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Collecting and Presenting Reproducible Intranode Stencil

Performance: INSPECT
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Stencil algorithms have been receiving considerable interest in HPC research for decades.

The techniques used to approach multi-core stencil performance modeling and engineering span

basic runtime measurements, elaborate performance models, detailed hardware counter analysis,

and thorough scaling behavior evaluation. Due to the plurality of approaches and stencil patterns,

we set out to develop a generalizable methodology for reproducible measurements accompanied by

state-of-the-art performance models. Our open-source toolchain and collected results are publicly

available in the “Intranode Stencil Performance Evaluation Collection” (INSPECT).

We present the underlying methods, models and tools involved in gathering and documenting

the performance behavior of a collection of typical stencil patterns across multiple architectures and

hardware configuration options. Our aim is to endow performance-aware application developers

with reproducible baseline performance data and validated models to initiate a well-defined pro-

cess of performance assessment and optimization. All data is available for inspection: source code,

produced assembly, performance measurements, hardware performance counter data, single-core

and multicore Roofline and ECM (execution-cache-memory) performance models, and machine

properties. Deviations between measured performance and performance models become immedi-

ately evident and can be investigated. We also give hints as to how INSPECT can be used in

practice for custom code analysis.

Keywords: performance modeling, performance analysis, stencils, single-node, multi-core,

ECM, Roofline, memory hierarchy, cache effects.

Introduction

Stencils are relative data access and computation patterns that emerge from the discretiza-

tion of differential operators on regular grids. Stencils appear in many fields, from image process-

ing, fluid dynamics, material sciences to mechanical engineering, and are typically embedded in

loop nests that are at least as deep as the number of dimensions in the original continuous prob-

lem. Despite their apparent simplicity, stencil algorithms show a rich set of performance patterns

and allow for various optimizations in terms of data access and work reduction. For instance,

the performance of most simple stencil algorithms (such as the 3D 7-point constant-coefficient

variant encountered with a simple finite-difference discretization of the Laplace operator on a

regular Cartesian grid) is limited by the memory bandwidth for in-memory working sets on mul-

ticore CPUs. Spatial blocking can reduce the code balance to a theoretical minimum but will

not decouple from memory bandwidth. Temporal blocking can finally render the implementation

cache or core bound with significant performance gains, but there are many different approaches

and the number of parameters is significant [32]. Moreover, even recent publications often fail

to assess performance baselines correctly, rendering all reported speedups meaningless.

We set out to compile an extensible collection of stencil runtime performance characteristics

from a variety of architectures and backed up by analytic performance models and performance

1Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),

Erlangen, Germany
2Department for Computer Science at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Ger-

many

DOI: 10.14529/jsfi190301

4 Supercomputing Frontiers and Innovations



counter analysis. The stencil update iteration is embedded in a Jacobi algorithm without ad-

vanced optimizations. All resulting information is available in a public online collection, orga-

nized based on an abstract classification scheme, and can be easily reproduced with the presented

information and available open-source tool chain. The collection is also enriched with specific

comments on the performance behavior and model predictions. It can be browsed at [24].

Our work makes the following contributions:

• simple classification scheme of stencil characteristics, based on the underlying numerical

problem, and defining the architecture dependent performance behavior (see Sec. 1);

• support for automatic analytic performance model generation for the AMD Zen microar-

chitecture (see Sec. 4.2);

• first-of-its-kind collection, presentation and method to match the measured performance

data with automatically generated single- and multicore performance models in order to

gain insight into relevant performance bottlenecks and uncover compiler deficiencies and

to guide performance optimization strategies (see Secs. 3, 4 and 5);

• automatic extraction of the Phenomenological ECM model from hardware performance

counters (see Sec. 2.5.3), based on ideas from [32];

• public website on which the gathered data, performance models, and reproducibility in-

formation are presented in a clear and structured way (see [24]);

• built-in reproducibility by transparently making all necessary runtime information and

system configurations available to developers—including the exact commands to execute

for reproduction (see Sec. 4).

This paper is organized as follows: Section 1 introduces our stencil classification scheme. In

Section 2 we briefly describe the computer architectural features of the benchmark systems, the

analysis tools, and the performance models we employ to set up the stencil performance collec-

tion. Section 3 details on our automated workflow and includes a description of the structure

and origin of the data presented on the INSPECT website. Section 4 uses a few distinct stencil

examples to showcase the data presentation and possible insights gained. Section 6 gives related

work. The article concludes with a summary of the main results and an outlook onto the future

heading of this work.

1. Stencil Classification

In order to span a space of possible stencils we use a classification based on the following

properties:

• dimensions: dimensionality of the stencil, typically 3D or 2D;

• radius: longest relative offset from the center point in any dimension, usually r = 1, r = 2,

or r = 3;

• coefficient weighting : how coefficients are applied, e.g. homogeneous, heterogeneous,

isotropic, or point-symmetric;

• stencil type: general shape of stencil, e.g., star or box;

• coefficient type: constant throughout grid or variable at each grid point;

• data type: numeric type of grid elements, e.g., double or float.

These properties may have a large performance impact depending on the details of the

underlying CPU architecture and its features and configuration, making runtime predictions

difficult. Much of the complexity lies in the cache hierarchy, where data transfers may be handled

before they reach main memory, and behavior depends on spatial and temporal locality. On
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Figure 1. Classification of stencils used by INSPECT. These properties do not capture all

aspects, but are representative for a large number of discretizations. Colors represent applied

coefficients

the other hand, in-core bottlenecks such as pipeline latencies and throughput limits, may also

play a decisive role, especially with more complicated stencils. A visual overview of the stencil

classification is given in Fig. 1. Isotropic coefficient weighting deserves special attention: all

nodes with the same distance to the origin share the same coefficient; different distances have

distinct coefficients.

With the given set of classification properties this leads to at least 192 relevant combinations.

We have not yet gathered data for all possible combinations and architectures available to us,

but a representative set is already available.

2. Background & Methodology

To support our methodology, we use STEMPEL [10] for code generation based on the

classification shown above, and Kerncraft [14] for the generation of Roofline and Execution-

Cache-Memory (ECM) models based on micro-architectural and memory hierarchy features as

well as benchmarking of single- and multi-core scenarios.

We will briefly introduce STEMPEL, Kerncraft and their underlying models ECM and

Roofline, as well as hardware features which have a significant impact on similar codes.

2.1. STEMPEL

STEMPEL is used to generate stencil codes from the parameters mentioned in Sec. 1 (dimen-

sions, radius, coefficient weighting, stencil type, coefficient type and data type). The resulting

kernel code is used as input for Kerncraft, but STEMPEL also supports generation of bench-

markable code which can be compiled and executed stand-alone. The generated code may also

include OpenMP multithreading support or spatial blocking. The latter is used to investigate

Collecting and Presenting Reproducible Intranode Stencil Performance: INSPECT
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blocking behavior for INSPECT. For accurate extraction of performance data, the code is addi-

tionally instrumented with LIKWID markers to be used with the likwid-perfctr tool.

Note that STEMPEL produces plain C code at the time of writing, but hardware-aware

programming with SIMD intrinsics (see, e.g., [28]) sometimes promises better performance.

Using SIMD intrinsics for SSE, AVX, and AVX512 instruction set extensions would be possible,

but analysis of such code is currently not possible with Kerncraft (although planned for future

work). Moreover, since the compiler-generated assembly code is readily available in INSPECT,

failure of the compiler to produce efficient SIMD instructions will immediately be apparent.

Note that such situations most often occur when the stencil code is embedded in an environment

that obscures the compiler’s view on the relevant details, such as nonoverlapping arrays, etc.

Under these conditions, it is hard to prove that the required code transformations for effective

vectorization are allowed. Since INSPECT invokes the compiler on a simple source code in a

very clean setting, vectorization is usually not a problem for the stencil structures investigated

here.

2.2. ECM & Roofline Model

The Execution-Cache-Memory (ECM) [38] and Roofline [40] models are resource-centered

performance models that assume certain hardware limitations (such as data transfer bandwidths,

instruction throughput limits, instruction latencies, etc.) and try to map the application to a

simplified version of the hardware in order to expose the relevant bottleneck(s). This analysis

depends on the dataset size and dimensions, as well as the computational effort during each

iteration. Both models generally neglect data access latencies although they can be added as

“penalties”. Latency predictions would require other models and are usually not of relevance for

stencil code performance. In some cases, latency penalties need to be considered for “perfect”

predictions [18], but this correction is usually small and is neglected in this work.

The compute performance bottleneck is analyzed based on the loop body’s maximum in-

core performance. Assuming that all load operations will hit the L1 cache, one can estimate the

optimistic runtime the loop body in cycles. The necessary information has been published by

Intel, Agner Fog [6], uops.info [1], or through the Intel Architecture Code Analyzer (IACA) [15].

