our implementation for different values of grp,

Hg and Hb. The graph confirms the attention to the latency overhead, and the fact that it is

overcome with the introduction of halo.
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Figure 10. Latency limitation. The markers show the results of the test runs with different halo

and grp parameters. Larger marker corresponds to larger Hg

The highest performance we achieved and the parameters that were used are presented in

Tab. 4.

Conclusion

In this work, we have brought to attention several insights on the high performance stencil

code GPU implementation. We have carried out performance limits analysis with the Roofline

model. In this paper we have detailed the method for acquisition of both hardware (memory

bandwidth of all levels) and algorithmic (operational intensity) parameters. Since the results that

were obtained by our code match the obtained performance limits precisely, we can conclude
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Table 4. The highest performance results obtained with

RDDhalo

GPU r grp Hb Hg P ,Gcell·step
s P/Ppeak, %

GTX 1070 1 80 2 32 873 76

GTX 1070 2 48 1 8 484 69

GTX 1070 3 48 1 8 352 70

RTX 2070 1 80 2 32 1281 92

RTX 2070 2 80 1 16 716 84

RTX 2070 3 64 1 8 490 80

that the implementation has minimal overhead and that the Roofline estimation was correct.

We have found a way to get a performance of more than 90% of the compute-bound limitation,

and more than 80% for larger stencil radius.

According to our previous experience, in the practice of implementation of codes in scientific

computing, the omnipresent issue is to evaluate the progress on performance optimization. That

is, whether the code has reached the performance limit, or it may be further improved by

increasing the operational intensity, utilizing better programming tools, reducing overhead. The

impact of the current paper is the evidence that the stencil codes performance may be driven

close to the peak if the computations are localized in the highest level of the memory hierarchy

of GPU, namely in the register file. In the stepwise implementation, the obtained efficiency value

is ∼ 1010 cell·steps , and in the RDDhalo algorithm, it is ∼ 1012 cell·steps . Both correspond closely

to the Roofline estimate. The RDDhalo performance is compute-bound and reaches 92% of the

peak computing performance.

We assume that it is the computing performance peak limit in any further stencil codes

implementations. Such codes are relevant, for example, in electromagnetic wave simulation with

the FDTD method, elastic wave simulation with the Levander scheme. More complex multi-level

numerical schemes often use the cross stencil as one of the computation stages as well [17]. As

is, the wave equation simulation is used both in optics and in seismic codes. In case the purpose

of the simulation is the solution of inverse problem, such as image reconstruction in seismic

exploration, double precision is excessive and single precision will suffice.

Any other stencil code, including the 3D extension of the current scheme, is more complex

than the one used in this work. So the obtained performance efficiency value is unlikely to be

surpassed on the current hardware. The data size in the problem fits the register file, which is

comparatively small. However, the common trend in newer GPU is the increase of the register

file space. It is 3.75 MB on Kepler, 6 MB on Maxwell, 14 MB on Pascal, 20 MB on Volta [16].

For 3D problems, our approach may be used in temporal tiling algorithms. As an example,

in the wavefront tiling, one wavefront slice may fit in the register file. In case it is large enough,

the memory transactions with the global memory may be concealed, and the performance in

the tile would determine the performance efficiency, save for the newly introduced overhead. We

intend to use the underlying algorithm in our projects on developing 3D wave simulation codes

with LRnLA algorithms [26].
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A universal framework for modeling composites and fabrics of micro- and nanofibers, such as

carbon nanotubes, carbon fibers and amyloid fibrils, is presented. Within this framework, fibers are

represented with chains of rigid bodies, linked with elastic bonds. Elasticity of the bonds utilizes

recently developed enhanced vector model formalism. The type of interactions between fibers is

determined by their nature and physical length scale of the simulation. The dynamics of fibers is

computed using the modification of rigid particle dynamics module of the waLBerla multiphysics

framework. Our modeling system demonstrates exceptionally high parallel performance combined

with the physical accuracy of the modeling. The efficiency of our technique is demonstrated with

an illustrative mechanical test on a hypothetical carbon nanotube textile. In this example, the

elasticity of the fibers represents the coarse-grained covalent bond within CNT surface, whereas

interfiber interactions represent coarse-grained van der Waals forces between cylindrical segments

of nanotubes. Numerical simulation demonstrates stability and extremal strength of a hypothetical

carbon nanotube fabric.