Although none of those sources are complete, they are good enough for a well-informed esti-

mation. The resulting inverse throughput of cycles per cacheline (lower is faster) exposes the

bottleneck, for both ECM and Roofline. Cachelines are considered as the basic work unit, since

it is also the basic unit of caches. E.g., for a double precision code with 8 Byte per element,

on a machine with 64 Byte cachlines, there are eight iterations per cacheline. For Roofline most

publications use performance (higher is faster) as the baseline metric, but both units can be

converted into one another trivially:

clock/performance× work = inverse throughput

[
cycle

second

]
/

[
FLOP

second

]
×

[
FLOP

iteration

]
×

[
iteration

cacheline

]
=

[
cycle

cacheline

]

Memory and cache bottlenecks require a prediction of which data access will be

served by which memory hierarchy level. This is either done using a cache simulator (e.g.

pycachesim [12]) or the analytical layer-condition model [11, 14]. The result from this predic-

tion are the expected traffic volumes between the levels of the memory hierarchy. The Roofline

model then combines the data volume per cacheline (e.g., eight iterations with double precision)

for each hierarchy level with previously measured bandwidths for the same level and core count,
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Table 1. Host configuration used for INSPECT. See [25] for all details

Host HSW BDW SKX ZEN

CPU model
Intel Intel Intel AMD

Xeon E5-2695v3 Xeon E5-2697v4 Xeon Gold 6148 EPYC 7451

base clock (fixed) 2.3 GHz 2.3 GHz 2.4 GHz 2.3 GHz

uncore clock (fixed) 2.3 GHz 2.3 GHz 2.4 GHz n/a

turbo mode disabled disabled disabled disabled

cores per socket 14 18 20 24

cores per NUMA domain 7 9 10 6

cluster-on-die (CoD) / sub-
CoD enabled CoD enabled SNC enabled n/a

NUMA-clustering (SNC)

microarchitecture
Haswell Broadwell Skylake X Zen

see Fig. 2a see Fig. 2a see Fig. 2b see Fig. 3

INSPECT machine name BroadwellEP E5-2697 CoD BroadwellEP E5-2697 CoD SkylakeSP Gold-6148 SNC Zen EPYC-7451

and selects the slowest as the bottleneck. The ECM model combines all inter-cache transfers

with theoretical bandwidths from documentation, and volumes between memory and last level

cache with a measured full-socket bandwidth. These inverse throughputs are either combined

using summation if no overlapping is assumed, maximization for full overlapping, or any more

complicated function for intermediate situations.

For Intel processors, assuming that no overlap between any load, store, inter-cache and

memory transfers happens has proven to be the best-fitting model assumption. This might

change in future microarchitectures and does not hold for other vendors.

For the AMD Zen microarchitecture, in-core computations and all inter-cache and register

transfers overlap down to the L2 cache. Transfers between L2, L3 and main memory serialize [16].

Another approach is to measure transfers using hardware provided performance counters

and base the ECM model on these empirical volumes and predict the runtime using the non-

overlapping assumption. This is referred to as the Phenomenological ECM model, also discussed

in Sec. 2.5.3.

The model parameters used by the models are shown in Fig. 2 and Tab. 1. The corresponding

machine files can be found on the INSPECT webpage. For the ECM model parameters, except

for the measured memory bandwidth highlighted by the preceding tilde (˜), all throughputs are

published in vendor documentation. The throughputs of execution ports, scheduler and decoder

are not shown here, but most may be found in official documentation, public resources, or can

be benchmarked [13]. The overall instruction-level parallelism capability is represented with the

different ports.

While in this work the Roofline model is always presented with a single (reciprocal) through-

put (TP), the ECM model is produced from architecture-dependent combinations of in-core com-

putation TP Tcomp, load/store TP TRegL1, inter-L1/L2 transfer TP TL1L2, inter-L2/L3 transfer

TP TL2L3 and main memory transfer TP TL3MEM), with the unit of cycles per cacheline.

2.3. Intel Microarchitectures

The Intel microarchitectures Haswell (HSW) and Broadwell (BDW) have no differences in

regard to our modeling and performance analysis. Figure 2a shows their architectural diagram.

Both architectures have seven execution ports; most important are the two AVX2 fused-multiply-

add (FMA) ports, two load ports able to handle 256-bit per cycle and one 256-bit store port.

AVX and AVX2 instructions can make use of sixteen 256-bit YMM registers. On the memory side,

there is a linear inclusive cache hierarchy. Due to the double ring interconnect between individual

Collecting and Presenting Reproducible Intranode Stencil Performance: INSPECT
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(a) Haswell (HSW) and Broadwell (BDW) (b) Skylake X (SKX)

Figure 2. Simplified block diagrams for Intel Haswell, Broadwell and Skylake X, including the

execution ports and cache hierarchy. Differences have been highlighted. The Skylake architecture

(without X) has no AVX512 support

HSW and BDW cores and separate memory controllers residing on each ring, a cluster-on-die

mode can be enabled to allow NUMA separation of the two rings. With cluster-on-die mode,

the last-level cache (i.e., L3) is split and only used by a core on the same ring, and a slightly

higher memory bandwidth can be attained. Results for HSW and BDW are presented with

cluster-on-die (CoD) mode enabled.

The Skylake X (SKX) microarchitecture is shown in Fig. 2b. It supports AVX512, which

boosts load, store and FMA ports from 256-bit to 512-bit width. To allow two AVX512 FMA

instructions to be executed in parallel (i.e., combined throughput of 0.5 cycles) an AVX512

pipeline was added to Port 5 and the existing 256-bit pipelines at Ports 0 and 1 may be used

in lockstep to reach 2 × 512-bit width. There are 32 512-bit YMM registers and the number of

256-bit registers was also doubled to 32. The SKX microarchitecture has a non-inclusive last

level victim cache, which may cache evicted cachelines from L2 and is used to write back to but

not to load from memory. All data coming from memory is loaded directly into the L2 cache

of the requesting core. Unmodified cachelines may also be dropped from L2. The criteria which

decide if a cacheline is evicted from L2 to the victim cache or not have not been disclosed. For

our models we assume that all evicts will be passed on to the last-level cache and—if changed—

stored from there into memory. Sub-NUMA-clustering (SNC) is similar to CoD, which was also

enabled during our measurements.

The changed cache structure of the Skylake microarchitecture, with its undocumented deci-

sion heuristic for L3 cache usage and unavailable hardware counters for some of the inter-cache

and memory data paths, still poses a problem. As we will see later, assuming the traditional

linear inclusive cache hierarchy often yields reasonable results, but is still under investigation.

In the architecture diagrams, two-way arrows represent half-duplex capabilities, and two

individual arrows mean full-duplex capabilities. The factor along with the bandwidth is meant

to emphasize the half- and full-duplex behavior (e.g., between L2 and L3 on Skylake X 128 bits

per cycle may be transferred both ways concurrently). This information and more is used to

construct a machine file for Kerncraft and will be explained in Sec. 2.5.1.

The specific systems that are used for INSPECT are documented at [25]. A summary of the

relevant configuration details, in addition to the micro architectural details in Fig. 2, is given in

Tab. 1.
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2.4. AMD Zen Microarchitecture

The AMD Zen microarchitecture has ten ports, the first four of which (0, 1, 2 and 3) support

128-bit wide floating-point SSE instructions (see Fig. 3). Each execution unit, except for divide,

is present on two ports, e.g., FMA and MUL on 0 and 1, and ADD on 2 and 3. The decoder

stage supports AVX instructions by utilizing two SSE ports simultaneously (similar to AVX512

on Port 0 an 1 with Skylake X). Ports 4 through 7 handle integer and control flow instructions.

Figure 3. Simplified block diagram for AMD Zen microarchitecture, including execution ports

and cache hierarchy

Ports 8 and 9 each have their own address generation unit (AGU) and can utilize the two

shared load ports and the single shared store port. The store and load ports each operate on

up to 128 bits and can issue one load/store to the 32 kB first-level (L1) cache. Thus either two

loads or one load and one store can be executed per cycle at maximum. The 512 kB inclusive L2

cache is connected to the L1 cache with 256-bit per cycle full-duplex (i.e., a 64 B cacheline takes

two cycles to transfer, and loads and stores are done in parallel). Between L2 and the last-level

cache (L3), 256 bits can be transferred per cycle, but only half-duplex (i.e., either load or store).

The exact heuristics of the victim cache are not publicly available. In addition to that, support

for hardware performance counters is much more limited, which does not allow us to inspect

many of the transfers between memory levels.

The maximum main memory bandwidth achievable is close to 160 GB/s, 30% higher than

what we were able to measure on Skylake X. The specific AMD CPU used here has 24 cores,

split over four NUMA domains of 6 cores each.

2.5. Kerncraft

Kerncraft brings together static analysis of the kernel code with microarchitecture data and

execution models into a coherent performance prediction model, based on the Roofline and ECM

models. It also allows benchmarking of the kernel codes with single and multiple cores (using

OpenMP) and collection of hardware performance counter data during execution.

Collecting and Presenting Reproducible Intranode Stencil Performance: INSPECT
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2.5.1. Machine model

The specific machine model for each microarchitecture is described in the machine files,

which are provided either with Kerncraft or can be generated semi-automatically using

likwid bench auto—a tool distributed with Kerncraft. All machine models mentioned in this

paper are provided with Kerncraft in the examples directory. When using the semi-automatic

generation, it must be executed on such a machine and the resulting file needs to be com-

pleted manually from vendor documentation, model assumptions or from existing—similar—

architecture files.

Machine model files contain detailed information on the architecture and memory hierarchy,

as well as benchmark results, necessary to construct the Roofline and ECM model. In particular

STREAM [33] benchmark results, cache sizes and parameters, NUMA topology, base clock and

architecture specific compiler arguments make up the majority of the description. Some of it

can be collected automatically, some needs to be provided manually.

The INSPECT website presents a breakdown of the architecture information in the machine

files [25]. There may be known issues, which are also documented on INSPECT. E.g., Haswell’s

L1-L2 bandwidth is theoretically 64 Byte per cycle, but benchmarks show that the achievable

bandwidth may be as low as 32 B/cy. Kerncraft assumes the optimistic 64 B/cy.

2.5.2. Model construction

The static analysis and model building is split in two parts: in-core execution and data

analysis; both of which are done without execution of the kernel code and can be performed on

any hardware.

The in-core analysis is done via the Intel Architecture Code Analyzer tool (IACA) [15] for

Intel architectures and the Open Source Architecture Code Analyzer (OSACA) [29], which yields

the number of cycles each execution port is occupied by the kernel’s assembly instructions (Tcomp

and TRegL1 for the ECM model). Kerncraft takes care of compilation, unrolling and vectorization

in order to correctly interpret the IACA/OSACA result and relate it to high-level loop iterations

found in the kernel source code.

The data analysis predicts inter-cache and memory transfer data volumes either using the

analytical layer-condition model (LC) or the pycachesim [12] cache simulator. This yields TL1L2,

TL2L3 and TL3MEM for the ECM model. The LC model analysis is very fast and gives a closed

form analytical model, but relies on an idealistic full-associative inclusive and least-recently-used

cache hierarchy. The cache simulator can handle more realistic and complex cache configura-

tions, such as associativity and non-inclusive cache hierarchies—at the cost of speed and without

a closed form solution. Certain aspects of real hardware can not be simulated due to missing

documentation, e.g., cache placement algorithm for last-level cache on current Intel microarchi-

tectures.

For multi-core scaling, we use the memory latency penalty estimation as described by Hof-

mann [17].

2.5.3. Benchmark mode and phenomenological ECM

Benchmarking of any code can be tricky, this is the same for stencil codes. Kerncraft takes

care of pinning and hardware performance counter monitoring with LIKWID [39], as well as

ensuring a minimal runtime, checking machine configuration and derivation of relevant metrics

J. Hornich, J. Hammer, G. Hager, T. Gruber, G. Wellein
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from the measurements. The underlying performance counters are defined in the machine model

and based on validated metrics provided by LIKWID.

In addition, metrics based on measurement of the runtime, such as memory bandwidths

and lattice updates per second, data transfer volumes can be measured accurately. From these

Kerncraft can construct a Phenomenological ECM model. This phenomenological model is not

based on the measured runtime or derived bandwidths, but uses inter-cache and memory data

volumes, as well as counts of executed µops per port. The overall prediction is then compiled in

the same way as the analytical ECM prediction is compiled from vendor documented transfer

rates, measured memory bandwidth and instruction throughput information.

The specific counters necessary have been compiled from Intel documentation and their

correctness validated with microbenchmarks, where possible. This process is part of the ongoing

LIKWID development. Kerncraft’s machine models put the counter in relation to ECM model

parameters, such as L1-L2 traffic or execution port utilization. To measure all necessary coun-

ters, multiple executions are unavoidable, because only a limited number of counter registers

are available for use. On Intel’s server microarchitectures, many performance counters are avail-

able, and a complete model can be assembled as presented in Fig. 5f. On AMD Zen, however,

essential contributions, such as main memory traffic, can not be examined, and a complete

phenomenological model may not be constructed.

3. Data Collection

In order to build a comprehensive single-node stencil performance database, preexisting

open-source tools STEMPEL [10], Kerncraft [14] and LIKWID [39] have been combined in the

“Intranode Stencil Performance Evaluation Collection” (INSPECT). For given stencil parame-

ters all benchmark and automated performance modeling data for the present machine can be

collected with a single (job) script. The data collection work flow can be seen in Alg. 1.

STEMPEL is used for generating the stencil source code that is to be fed into Kerncraft.

Possible parameters are: dimension, radius, stencil type, coefficient weighting and type, as well

as the data type. Examples of the produced stencil code by STEMPEL are shown in Fig. 4, 8

and 9. If a custom stencil is to be used, this step can be omitted.

The stencil code is then supplied to Kerncraft in order to do layer condition analysis and

determine sensible ranges for grid sizes to be examined. Data ranges are chosen such that the

last level cache 3D layer condition is violated and a steady state will be reached as long as the

available main memory per NUMA domain is not exceeded (see 1.5 · LCL3,3D in Alg. 1).

The next step is data collection. For single core grid scaling, Kerncraft is used to generate

Roofline and ECM performance models with layer conditions and cache simulation, as well as

benchmark and Phenomenological ECM data. Multi-core thread scaling is done for the largest

previously calculated, memory bound grid size for all cores of one socket. Here Kerncraft is

again used to generate Roofline, ECM and Benchmark data. In a last step spatial blocking is

performed. Here STEMPEL is once more used to generate executable benchmark code with

spatial blocking from the basic stencil code, generated before. This spatial blocking code is then

instrumented with LIKWID to obtain the required benchmark data.

In a final step all data is collected, postprocessed and archived. The outputs are the data

files that are needed for the visualization on the website. Those files can be pushed to the git

repository to automatically include the inspected stencil on the INSPECT website.

Collecting and Presenting Reproducible Intranode Stencil Performance: INSPECT

12 Supercomputing Frontiers and Innovations



Algorithm 1 INSPECT data collection workflow

fix frequency

for dimension, radius, kind, coefficients, weighting, data type do

stempel: generate stencil

kerncraft: layer condition analysis

LCL3,3D ← compute L3 3D layer condition size

NL3,3D’ ← 1.5 · LCL3,3D
if NL3,3D’ < available Memory per NUMA-domain then

reduce grid size until it fits in memory

end if

for n← 10,NL3,3D’ do . single core grid scaling

kerncraft: (LC, CS)× (RooflineIACA, ECM)

kerncraft: Benchmark

end for

for Threads← 1,Nthreads do . thread scaling @ NL3,3D’
kerncraft: (RooflineIACA, ECM, Benchmark)

end for

stempel: generate 3D spatial blocking code

for n← 10,NL3,3D’ do . single core grid scaling

determine ’good’ 3D blocking factors

likwid-perfctr: Benchmark

end for

csv data + graphs + website . post processing

end for

For every stencil-machine configuration the website shows general stencil information, graphs

of the measured and predicted performance, and step-by-step instructions for the replication

of the shown data. The general stencil information contains stencil parameters, kernel source

code, kernel assembly, and layer condition analysis, as well as IACA throughput analysis and

information about the state of the machine and operating system the data was collected on.

Performance prediction and benchmark data are shown in five different graph types:

• stacked ECM (with layer condition, cache simulation and phenomenological);

• Roofline performance (with layer condition and cache simulation);

• data transfers for single core grid scaling;

• full-socket thread scaling (one grid size by default, but possibly more);

• spatial blocking performance plots (3D-L3 cache blocking by default, but possibly more).

An example of the plots visible for each stencil configuration is shown in Fig. 5. The repro-

ducibility information contains detailed steps on how to generate the stencil code with STEM-

PEL and all necessary commands to retrieve the data shown on the site.

Additionally, all data shown can be commented and validated with a traffic light system

reflecting the quality of the plots. This allows to highlight problems or nonintuitive results of a

specific stencil or hardware configuration, which could otherwise be mistaken for incorrect data.
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4. Examples

Three different exemplary stencil configurations were selected from the INSPECT website:

short-/long-ranged and star/boxed stencils, on three different machines. We will start with a

very basic 7-point stencil on a Haswell Xeon E5-2695v3 machine, then continue with a long-

ranged stencil on Skylake Xeon Gold 6148 and compare a boxed stencil on Broadwell Xeon

E5-2697v4 and Skylake Xeon Gold 6148; we will conclude with the basic 7-point stencil on an

AMD EPYC 7451 machine.

In addition to the presented architectures, the INSPECT website also contains analyses and

measurements on Intel Sandy Bridge and Ivy Bridge architectures.

4.1. A Simple Short-ranged Stencil on Haswell (Intel Xeon E5-2695v3)

The first stencil configuration presented here is the simple 3D 7-point stencil on the well

understood Haswell microarchitecture (Intel Xeon E5-2695v3 in CoD mode): 3D, radius 1, star

stencil, constant and homogeneous coefficients with double precision floating-point accuracy. The

stencil source code is shown in Fig. 4. Figure 5 displays all graphs presented on the INSPECT

website, as well as the workflow from stencil generation with STEMPEL to data acquisition

with Kerncraft, as already outlined by Alg. 1. The model prediction graphs show a stacked

ECM prediction (TECM = max(Tcomp, sum(TRegL1, TL1L2, TL2L3, TL3MEM))), together with the

Roofline prediction and benchmark measurement data.

All the presented data and plots on this specific kernel, including commands to reproduce,

system configuration used and very verbose information on the analysis (such as the IACA

output) may be viewed at [23].

Figure 5a shows the ECM and Roofline prediction generated by Kerncraft, based on the

layer condition prediction. Figure 5b is based on the cache simulation. The stacked colored

regions represent the data transfers in the ECM model, where the upper boundary is equal to

the ECM prediction including all data transfers (TRegL1 +TL1L2 +TL2L3 +TL3MEM). The red line

represents the compute bottleneck (Tcomp), as predicted with IACA. The Roofline prediction is

the thin blue line with circles. The black line with x’s are the measurement results from running

Kerncraft in benchmark mode.

The Roofline prediction is accurate when all layer conditions are violated and all stencil data

is coming from main memory. Before that, its prediction is about 25% too optimistic. In the

transition zone, there are a few points where the Roofline model is too pessimistic, because the

double a[M][N][P], b[M][N][P], c0;

for(long k = 1; k < M - 1; ++k) {

for(long j = 1; j < N - 1; ++j) {

for(long i = 1; i < P - 1; ++i) {

b[k][j][i] = c0 * ( a[k][j][i]

+ a[k][j][i-1] + a[k][j][i+1]

+ a[k][j-1][i] + a[k][j+1][i]

+ a[k-1][j][i] + a[k+1][j][i] );

}}}

Figure 4. 3D stencil code with radius 1, constant homogeneous coefficients, star structure and

double data type
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Figure 5. Flow chart visualizing the connections between STEMPEL and Kerncraft and the

resulting data. STEMPEL is used to generate the kernel and spatial blocking code. Kerncraft

performs Roofline and ECM analysis on the kernel code for layer condition and cache simulation.

Kerncraft’s benchmark mode provides the measurement data for grid scaling, data transfers and

Phenomenological ECM, as well as multi core thread scaling. The shown data is for a 3D star

stencil with radius 1 and constant, homogeneous coefficients with double precision floating-point

numbers on a Haswell Xeon E5-2695v3 machine with Cluster on Die mode enabled. Underlying

data, plots and additional model information may be viewed at [23] on the INSPECT website
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mathematical layer condition is sharp but the performance shows a smooth transition because

of the cache replacement policy. The ECM model results in a much more accurate prediction.

All layer condition jumps (303: L1-3D, 903: L2-3D, 6803: L1-2D, 7603: L3-3D) are clearly

visible and correspond to the measured performance. The large deviation between models and

measurement in the initial section (N < 1003) comes from loop overheads and large impacts of

remainder loop iterations. While this is expected, it is neither modeled by ECM nor Roofline.