Keywords: nanofibers, carbon nanotubes, distinct element method, parallel computing.

Introduction

Fibrillar materials, based on biological fibrils, carbon fibers, nanofibers and carbon nan-

otubes (CNTs) [1–4], and, in particular, textiles and fabrics made of individual fibrils or woven

fibers, are of extreme interest for a number of military, aerospace, electronic and biomedical

applications. However, intricate hierarchical structures of such materials, their discontinuous

behavior with non-trivial inter-fiber interactions, as well as the prohibitively large sizes of rep-

resentative volume elements in many cases prevent straightforward theoretical prediction of the

mechanical, electrical and thermal properties of such materials. Understanding of the mesoscale

behavior of these materials can be improved via numerical simulations. Atomic-level modeling

techniques [5–8], namely – tight-binding and molecular dynamics methods, were proved to be

efficient numerical tools for modeling individual fibrils and their interactions at the nanoscale,

however, the scalability of such techniques is insufficient for modeling large numbers of long

fibers, necessary for studying the mechanics of the sufficiently large specimens of fibrillar ma-

terials. In order to address this problem, a number of mesoscale models were suggested. One

of them, bead-spring model, employs the idea of coarse-grained molecular dynamics [9–11], ini-

tially proposed for modeling mesoscale mechanics of proteins. In this modeling concept, a chain of

point masses represents a fibril interacting via classical potentials, representing either intra-fibril

elasticity, or contact interactions between the neighboring fibrils. This model, despite its evident

advantages, has certain limitations in a context of modeling fibrillar materials and fabrics. The

most important of them is absent torsional stiffness of fibrils leading to unrealistic behaviors of

fibrillar assemblies under certain loadings. In order to solve this issue, a different discretization

concept [12–19] was suggested using a representation of a thin fiber as a chain of rigid bod-

ies, rather than point masses. Such a model allows not only bending of individual fibers, but

their torsion as well. This simulation technique, known as mesoscopic distinct element method
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(MDEM), established itself in the field of modeling CNTs systems as one of the most efficient

mesoscopic modeling tools, both computationally efficient and physically just. The technique

can be successfully used for modeling a wide class of fibers and fibrillar materials, on the scales

that admit athermal description of the fiber mechanics. Until now, the remaining obstacle on

the route toward applications of MDEM to large-scale modeling of fibrillar assemblies was the

absence of its scalable, parallel realization. Such realization has been recently suggested in [19].

It is based on rigid particle dynamics module of the waLBerla multiphysics framework [20]. In

the current work we illustrate the novel modeling approach in application to modeling nanofab-

rics – hypothetical textiles made of single wall carbon nanotubes (CNTs), ultimately strong

nanofilaments.

1. Method

1.1. Mesoscopic Model

Our model is based on the mesoscopic distinct element method, that computes the damped

dynamics of a collection of interacting classical particles with certain mass and tensor of inertia.

We utilize the spherical particles with the radius r, uniformly distributed mass m and the scalar

moment of inertia I = 2
5mr

2. The state variables for each particle include translational positions

and velocities, as well as rotational positions (in a shape of quaternions, as described in [20]) and

angular velocities. The bodies change their velocities and angular velocities due to contact forces

and moments arising in pair interactions, as well as external forces and moments, acting at each

body. The system is evolved in time with explicit velocity Verlet time integration scheme. Two

kinds of damping may be introduced in the system. The viscous damping forces, proportional

to relative segment velocities, act in parallel with pair contact forces.

PFC-style local damping [21] acts at each body. It is introduced to damp stiff interactions

and stabilize time integration in dense particle assemblies. The components of damping force

Fαi (moment Mα
i ) are proportional to the corresponding components of unbalanced force Fi

(moment Mi) according to:

Fαi = −α |Fi| sign(vi),M
α
i = −α |Mi| sign(ωi). (1)

Here vi and ωi are components of the translational and rotational velocity of an element,

and sign(x) is the sign function. In our simulations the local damping coefficient α is set to 0.4.