Comparing the cache simulator (Fig. 5b) with the layer conditions (Fig. 5a) shows that

some peaks or dips in the measurement can be explained by using a more accurate cache model

as provided by the cache simulator. It also allows for a smoother transition between broken

layer conditions, but nonetheless fails at accurately predicting the transition behavior. Perfect

tracking of those transitions, as seen in the benchmark measurements, would only be possible

with precise knowledge of the underlying caching algorithms implemented in the different cache

levels. Due to a lack of information from the CPU vendors a perfect LRU cache is assumed, as

well as other idealized implementation details.

In the Phenomenological ECM graph, cf. Fig. 5f, the smooth transition between broken

layer conditions can be tracked very well. Apart from the transitions zones, the individual

contributions as modeled by the analytical ECM model (Fig. 5a and 5b) and derived from

measurements in the Phenomenological ECM model match up very well. It also shows why the

measured performance differs immensely from the predictions below 1003, which now shows

as very high in-core execution time of the load instructions because of short scalar loops. The

difference between measurement and model towards the right side of the graph hints that there

are saturation effects in the memory interface which we do not yet understand fully.

The data transfer volumes predicted by the layer conditions and their comparison with

measured data volumes through hardware performance counters can be seen in Fig. 5e. The

solid lines show the data transfer prediction between cache levels and main memory and the

dashed lines are the measured data transfers. Between 1003 and 5003, as well as after 8503, the

predicted transfers at each level and the measured data fit perfectly and show the accuracy of

this method. As layer condition break, the measured cache transfers show a smooth transition,

until it realigns with the predicted data volume.

Figure 5c shows the impact of cache blocking for specific layer conditions. In this case,

blocking was performed for the L3-3D layer condition, where only the middle loop (e.g., j-loop

in Fig. 4) is blocked to keep the relevant data at least in the L3 cache and reduce main memory

traffic to a minimum. As intended, performance stays constant after the L3-3D layer condition

is broken, with spatial cache blocking enabled (green line). This behavior can be predicted

from Fig. 5a, where spatial blocking means to preserve the throughput of an earlier plateau

while increasing the dataset size. Reasonable blocking factors are given by the range of the

plateau (e.g., here the block dimensions should be N
1/3
block < 700). Blocking for the next lower

plateau (i.e., N
1/3
block < 100) may introduce too much overhead due to short loops. Another, more

complicated option would be the use of temporal blocking, which is expected to yield about the

same performance as N
1/3
block < 100, because stripping the top contribution from the stacked plot

would bring the throughput to the same plateau.

Moving on from the single core to multi core scaling, Fig. 5d shows the in-socket thread scal-

ing behavior at 10203. Due to the Cluster-on-Die configuration of the machine, the performance

flattens out at the end of the first NUMA-domain (7 cores). With the addition of the second

NUMA-domain a linear increase can be seen, due to the linear addition of bandwidth from the
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Figure 6. ECM and Roofline predictions with

benchmark results for 3D 7-point star stencil

on AMD ZEN

Figure 7. ECM and Roofline predic-

tions for SKX, based on layer con-

ditions, with benchmark results for

3D/3r/heterogeneous/star/constant/double

stencil

added cores based on the compact scheduling scheme. Predictions of ECM and Roofline models

fit very well in the second, linear part of the graph, and the ECM is also able to capture the

phase before memory bandwidth saturation.

4.2. A Simple Short-ranged Stencil on AMD Zen

In Fig. 6 we show an analysis on the AMD Zen microarchitecture, presenting results for the

same kernel as in Fig. 4. These and additional results may be found at [22]. As described in

Sec. 2.2, the AMD Zen architecture shows strong overlap in data transfers. The port execution

model is based on the OSACA implementation [29], and the Kerncraft version used for this

is based on the latest feature/OSACA branch. For data volume prediction we use the layer

condition model, as for SKX.

The ECM prediction for the AMD Zen microarchitecture is based on the following model,

which has fewer serializing terms:

TECM = max(Tcomp, TRegL1, TL1L2, sum(TL2L3, TL3MEM)).

This difference is also visible in Fig. 6, where the overlapping parallel terms (Tcomp, TRegL1

and TL1L2) are simple lines and the serial contribution terms (TL2L3 and TL3MEM) are stacked

onto one another.

As with Skylake X, the benchmark follows the trend of the model qualitatively, but mea-

surements yield better throughput with increased main memory traffic. This effect is seen in

both the ECM and the Roofline model, and we believe it is linked to the undisclosed behavior of

the L3 cache. The cache simulator apparently overestimates the number of L2 or L3 misses and

predicts a higher main memory traffic volume. Unfortunately, AMD Zen does not have main

memory traffic hardware performance counters, so we are unable to validate this assumption.

In light of the large main memory traffic contribution, we would suggest temporal blocking

to bring the inverse throughput down to the TRegL1 level. TL3Mem contains all memory accesses

(i.e., transfers between main memory, L3 and L2).
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double a[M][N][P], b[M][N][P];

double c0, c1, c2, c3, c4, c5, c6, c7, c8, c9;

double c10, c11, c12, c13, c14, c15, c16, c17, c18;

for(int k = 3; k < M-3; k++) {

for(int j = 3; j < N-3; j++) {

for(int i = 3; i < P-3; i++) {

b[k][j][i] = c0 * a[k][j][i]

+ c1 * a[k][j][i-1] + c2 * a[k][j][i+1] + c3 * a[k-1][j][i]

+ c4 * a[k+1][j][i] + c5 * a[k][j-1][i] + c6 * a[k][j+1][i]

+ c7 * a[k][j][i-2] + c8 * a[k][j][i+2] + c9 * a[k-2][j][i]

+ c10 * a[k+2][j][i] + c11 * a[k][j-2][i] + c12 * a[k][j+2][i]

+ c13 * a[k][j][i-3] + c14 * a[k][j][i+3] + c15 * a[k-3][j][i]

+ c16 * a[k+3][j][i] + c17 * a[k][j-3][i] + c18 * a[k][j+3][i];

}}}

Figure 8. 3D stencil code with radius 3, constant heterogeneous coefficients, star structure and

double datatype

4.3. A Long-ranged Stencil on Skylake X (Intel Xeon Gold 6148)

The second example showcases a long-ranged heterogeneous star stencil on the Skylake X

architecture (Intel Xeon Gold 6148), the stencil source code is shown in Fig. 8. It features

more floating point operations compared to the previous kernel because of the heterogeneous

coefficients classification, but also higher memory traffic due to the long stencil range (i.e., range

= 3 or r3 classification). For brevity, only the stacked ECM prediction with layer conditions as

cache predictor is shown in Fig. 7. All remaining information and graphs can be found on the

INSPECT website [21].

Qualitatively, both—Roofline and ECM prediction—represent the measured performance

behavior well. The Roofline model is a bit too optimistic, and the ECM model a bit too pes-

simistic. The reason for that is the new organization of the cache hierarchy in the Skylake

microarchitecture, seen in Fig. 2b and discussed in Sec. 2.3. At the moment it is not possible to

correctly model the data transfers between L2 and L3 cache, in combination with main memory.

With the ECM model a worst case scenario is assumed, such that all data dropped or evicted

from L2 is passed onto L3. Taking that into account and with better knowledge of the actual

caching algorithms and heuristics, the ECM prediction would become faster and more closely

match the measured data.

The layer condition analysis correlates very well with the measured data, and all relevant

breaks (i.e., plateaus) can be seen. The slow performance in the beginning until 1203 is again

related to the high Tcomp fraction and scalar loads of the remainder loop.

Data shown on the INSPECT website for full-socket thread scaling shows that the prediction

fits perfectly to the measured data. Also cache blocking for the L2-3D layer condition works very

well, due to the larger L2 cache in this architecture. In contrast to that, L3-3D cache blocking

works very poorly, as is in accordance with Intel’s recommendations: “Using just the last level

cache size per core may result in non-optimal use of available on-chip cache” [27] (p. 41).

Overall it can be said that except for the uncertainty with the L2-L3-MEM caching behavior,

the applied Skylake machine model works well and gives accurate predictions.

Performance optimization potential is again predicted by the plateaus (for spatial blocking)

and contributions (for temporal blocking). Spatial blocking to N
1/3
block < 300 may increase per-
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formance by up to 30%. Temporal blocking would only make sense, in comparison to spatial, if

it is done in the L2 cache, stripping the two upper contributions off the non-overlapping ECM

prediction and possibly hitting the instruction throughput bottleneck (Tcomp) at 40 cy/CL.

4.4. Comparison of a Short-ranged Box Stencil on Broadwell and Skylake X

Finally, we present a comparison of Broadwell (Intel Xeon E5-2697v4) and Skylake X (Intel

Xeon Gold 6148) with a short-ranged box stencil with heterogeneous constant coefficients, cf.

Fig. 9. Compared to star stencils, box stencils need more loads and registers, which may have

a large performance impact. In Figs. 10a and 10b, benchmark data and model predictions are

shown. On the INSPECT website a complete list of graphs, data sets and modeling information

may be viewed for Broadwell [19] and for Skylake X [20].

On Broadwell performance does not seem to be impacted by data traffic nor in-core execution

(Tcomp). Reasons for the poor and almost constant performance across all grid sizes is a register

dependency chain that is visible in the assembly code, to be seen on the INSPECT website

under “Kernel Source Code” by clicking on the “Assembly Code” button, but undetected by

IACA. This dependency chain slows down the execution so much, that all other effects are

suppressed and the performance becomes independent of the grid size. Since the number of

available registers has been doubled with the introduction of the Skylake X architecture, this

disastrous effect is eliminated there. Instead, until 3003 the in-core bottleneck Tcomp dominates

and limits the reciprocal throughput to ∼ 60 cy/CL. This prediction, originating from an IACA

analysis, is obviously too pessimistic, since measurements show better performance compared

to ECM and Roofline models. Looking into the IACA analysis, it only gives an explanation for

46 out of the 60 cycles and adds 14 cycles based on an unknown heuristic. Considering this,

46 cycles per cacheline would explain the measured performance much better and calls for a

double a[M][N][P], b[M][N][P], W[27][M][N][P];

for(int k = 1; k < M - 1; ++k) {

for(int j = 1; j < N - 1; ++j) {

for(int i = 1; i < P - 1; ++i) {

b[k][j][i] = W[0][k][j][i] * a[k][j][i]

+ W[1][k][j][i] * a[k-1][j-1][i-1] + W[2][k][j][i] * a[k][j-1][i-1]

+ W[3][k][j][i] * a[k+1][j-1][i-1] + W[4][k][j][i] * a[k-1][j][i-1]

+ W[5][k][j][i] * a[k][j][i-1] + W[6][k][j][i] * a[k+1][j][i-1]

+ W[7][k][j][i] * a[k-1][j+1][i-1] + W[8][k][j][i] * a[k][j+1][i-1]

+ W[9][k][j][i] * a[k+1][j+1][i-1] + W[10][k][j][i] * a[k-1][j-1][i]

+ W[11][k][j][i] * a[k][j-1][i] + W[12][k][j][i] * a[k+1][j-1][i]

+ W[13][k][j][i] * a[k-1][j][i] + W[14][k][j][i] * a[k+1][j][i]

+ W[15][k][j][i] * a[k-1][j+1][i] + W[16][k][j][i] * a[k][j+1][i]

+ W[17][k][j][i] * a[k+1][j+1][i] + W[18][k][j][i] * a[k-1][j-1][i+1]

+ W[19][k][j][i] * a[k][j-1][i+1] + W[20][k][j][i] * a[k+1][j-1][i+1]

+ W[21][k][j][i] * a[k-1][j][i+1] + W[22][k][j][i] * a[k][j][i+1]

+ W[23][k][j][i] * a[k+1][j][i+1] + W[24][k][j][i] * a[k-1][j+1][i+1]

+ W[25][k][j][i] * a[k][j+1][i+1] + W[26][k][j][i] * a[k+1][j+1][i+1];

}}}

Figure 9. 3D stencil code with radius 1, variable hetero-geneous coefficients, box structure and

double datatype

J. Hornich, J. Hammer, G. Hager, T. Gruber, G. Wellein

2019, Vol. 6, No. 3 19



(a) Broadwell (BDW) (b) Skylake X (SKX)

Figure 10. ECM and Roofline model predictions based on layer conditions, with benchmark

results for 3D/1r/heterogenous/box/constant/double stencil on Broadwell and Skylake X archi-

tectures

better in-core model, as aimed for by the OSACA project [29]. Beyond N ≈ 4003, data transfers

become more dominant and slow down the execution, as qualitatively predicted by the ECM

model. Roofline sticks with the 60 cy/CL, because no single memory level surpasses them. In

light of the discrepancy between modeled and measured performance, the graph can not be used

to guide performance optimization, but it sheds light on the IACA misprediction at hand.

For Skylake, simple spatial blocking with N
1/3
block < 400 is advisable. Temporal blocking

would not yield better results, because of the hard Tcomp limit.

5. How to Make Use of INSPECT

When developing stencil-driven applications and especially when publishing performance

results based on stencil codes, authors have to compare to a suitable, well-understood baseline.

In order to make use of INSPECT in this context, the user must first classify their stencil

according to our scheme and select a microarchitecture and CPU model from the INSPECT

website that is similar or identical to their own. If that is not possible, INSPECT provides the

toolchain and automation to compile a new baseline for future reference.

Depending on the programming language and software architecture, stencil patterns in

applications may be hidden under several abstraction layers but come to light during detailed

performance analysis. It is also the user’s task to isolate the stencil code in order to be able to

measure its performance. This may be done either “in situ” via suitable instrumentation or by

writing a proxy application that only performs stencil updates. Once a stencil is classified and a

comparison is established, optimization strategies may be guided by the INSPECT ECM model

report: Spatial blocking should bring the performance of large data sets on the level of smaller

data set sizes by better use of caches (moving to a plateau left in the plots), whereas temporal

blocking strategies eliminate data transfers to lower memory hierarchy levels (peeling off layers

in the stacked ECM plot contributions).

If the measured stencil performance in the application code does not coincide with the

INSPECT data and model at least qualitatively, as seen in Sec. 4.4, the culprit is usually

the compiler not generating efficient code, but other scenarios are possible: specific hardware

features in the user’s benchmarking setup (e.g., different DIMM organization), unfavorable sys-
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tem settings (e.g., small OS pages, uncontrolled clock speed, Cluster-on-Die settings, disabled

prefetchers), simple benchmarking mistakes such as wrong or no thread affinity, etc. Whatever

the reason, it will be worth investigating, which usually leads to better insight.

6. Related Work

Our work comprises three parts: stencil classification and generation with STEMPEL,

benchmarking and modeling with Kerncraft, and presentation and publication of results on

the INSPECT website.

Collecting and presenting benchmark results is a common approach for a variety of reasons.

To name a few examples:

• TOP500 [34] ranks the performance of HPC systems world-wide based on the High Per-

formance LINPACK [4] benchmark performance.

• HPCG benchmark [5] takes the same approach as the TOP500, with a different benchmark.

• SPEC [37] has a spectrum of benchmarks suites for different aspects and allows its members

to publish the results on their website. Their suites come with real applications embedded

as test cases. They produce detailed reports on the runtime environment, with the goal of

comparing the performance of systems.

• STREAM benchmark [33] is the de facto standard for measuring main memory bandwidth.

The website has results for machines in tabulated form.

• HPC Challenge Benchmark Suite [30] combines multiple benchmarks and allows users to

publish results through HPCC’s website.

All of these benchmark collections are focused on comparing machine performance by a set

of predefined benchmarks, which is extremely valuable for purchasing decisions and as a ref-

erence for researchers and developers. In contrast, we try to explain the observed performance

based on the characteristics of the stencil structure, which is usually defined by the underlying

model and discretization. This makes it more informative and adaptable for a particular devel-

oper to compare and explain their own code’s performance with similarly structured reference

implementations provided by our framework.

The Ginkgo Performance Explorer [2] focuses on presenting performance data gathered

by automatic benchmarks as part of a continuous integration (CI) pipeline. This project is

generically applicable to other workflows, but lacks the focus on a specific field to allow the fine

grained presentation of model predictions and measurements as is done by INSPECT, nor does

it comprise any modeling component.

Methodologies for performance analysis most often fall into the category of performance

models, such as the already mentioned ECM and Roofline models. Their application to spe-

cific stencils or stencil-based algorithms was at the focus of intense research [3, 7, 26, 31, 36].

Our concept goes beyond these approaches in that it enables easy reproduction of performance

numbers and encourages discussion via an open workflow.

Datta et al. published a study of a stencil kernel on multiple architectures in 2009 [3]. It is

based on the same modeling principles but does not provide a unified process and presentation

reusable for other kernels.

Our approach also goes beyond known solutions to performance analysis and co-design in

various application fields (see, e.g., [8, 35], and references therein), which usually concentrate on

very specific stencil structures but lack our rigorous focus on reproducibility and modeling.
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Conclusion and Outlook

We have presented a comprehensive code generation, performance evaluation, modeling,

and data presentation framework for stencil algorithms. It includes a classification scheme for

stencil characteristics, a data collection methodology, automatic analytic performance modeling

via advanced tools and a publicly available website that allows to browse results and models

across a variety of processor architectures in a convenient way.

The presented baseline performance and model data provides valuable insight and points of

comparison for developers who have to write performance critical stencil code. The automatic

spatially optimized version is given as an optimization example. INSPECT already contains

a large range of different stencil parameters and will be continuously extended to eventually

comprise a full coverage of the parameter space. To this end, we plan on optimizing the tool

chain to reduce the total runtime considerably. The choice of an analytic performance model

over machine learning was deliberate as not only prediction but also insight into bottlenecks is

desired.

Kerncraft’s support of non-Intel architectures is still rudimentary. Support for AMD’s latest

x86 implementations is already available, and we have presented its preliminary use, while

ARM will require more effort but is on our shortlist of upcoming features. These additions will

be integrated into future updates of the INSPECT website.

An interesting spin-off of this work would be the integration of more web-enabled tools,

such as the layer-condition analysis [11], into INSPECT to allow users to interactively analyze

their own code. Compiler explorer [9] would be one potential tool to inspect compiler behavior

for different architectures.

A generalization from stencils to dense linear algebra and streaming kernels is straightfor-

ward from Kerncraft’s perspective, but the classification scheme would have to be extended.
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This review is based on the peer–reviewed research literature including the author’s own

publications devoted to supercomputer docking. The general view on docking and its role at the

initial stage of the rational drug design is presented. Molecules of medicine compounds selectively

bind to the active site of a protein, which is responsible for the disease progression, and stop it.

Docking programs perform positioning of molecules (ligands) in the active site of the protein and

estimate the protein–ligand binding energy. The larger this energy is, the less concentration of

the respective compound should be used to observe the desired effect. Several classical docking

programs are described in short. Examples of the adaptation of existing docking programs to

supercomputing and using them for virtual screening of millions of ligands are presented. Two

novel generalized docking programs specially designed for multi–core docking of a single ligand on

a supercomputer are described shortly. These programs find a sufficiently wide spectrum of low

energy minima of a protein–ligand complex in the frame of a given force field. The quasi–docking

procedure using the generalized docking program is described. Quasi–docking allows to perform

docking with quantum–chemical semiempirical methods. Finally a summary is made based on the

materials presented.

Keywords: docking, protein–ligand, global optimization, tensor train, force field, quantum–

chemical method.