Within our approach, undeformed fibers are partitioned into identical segments of finite

lengths T = 2rf and represented with chains of spherical rigid bodies (Fig. 1). Each spherical

particle represents the inertial properties of a fiber segment - parameters m and I are equal with

the mass and moment of inertia of a cylindrical segment taken with respect to the fiber axis. It

follows that the spherical particle has a radius

r =
√

2.5rf . (2)

Elasticity of fibers in our model is represented with the formalism of enhanced vector model

(EVM) [22, 23]. The EVM is based on a binding potential, describing the behavior of an elastic

bond linking two rigid bodies. The formulation provides straightforward generalization on the

case of large strains and accounts for a bending-twisting coupling. Consider two equal-sized

spherical particles i and j with equilibrium separation T and equilibrium orientation described
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a) Schematics of a fiber discretization b) EVM bond schematics

Figure 1. DEM discretization of CNT

in terms of orthogonal vectors nik, as depicted in Fig. 1(b) (note that for an undeformed bond

ni1 = −nj1, ni2 = nj2, ni3 = nj3). Then the EVM bond potential is given as follows:

U(rij ,nik,njk) =
B1

2
(rij−T )2+

B2

2
((nj1−ni1)rij/rij+2)+B3ni1nj1−

B4

2
(ni2nj2−ni3nj3). (3)

Here rij is the radius vector connecting centers of bonded particles. The first term of the

potential 3 accounts for the elastic strain energy stored due to axial tension/compression of

a bond, second term is nonzero if shear deformation of the bond is present, third and fourth

terms give bond’s bending and torsion energy of a bond. Parameters B1...B4 are directly related

to longitudinal, shear, bending, and torsional rigidities of a bond, according to Euler-Bernoulli

beam theory (see papers [17, 22, 23] for more details):

B1 =
ES

T
,

B2 =
12EJ

T
,

B3 = −2EJ

T
− GJp

2T
,

B4 =
GJp
T

.

(4)

Here E and G are the bond material Young’s and shear moduli. Area S, moment of inertia

J and polar moment of inertia Jp of a cylinder shell beam with radius rf and thickness h are

given by:

S = 2πhrf ,

J = πhrf (r2f + h2/4),

Jp = 2J.

(5)

As an example, consider here the parameterization of our discretization scheme for single-

wall CNTs. Table 1 provides segment parameters for (10, 10) CNTs with diameter 2rf = 13.56

Å and length T = 2rf . Each segment contains approximately 220 carbon atoms. Microscopically

computed Young’s E = 1, 029 GPa and shear modulus G = 459 GPa [7] are used.

The interactions between fiber segments (e.g. Hertzian elastic repulsion, van der Waals

(vdW) adhesion, wet surface tension, hydrogen bonds etc.) generally depend on the specifics
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Table 1. Parameterization of the spherical particles and EVM

bonds for a (10, 10) CNTs. m, r, I are the mass, radius, moment of

inertia of each spherical particle. B1,B2,B3,B4 are EVM stiffnesses

m r I B1 B2 B3 B4

(amu) (Å) (amu× Å
2
) (eV/Å

2
) (eV ) (eV ) (eV )

2, 649 10.72 1.218× 105 67.59 19780 −4032 1471

Table 2. Parameterization of the fiber

interaction potential 6

ε,(eV ) A B α β k, eV/Å
2

0.07124 0.0223 1.31 9.5 4.0 200

of a particular problem. In our example, we utilize the combination of linear elastic repulsion

between fiber segments at small distances, combined with vdW adhesion at large distances. The

total potential of pair interaction is given by:

U(rij) =

 4ε
(

A
(rij/rf−2)α −

B
(rij/rf−2)β

)
k(rij − rf )2

rij > rf

rij ≤ rf
. (6)

For the distances that are less than two fiber radii the potential 6 describes linear elastic

repulsion. The stiffness k is fitted to ensure stable integration at a given timestep and the absence

of fibers interpenetration. For the distances larger than two fiber radii, the potential 6 describes

the coarse-grained potential for vdW adhesion. The calibration of a coarse-grained isotropic

vdW potential for (10, 10) CNTs is given in [13].

In order to capture geometric anisotropy of the cylindrical segments of fibers, we utilize

simple numerical integration of the spherically-symmetric potential (6) over the length direction

of segments. Three equispaced integration points along each segment’s axis are employed. Table 2

provides the parameterization of the potential.

1.2. Parallel Implementation

Parallel damped dynamics simulations are based on the rigid particle dynamics module of

waLBerla multiphysics framework, which is available under GPL license at (www.walberla.net).