Introduction

Docking programs are extremely demanded for the computer aided structural based

drug design [78, 80]. The latter is used at the initial stage of the long (10–15 years)

and expensive (> 1 billion USD) rational drug design pipeline. This initial stage is the cheapest

of all the following stages: preclinical testing (animals), three phases of clinical stages (humans),

approving and post approving stages, but the initial stage plays the key role in the whole pipeline

success defining the diversity of the active compound–candidates, their selectivity and low tox-

icity. The main idea of the rational drug development is to find a compound, the molecules of

which bind specifically to a definite region (active site) of the given bio–molecule, e.g. a protein,

responsible for the disease progression, and stop or change the latter. The larger this binding

energy is, the lesser concentration of the active compound should be used to achieve the desired

effect. Docking programs carry out positioning of the molecules–candidates (ligands) in the def-

inite site of the target protein and calculate the protein–ligand binding free energy [95] which is

directly connected with the measured binding (dissociating) constant of the active compound.

There are several dozen of docking programs and a dozen of Internet docking sites available

either for free or on a commercial basis [14, 66]. Despite the obvious progress of the docking

technique and plenty of success stories, there are still various challenges [9, 96, 107]. While in

many cases positioning accuracy of docking is satisfactory, the accuracy of binding energy cal-

culations is insufficient to perform the hit–to–lead optimization on the base of docking results.

The increase of docking accuracy should result in an increase in the effectiveness of the whole

process of new drug development [90].

The work of many docking programs relies on the docking paradigm which assumes that

the ligand binds in the active site of the target protein at the global energy minimum of the

1Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
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protein–ligand system [60, 61]. Thus, the docking problem turns into the global optimization

problem. The main challenge of docking is a high dimensionality and complicated relief of the

energy surface where the global energy minimum should be found. For example, a therapeutic

molecule often has 10 internal rotational degrees of freedom (torsions). Thus, the protein–ligand

system energy surface has 16 = 10+6 dimensions where 6 dimensions correspond to translations

and rotations of the ligand as a rigid body. This case corresponds to the rigid target protein.

However, if protein flexibility is taken into account, the dimension of the protein–ligand energy

surface increases in line with additional number of protein degrees of freedom, e.g. for every

mobile protein atom additional 3 dimensions, atom Cartesian coordinates, should be added. On

the other hand, such a docking program should be able to perform docking of many ligands

for the reasonable period of time. This contradiction results in many different simplifications

implemented in docking programs, especially at the dawn of the docking technique develop-

ment 25− 30 years ago when available computer resources were very limited. The “Faster, even

faster” mantra long time was the main goal of docking algorithms and some of popular docking

programs can dock one ligand at one processor for less than 1 minute even less, e.g. the ICM

program can run docking of one ligand for 10 seconds [57]. However over time, more attention

has been paid to the docking accuracy, and in some popular docking programs, for example in

Glide, in addition of Standard Precision (SP) calculations the Extra Precision mode (XP) has

been added [27], and the latter needs much more computing resources. If program docks one

ligand at one computing core for the time of half an hour or longer, the use of this program

for virtual screening of large databases containing many thousands of ligands inevitably needs

supercomputer resources. On the other hand, either for the too complex form of the protein

active site and respective complicated protein–ligand energy surface or for the too large number

of ligand torsions it might be needed to increase considerably the thoroughness of the global en-

ergy minimum search at the expense of a large increase of the docking time of one ligand. This

increase can be compensated by the multi–processor performance of the docking program at

several dozen or hundred computing cores of a supercomputer. Additional processing of docking

results can also demand supercomputer resources especially if the protein–ligand binding energy

refinement needs an employment of molecular dynamics (MD) or quantum chemistry (QC) [51].

Actually MD methods have not been used for virtual screening of large ligand databases, but

these methods of the protein–ligand binding free energy calculation are applied usually at the

post–docking stage for a further refinement of the binding energy of best selected ligands and to

optimize them. MD methods being applied to the binding free energy calculations have a lot of

specific features and tricks [45], e.g. artificial lowering of energy barriers, and a detailed descrip-

tion of all of them needs a lot of space and it is out of the scope of this review. We only note here

several points. First, MD methods and docking have some common features defining accuracy

of the calculations and the most important one is the energy calculation method using either a

force field or a quantum chemistry method. Second, calculations of the absolute protein–ligand

binding free energy is a much more challenging problem than calculations of the relative binding

energy and in most publications just the latter is calculated with MD [105]. Third, most of these

MD methods sample the Boltzmann distribution of molecular confgurations coupled to a heat

bath at a given temperature, and same sampling can be done also with Monte Carlo simula-

tions [16]. Fourth, there are several methods to perform the protein–ligand binding free energy

calculations [46], and the most widely used ones are thermodynamic integration (TI) [28, 42, 53]

and free energy perturbation (FEP) [19] methods, as well as the recently proposed enveloping
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distribution sampling (EDS method [70, 75]; a recent survey of the state of art of the binding free

energy calculation method is presented in [54] (see also a perpetual review of David L. Mobley, et

al. at https://github.com/MobleyLab/benchmarksets/blob/master/paper/benchmarkset.pdf).

Fifth, the protein–ligand binding affinity can be associated with the ratio of kinetically de-

termined rates koff and kon of complex formation [44] and MD simulation of binding kinetics

can become a useful tool to get insight of a mechanism of protein–ligand binding [67]. Sixth, MD

penetrates into the docking technology in different ways from prior generation of an ensemble

of protein conformations to take into account protein flexibility performing docking into discret

rigid pre–generated protein conformations (ensemble docking) to the so–called solvent mapping

for the identification of binding sites and hot–spots on protein surfaces [18, 24, 30]. Some addi-

tional recent examples of ensemble docking can be found in [2, 3, 5, 22, 23, 82, 86, 106]. All these

methods require large computational resources and supercomputing power should be demanded

along this road.

Quantum chemistry (QC) plays an important role in modeling for drug design. However,

for the energy calculation in docking proper QC methods have not been used until recently.

The latter is connected with the inability of QC programs, based on ab initio including DFT

methods, to perform calculations of molecular systems containing thousands of atoms. Even the

model of a protein–ligand complex reduced to 5–6 hundred atoms containing only the ligand and

the active site of the target cannot be used for docking with QC ab initio methods due to the

time limitation and limited capacity of multi–processor performance. Nevertheless, some recently

developed QC semiempirical methods together with the localized molecular orbitals method can

be used for post–docking refinement of the energy of the different conformations of the protein–

ligand system (see below the “Quasi–docking” section). The QM/MM approximation where the

most important part of the molecular system is treated with QC methods (QM abbreviation) and

the rest of the system is described at a level of classical molecular mechanics (MM abbreviation).

For example, QM/MM was used in [4] for the post–docking optimization of the protein–ligand

system using the old AM1 semiempirical method, and the best ligand poses were found at the

preliminary step by docking with the AutoDock program. Despite the good results demonstrated

in [4] eclecticism of this attempt are obvious because docking is performed in the frame of an

empirical oversimplified AutoDock force field (a set of classical potentials describing inter– and

intra–molecular interactions), MM part is calculated with another, Charmm, force field and

for QM part the AM1 method badly describing hydrogen bonds and dispersion inter–molecular

interactions [102] is used. Different approaches of QC used for the binding affinity refinement

in post–docking processing can be found in [15, 41, 77]. So, QC–docking and QC molecular

dynamics for the accurate protein–ligand binding free energy calculations are still waiting for

their realization, and this will happen in near future due to supercomputer facilities. QC methods

are also used either for creation of whole force fields or for improving existing force fields, by

modifications of atomic charges on the base of QC calculations. The most widely recognized

example of the latter is the GAFF force field [104] where atomic charges are calculated with

QC, and Van der Waals parameters are taken from the empirical potentials. Some examples

of this approach are also presented in [8, 103], but there are much more. However, we should

note that atomic charges are the part of a whole set of force field parameters describing inter–

and intra–molecular interactions, and these parameters must be obtained in a self–consistent

manner.
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The molecular models of the target protein and ligands are very important for the proper

docking performance, as well as MD calculations. 3D structures of proteins and protein–ligand

complexes stored in Protein Data Bank [6, 13] do not usually contain hydrogen atoms. Hydrogen

atoms are added to the protein structutes with the help of a particular programs. The resulted

3D structures obtained after such different programs performance are different from one another,

and this influences strongly on docking [47] due to the difference in the spatial positions of the

added hydrogen atoms and due to difference in the protonation states of some amino acids

residues. The best way to define protonation state is based on QC calculations but usually

this is done with standard rules for separated amino acids. Certainly, results of ligand docking

also strongly depends on their protonation states, as well as on enantiomery, tautomerism, and

in general QC methods (taking into account electron correlation at sufficiently high ab initio

level) should be used for a proper preparation of the respective enantiomers and tautomers

together with low energy stereoisomers of a given ligand. The latter is closely connected to

the determination of the lowest energy conformation of the unbound ligand in water solution

defining the ligand internal stress energy which is an important term of the binding free energy.

Unfortunately, in many cases QC methods still are not used for these purposes. Some examples

are presented in [10, 11, 40, 68].

Nowadays machine learning invades many areas of science, and docking is not an exeption.

For example, convolutional neural networks (CNNs), which are commonly used in the image

recognition [50], are applied in [71] to the construction of the scoring function to descriminate

between correct and incorrect ligand binding poses and known binders and nonbinders, and

it is shown that the CNN scoring function outperforms the AutoDock Vina one. The more

sophisticated use of deep learning is presented in [49] where RAVE method (the reweighted au-

toencoded variational Bayes for enhanced sampling) [74] is used for calculating absolute protein–

ligand binding free energies. Other recent examples of machine learning application to docking

and scoring are presented in [58, 59, 69, 99]. In connection with this dawn of new era of ma-

chine learning application we should make a remark that databases of experimentally measured

protein–ligand binding affinities contain many hidden uncertainties and sometimes errors, and

before their use for macine learning, these databases should be strongly and cleverly filtered.

Considering that reviews on classical (non–supercomputer) docking programs are published

regularly [14, 66, 96, 107], we review here mainly works devoted either to development of super-

computer docking programs, or to the application of supercomputers to virtual screening of large

databases of ligands and refinement of docking results. We restrict this review by only docking

of small molecular weight ligands into proteins. The protein–protein docking is out of the scope

of this work, but all problems discussed here especially protein flexibility and docking accuracy

are key features of such docking programs. Two examples of a protein–protein docking program,

supercomputer docking and webserver, are presented in [62, 110]. Firstly, we take a look at the

docking problem and consider examples of classical docking programs and their peculiarities.

Secondly, we present a review of publications on docking in conjunction with supercomputers.

Finally, some concluding remarks are presented.

1. Docking: General View

For brevity we will call as inhibitors those molecules (ligands) that bind to a given target

proteins. Inhibitors block functioning of the target proteins, but in general ligands upon binding

can activate target proteins or change their work. Usually a low molecular weight ligand contains
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several dozen atoms. Target proteins contain several thousand atoms, and 3D structures of many

target proteins, Cartesian coordinates of all protein atoms, can be free downloaded from the

Protein Data Bank (PDB) Web–site (https://www.rcsb.org) [6, 13]. This database contains now

more than 150 thousand entries of biological macromolecular structures (protein, DNA, RNA)

and their complexes with ligands.

Docking is used to discover non–covalent inhibitors of a given target protein. This means that

a ligand and a protein are bound with one another by weak inter–molecular interactions, this

binding is reversible and the protein–ligand binding free energy ∆Gbind is directly related to the

binding constant kb associated with protein [P ], ligand [L] and their complex [PL] concentrations

in water solvent:

kb =
[PL]

[P ]× [L]
= e

−∆Gbind
RT , (1)

where the dimensionality of the binding constant is mol/L, R is the universal gas con-

stant, and T is absolute temperature in K. The binding free energy is defined as

∆Gbind = GPL −GP −GL, where GPL, GP andGL are Gibbs free energies of the protein–ligand

complex, the protein and the ligand, respectively. In its turn the Gibbs free energy of a molecular

system X can be calculated through the respective configuration integral ZX = −RTln(GX)

which is calculated over the phase space of the molecular system X. If the low energy relief

of the molecular system X is known, the configuration integral can be calculated. Moreover, if

the global energy minimum is notably (comparing with kT ) stands out by its energy in respect

with energies of other low energy minima, the molecular system spends most time in the global

minimum, and the configuration integral and corresponding Gibbs free energy of the system is

defined by only the global energy minimum value and by the form of the respective energy well.

In many cases target proteins can be considered as rigid systems and the global energy

minima search should be performed for only the protein–ligand complex and for the unbound

ligand while the energy of the unbound protein is calculated for only one its configuration defined

by atom coordinates taken for PDB. PDB–files usually contain only coordinates of heavy (non–

hydrogen) atoms. Several thousand hydrogen atoms should be added to the protein structure

using the appropriate program. Note that different programs add hydrogen atoms by different

ways which result, first, in different protonation (charge) states of some molecular groups, the

so–called titrated groups, and, second, in various hydrogen atoms positions, i.e. the covalent

bonds of these hydrogen atoms can be differently oriented in space. These differences in spatial

positions of added hydrogen atoms lead to different docking results and to different results of

binding energy calculations [47].

One of the most important challenge of docking is the choice of the method of the molecular

energy calculation which should include both inter– and intra–molecular interactions, as well

as take into account the interaction of molecules with the water solvent. Quantum mechanics

(QM) or, what is the same, quantum chemistry should be used to describe molecular interactions

properly. However, these methods could not be used until recently for the molecular systems

containing several thousand atoms. Instead QM methods classical potentials, force fields, de-

scribing interatomic interactions are used. There are plenty of force fields created for the classi-

cal molecular dynamics simulations and docking: AMBER [104], CHARMM [7], MMFF94 [32],

OPLS–AA [39], etc., which describe molecular interactions sufficiently satisfactorily but not

without some faults in different particular cases.
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However, even such a dramatic simplification as a changeover from QM methods to force

fields is insufficient for the realization of the docking procedure as a global energy minimum

search. The calculation of all pairwise interactions between all ligand atoms and all protein

atoms for every protein–ligand complex configuration in the frame of any force field mentioned

above is computationally too costly. Apart from strong simplification of force fields a model of

preliminary calculated grid of potentials is implemented in many docking programs: potentials

of ligand probe atoms interactions with the all protein atoms are calculated and stored at

nodes of the grid covering the active site of the target protein. Then, in the course of the

global energy minimum search the energy of the ligand in any position in the active site of

the protein is calculated as the sum of the grid potentials over all ligand atoms. This grid

approximation gives a large acceleration because all resource–intensive operations are performed

at the grid calculation stage before the global optimization. However, the grid approximation

restricts docking and its accuracy in several aspects. Firstly, it is impossible to make sufficiently

accurate local optimization of the protein–ligand energy with variation of ligand atoms positions.

Secondly, it is impossible to take into account mobility of protein atoms in the docking procedure.

Thirdly, water solvent plays an important role in molecular energy calculations due to the high

dielectric constant of water (78.4 at the room temperature) and respective strong screening

of Coulomb interactions; in order to avoid to take into account thousands of explicit water

molecules, implicit solvent models are used instead. In the frame of these models water solvent

is described by a homogeneous dielectric continuum surrounding a molecule of solute and the

nonlocal interactions of atom charges of the solute molecule with polarization charges on the

solvent excluded surface (SES) cannot be sufficiently accurately reduced to predetermined local

potentials at grid nodes. Fourthly, the fast increase of computing power will soon lead to the

opportunity to utilize QM methods in docking, but such self–consistent methods cannot be used

in the frame of the grid approximation.

The will to avoid the grid approximation, to use implicit solvent models, to take into account

flexibility of ligand and protein simultaneously and by this to increase the docking accuracy leads

to necessity to draw larger computer power for docking of one ligand and to the transition from

notebook docking to supercomputer docking. Before the discussion of supercomputer docking

in the next section we describe shortly some examples of popular classical docking programs to

outline their limitations and to contrast them with supercomputer docking programs. The more

or less exhaustive reviews of such docking programs are presented in [14, 66, 96, 107].

1.1. AutoDock

This is the most popular docking package [14]. It is a free opensource code actually including

two main docking engines employing a pre–calculated grid of potentials of probe ligand atoms

interactions with the target protein: AutoDock Vina [98] and AutoDock [26, 56], and also

auxiliary programs Raccoon2 (a graphical tool), AutoDockTools for the preparation of molecules

and for the analysis of docking results and AutoLigand for predicting optimal sites of ligand

binding. AutoDock Vina and AutoDock use stochastic methods for the global energy minimum

search and the docking algorithms work mainly for the rigid protein model, although a possibility

of taking into account protein flexibility is also implemented in AutoDock [55]. However the latter

can be used only for very limited number of degrees of freedom: ligands should have less than

10 torsions and additional six degrees of freedom of two protein side chains. Actually ligand

flexibility is described by only ligand torsions while bond lengths and valence angles are kept
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fixed. AutoDock Vina uses an oversimplified empirical energy function and the conformational

search is based on a gradient local optimization method. The energy function of AutoDock

Vina does not contain the Coulomb term and consequently it considers electrostatic interactions

only implicitly through the hydrophobic and the hydrogen bonding terms, it uses spherical

potentials for hydrogen bonds and treats hydrogen atoms only implicitly. AutoDock uses more

sophisticated but also a simplified empirical force field including directed hydrogen bond terms,

explicit polar hydrogen atoms and Coulomb and van der Waals interactions and desolvation

effects are treated in a very simplified local potential form. AutoDock uses the Lamarckian

genetic algorithm for the global energy optimization [55]: a population of trial individuals,

ligand conformations, is created, and then in successive generations these individuals mutate,

exchange conformational parameters through the crossingover procedure, and compete on their

energy selecting individuals with lowest energy, and the“Lamarckia” feature allows individual

to search their local conformational space, finding local minima, and then pass this information

to later generations.

1.2. DOCK

This is the oldest docking program which was created more than 35 years ago. The initial

version of this program perform rigid docking by matching ligand and receptor shapes on a

steric overlap. Subsequently a force field, the energy minimization, solvent, ligand and protein

flexibility, multiprocessor performance were implemented in it [1, 12]. The orientation search of

ligand poses is performed by matching ligand heavy atoms to matching points inside the docking

domain. The matching points are generated by filling the docking domain with spheres of varying

radii (1.4− 2.5 Å); centers of these spheres become matching points. The preliminary calculated

grid of potentials of probe ligand atom interactions with all protein atoms is used. There are

different energy (scoring) functions: from simplest bump filtering that counts the number of

van der Waals clashes between ligand and protein atoms and discard ligand poses that exceed a

predetermined threshold to the energy score defined by Lennard–Jones and Coulomb potentials

of the AMBER force field together with desolvation scoring based on the Generalized Born or

the Poisson–Boltzmann implicit solvent models for the polar solute–solvent interaction plus the

solvent accessible surface area (SASA) approximation for the non–polar term of the desolvation

energy. The latter is a linear form of SASA. In the process of finding low–energy minima DOCK6

uses a combination of global sampling and a local energy minimization performed by the simplex

method: rigid docking, including docking of different rigid ligand conformers, plays a central

role in the performance of DOCK6, and the found ligand poses can be used for the further local

energy minimization and MD simulation. The Anchor–and–Grow algorithm for flexible ligand

docking is a distinguishable core feature of the DOCK6 program. A ligand is disassembled into

non–flexible fragments connected by rotatable bonds. The largest fragments (anchors) are used

to generate a set of possible anchor poses within the binding site. From these poses of each anchor

a search for possible conformations of the ligand flexible parts is performed, and rigid fragments

are flexibly attached to the anchor in layers until the whole ligand is reconstructed. When each

ligand fragment is grown, the conformer with minimal energy is selected before proceeding to

the next growing step. A key advantage of this algorithm is that the ligand conformation is left

within the confinements of the binding site, radically reducing the conformational space of the

search.
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1.3. SOL

The main features of this program are [91, 95]: (i) rigid protein model; (ii) protein active

site is represented by a grid of potentials describing interactions (electrostatic, van der Waals

interactions) of all protein atoms with all possible types of ligand probe atoms in the frame of

the MMFF94 force field practically without serious simplifications; (iii) inclusion of desolvation

effects on the base of a simplified form of Generalized Born approximation [76, 85] allowing

to store the corresponding desolvation potentials at nodes of the preliminary calculated grid;

(iv) genetic algorithm is used for the global energy optimization; (v) ligand stress energy is

taken into account in the frame of MMFF94 during the global optimization, i.e. the objective

energy function of the global optimization consists of two terms: the ligand energy in the

field of all protein atoms and the ligand stress energy. The latter is the energy of the ligand

deformation. The desolvation energy is defined by the difference of the solvation energy of the

bound protein–ligand complex and solvation energies of the unbound protein and ligand. The

effect of desolvation is due to the fact that when a ligand binds to a protein, some of the surface

protein and ligand atoms stop interacting with the solvent, water.