The parallelization is based on standard Message Passing Interface (MPI) [24] for distributed

memory architectures. A complete description of the parallel algorithms and their realization [18]

is beyond the scope of this paper. The simplified pipeline of our modeling framework is given in

Fig. 2. The simulation starts with the generation of initial geometry of fibers, and imposition

of boundary conditions. In the next step, the simulation domain is divided in a balanced man-

ner into rectangular subdomains. These subdomains are distributed among the available MPI

processes in such a way that every process is responsible for one or more subdomains. At the

next stage, time integration cycles are performed on all MPI processes. The integration cycle

consists of computation of pair interaction potentials, as well as the corresponding forces and

moments at each contact. These forces and moments are then used to compute accelerations

and angular accelerations that are then used in computing updated positions and velocities
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Figure 2. Simplified diagram of the modeling framework pipeline

according to velocity Verlet time integration scheme. Particle migrations across subdomain bor-

ders are accounted via MPI communications. Then the list of contacts is updated. The contact

detection scheme used in our simulations is based on hierarchical hash grids [25] and adapted

for potential-based interactions. For correct contact detection of particles near the borders of a

subdomain so-called ghost particles are introduced. These ghost particles mirror particles which

touch the subdomain but are located at a different one. This way they are available for contact

detection and force calculation. The configuration and traced quantities (e.g. potential energy)

are gathered at and saved periodically during the relaxation. The general scalability of waL-

Berla framework is proven up to almost half a million cores [20]. In the simulations presented

below only 480 cores were utilized, which is well below the limits of linear strong scalability.

Some auxiliary serial operations (e.g. gathering of the total potential and kinetic energy of the

system) can in principle limit the efficiency of parallelization, however, they are not a necessary

part of the computation cycle.

2. Numerical Results

As an example of application of our system, we consider here the relaxation and mechanical

test on a hypothetical CNT textile material. Modern technologies do not yet allow to produce

such textiles, however, our modeling framework allows to evaluate its properties in a mesoscopic

simulation.

The simulations were performed at a computational cluster “Zhores” [26] using 20 nodes.

Every node uses two Intel Xeon 6136 Gold CPUs (24 cores, 3 GHz each). The high performance

cluster network has the Fat Tree topology and is built from six Mellanox SB7890 (unmanaged)

and two SB7800 (managed) switches that provide 100 Gbit/s connections between the nodes.

Consider a fragment of a CNT fabric, consisting of 400 CNTs, 1.35 µm long each (2.4× 106

model degrees of freedom), forming a square piece of a textile (Fig. 3a). Two rows of CNTs,

200 CNTs each, are intertwined in a manner of a “mosquito net” made of individual CNTs, as

depicted on a lower inset of Fig. 3a. Individual CNTs in a fabric are deformed in a shape of a sine

wave, as shown on the upper inset of Fig. 3a. The doubled sine magnitude L and half-period D

are equal to 33.7 Å and 17.1 Å, respectively. Since CNT elongation due to sinusoidal shape

is significant, CNTs in an equilibrated periodic specimen are subjected to both bending and

stretching. We first apply periodic boundary conditions along x and y directions, and perform

the initial relaxation of the “mosquito net” configuration. It appears that this configuration is

stable, and the initial prescribed shape is very close to a local minimum. However, it is interesting
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to answer the question about the stability of a finite-sized piece of such material. To this aim,

after short initial relaxation (1000 integration cycles), we remove periodic boundary conditions,

leaving the edges of CNTs force-free. After that the specimen is allowed to relax in a damped

dynamics simulation to a meta-stable state. At the initial stage of the simulation, edge CNTs

start to separate from the fabric, since low vdW adhesion energy can not confine elastic strain

energy, which is released during separation of side CNTs. Detached side CNTs form bundles

comprising about 10–20 tubes each (Fig. 3b and 3d). However, at the next stage of simulation

the fabric disintegration process stops, while the relaxation slows down. CNTs do not separate

from the fabric, since further separation is prevented by vdW adhesion. Similarly to the cases

of other self-assembled CNT structures [14–16], CNT fabric achieves a meta-stable state, which

is characterized by the balance between vdW adhesion energy and elastic strain energy. Such

a balance is achieved for structure features of a certain size, characterized by the mesoscopic

length scale

l0 =

√
EJ

η
, (7)

where EJ is the bending stiffness of a CNT, and η is the vdW adhesion energy per unit

length. This length scale arises explicitly in the analysis of elementary self-folded configura-

tions - rings [13], rackets [16], multiple-winding rings [15]. For an individual (10, 10) CNTs,

given the bending stiffness of 22350 eV Å and the adhesion energy of 0.22 eV/Å, this length

scale is equal to 0.032 µm. For bundles, comprising multiple CNTs, both bending stiffness and

characteristic length scale are somewhat larger.

Figure 3c gives the dependence of the elastic strain energy stored in separate CNTs during

the relaxation. As we can see, the dependence is nearly exponential and strongly indicates the

convergence to a stable state. Thus, we have a numerical evidence of the stability of hypothetical

CNT fabrics.

In order to demonstrate in silico the exceptional mechanical properties of this material, we

perform a numerical simulation of a large strain displacement controlled mechanical test on a

specimen of CNT fabric material. Figure 4a–c illustrates the experiment setup. Self-assembled

equilibrated CNT film specimen is subdivided into three regions - two grips, marked with green

and red colors, and a gage region, marked with blue. Starting from the initial moment of the

simulation, grips start to move in opposite directions, stretching the gage region. Grip velocity is

kept constant, providing strain rate of 2×108 s−1, with exception for short constant acceleration

period in the beginning of the simulation, necessary to avoid inertial peak at the beginning.

For this test, we introduced a simple breakage model for a CNT in assembly. An individual

CNT breaks if it is stretched up to certain critical level. This critical strain has a normal

distribution with the mean value εc and dispersion ∆ε; random distribution is introduced to

qualitatively evaluate effects of finite temperature and CNT defects. In our test, εc = 0.3,

∆ε = 0.05.

Figure 4d displays stress-strain curves during the simulation. Stress is defined in the as-

sumption that the fabric’s thickness is equal L (Fig. 3a). The initial step of the stress-strain

curve is associated with dissipative response, conditioned by presence of local damping. The

subsequent hardening region (strains of 2–20%) is associated with straightening of individual

CNTs in fabric, oriented along the loading direction (Fig. 4b). At strains of 20–25% we can see

the elastic response conditioned by stretching of individual CNTs. Region of strains of 25–50%

features complex failure with correlated breakage of separate CNTs (Fig. 4c), first at the edges
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a) initial configuration b) Final relaxed configuration

c) Elastic strain energy stored in CNTs as a function of

time

d) Magnified piece an equilibrated

configuration

Figure 3. Relaxation of the CNT fabric specimen

and then in the central part of the specimen. One can see that the hypothetical CNT fabric

demonstrates the Yield strength of 15 GPa, which is three orders of magnitude higher that the

strength of polymer films with similar flexibility and thickness [27]. Such exceptional properties

are undoubtedly of a great interest for practical applications.

Conclusion

In this work we have presented the new general framework for modeling fibrous composites

and textiles. Separate fibers are modeled as chains of interacting rigid bodies. The elasticity of

individual fiber is represented with EVM formalism. The suggested framework is illustrated in

the application to modeling of hypothetical CNT nanofabrics. In the benchmark example, the

framework was capable to simulate relaxation and mechanical test on a CNT fabric specimen

(2.4 × 106 model degrees of freedom, approximately 1012 contact resolution computations) in

approximately 20 hours on 20 nodes, with nearly linear scaling with the number of cores used.

In the benchmark example considered, HPC capabilities of our framework allowed to discover

stabilization of large specimens of hypothetical CNT fabric by vdW adhesion forces, and to

perform the mechanical test indicating superior properties of hypothetical CNT textile. The

proposed framework is capable to efficiently model any systems of interacting elastic fibers at

any length and time scales admitting athermal description. Any types of contact interactions
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a) 0% strain b) 20% strain c) 40% strain

d) Stress-strain curve monitored during the test

Figure 4. Mechanical test on a CNT fabric specimen (a, b, c) – structure snapshots for engi-

neering strains of 0%, 20%, and 40% respectively, d) – stress-strain curve

and nonlinearities in fiber’s constitutive behaviours can be straightforwardly incorporated into

suggested modeling concept. Therefore, our framework can be straightforwardly applied to a

wide class of problems, including composites, ropes and textiles for aerospace and military

applications.
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