The docking region is defined by the position of the grid of preliminary calculated potentials.

The grid is created in the cube (the docking cube) covering the whole protein active site. By de-

fault the cube edge is equal to 22 Å, and the cube contains 101×101×101 uniformly distributed

grid nodes. The size and the position of the cube center are user defined. During docking per-

formed by the global optimization a ligand can be randomly positioned at any pose inside the

docking cube and it can have any conformation defined by random variations of torsions keeping

fixed ligand bond lengths and valence angles. The grid is calculated by the SOLGRID module

before the global optimization process. Opposite to many popular empirical force fields such as

AMBER, CHARMM, OPLS–AA, the MMFF94 force field is considered as a physical ab initio

force field because all its parameters are fitted to the results of ab initio quantum–chemical

calculations for a broad set of organic molecules. MMFF94 has a well–defined procedure of the

atom typification applicable to an arbitrary organic compound. This typification defines the force

field parameters for any target protein and for almost any ligand. The atom typification, as well

as the hydrogen atoms addition are made by the APLITE program. For SOLGRID calculations

the MMFF94 atom typification is somewhat simplified up to 27 atom types (instead of 99 types)

to keep the potentials in the computer RAM memory. So, the grid contains in its nodes 27 van

der Waals and 27 Coulomb potentials of interactions of a respective ligand probe atom with all

protein atoms and respective desolvation potentials. Note, that van der Waals potentials defined

by equations of the MMFF94 force field undergo some broadening (≈ 0.3 − 0.5 Å) which can

be defined in the set of SOLGRID input parameters. Broadening imitates restricted mobility of

protein atoms. SOLGRID consumes from 1 to several hours at one computing core depending on

the target protein size, and a binary file of about 200Mb is created. When the docking procedure

is executed by the SOL module the ligand energy in the field of the protein is calculated as a

sum of grid potentials of all ligand atoms corresponding to each ligand pose in the docking cube.

A potential in the position of a given ligand atom is obtained by the interpolation of potentials

in eight neighbouring grid nodes.

The SOL docking program works in accordance with the genetic algorithm as follows. First,

the initial population of individuals (ligand poses in the docking cube) is created by random

translations and rotations of a ligand as a rigid body and by a random generation of ligand

torsions in their domains. The population size is the main input parameter of SOL, and it is
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equal to 30000 by default. Then the total energy, the sum of the ligand grid and stress ener-

gies, is calculated for each of individuals and the latter are ranked in respect with their total

energies. The individuals (ligand poses) with lowest values of the total energy are selected into

the so–called mating pool where they take part in the creation of the population of the next

generation through the crossingover, mutations and direct translation keeping the population

size fixed. Several individuals with the lowest energies are translated to the next generation

without any change to be sure that the best ligand poses will not be lost in the next generation.

Niching is used to choose diverse individuals in the mating pool. The niching procedure is im-

plemented as a positive energy penalty given to a ligand pose which is close to the ligand pose

that has been already chosen into the mating pool. Niching helps to avoid the degeneration of

the population when all individuals are collected in one local energy minimum. After a given

number of generations (1000 by default) the genetic algorithm stops and the individual (the

ligand pose) with the lowest energy is taken from the last generation. This is the solution of

the global optimizations problem: finding the ligand pose with the lowest total energy. Several

(50 by default) independent runs of the genetic algorithm are performed to get some confidence

in the reliability of the global optimization. All 50 ligand poses are clustered in respect with

their positions: two ligand poses belong to one cluster if RMSD between their corresponding

atoms is less than 1 Å. If population of the first cluster containing the ligand poses with lowest

energies is sizeable and the number of clusters is small, the ligand pose with the lowest energy

from the first cluster is considered a reliable solution of the global optimization problem. If

there are many clusters and there is only one ligand pose in the first cluster, the solution of the

global optimization problem is considered as unreliable and optimization procedure should be

repeated with higher parameters of the genetic algorithm, mainly with larger population size

and with more generations. SOL executes docking of one ligand with default genetic algorithm

parameters for several hours at one computing core depending on the number of ligand atoms.

First application of SOL in drug design has been made during discovery of new thrombin in-

hibitors [79]: more than 6000 ligands have been docked by SOL using X–Com grid technology,

developed at the Research Computer Center of Moscow State University [25, 81]. Later the MPI

multi–processor implementation of SOLGRID and SOL programs [91] make it possible to gener-

ate the grid of potentials, as well as to dock one ligand for less than 1 minute using several dozen

computing cores. On the other hand, for the virtual screening of large ligand databases (dozens

and hundreds of thousands of molecules) SOL can run on the Lomonosov supercomputer [100]

distributing ligands over hundreds and thousands computing cores and docking one ligand per

one core. Certainly some auxiliary scripts and programs are created to queue up respective jobs

and to analyze the docking results. There is a number of success stories of the application of

these three docking programs and other ones in computer aided structural based drug design

and some of them are presented in [96].

2. Supercomputer Docking Programs

In spite of existence of many docking programs, only a relatively small subset of molecular

docking codes have been ported to use many–core high performance architectures, such as GPUs

or Intel’s Xeon Phi. The employment of supercomputer for docking pursues two main goals: to

screen as many ligands as possible during a short period of time, and to dock one ligand as

accurately as possible. The increase effectiveness of these multi–processor calculations is also an

important technical problem.
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2.1. Faster and Larger

Modern chemistry opens its almost unlimited space of small molecular weight ligands for

drug design creativity. Millions of on–shelf compounds are now available for different libraries and

databases. Much more virtual molecules can be generated, but the possibility of their synthesis

is questionable in many cases. All these ligands can be used as a starting pool of candidates for a

given, especially new, target protein at the initial stage of the drug development giving a diversity

of hit compounds and their optimization results in a diversity of lead compounds. In this section

we present several examples of adaptation of existing docking programs to supercomputers for

the virtual docking screening of thousands and millions of ligands.

2.2. HSP–DOCK

One of the challenges of supercomputer docking is to create the infrastructure that would

allow anyone the ability to dock as many ligands as possible and as quickly as possible. One

solution of this problem is presented in [97] where using profiling optimization with the help

of a specially designed software “wrapper” called HSP–DOCK authors are able to dock large

numbers of ligands efficiently with the widely used DOCK6 program on a large, non–shared

memory NICS Kraken supercomputer system: a cluster computer made up of SMP (symmetric

multi–processor) nodes [73]. When compared with the standard distribution of MPI multi–

threading with DOCK6, HSP–DOCK showed near–linear scaling to the number of cores available

to it, without necessitating the modification of the DOCK algorithm code itself. Here are some

details of this docking experiment. Four different target proteins were chosen. A library of 1.4

million lead–like molecules from ZINC database was docked against each target. In this case

lead–like compounds have the number of torsions ≤ 7, and molecular weight of less than 350Da.

The targeted site of each protein was based on known biological interactions and refined further

using MOE’s site finder utility providing precise docking decoys along with propensity for ligand–

binding scores. The resulting dataset was analyzed for electrostatics (ES), van der Waals (V DW )

and GRID (the summation of ES + V DW ) scores. Docking is benchmarked on two different

computer setups including a small academic cluster and a massively parallel supercomputer: the

Medical University of South Carolina Computational Biology Resource Center (MUSC CBRC

using MPI–DOCK) cluster of 46 nodes and the National Institute of Computer Science (NICS)

Kraken Cray XT5 with 112896 cores (using HSP–DOCK). It is found that the DOCK6 standard

MPI version does not scale well on tens of thousands of cores, or when the library of ligands

grows into the millions. MPI scaling becomes inefficient because I/O contention and saturation

of the master process causes the cluster to spend more time waiting for I/O tasks than carrying

out computations. HSP–DOCK dynamically schedules workload distribution to individual nodes

to optimize output routines, reducing I/O thrashing and increasing time spent in computation.

The MUSC CBRC mean time to dock one ligand per one core was 88s to be compared with

20 s on Kraken. It takes ∼ 17 h using 32000 cores of Kraken to dock 50 million flexible ligands

into a single target protein. However such large scale docking leads to the need of the posterior

analysis of the docking results. Examples presented in this study show that after docking of

1213412 compounds into one target protein there are 57017 hits, i.e. ligands with a score better

than a specified threshold. For other investigated targets the number of hits is of the same

order: 1 − 5 % of all successfully docked compounds. The necessity of further elaborations of

several dozen thousand hits either with more accurate docking program or with bioinformatics
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becomes obvious. One may wonder to perform more accurate docking from the beginning, but

it needs much more computing resources and another organization of such massive docking. So,

the example presented in [97] demonstrates the possibility of fast and effective virtual screening

of very large databases of compounds using the DOCK6 docking program without any changes

of the code with the help of a software “wrapper” HSP–DOCK on the supercomputer Kraken

Cray XT5 of the National Institute of Computer Science.

2.3. BUDE

Another example of a supercomputer multi–core docking program is the Bristol University

Docking Engine (BUDE) [52]. The special thrill of BUDE is a high effective realization for a

supercomputer performance and compatibility with different types of hardware. It is adapted

for modern day accelerators and it has highly optimized computational kernels for the docking

and scoring functions using OpenCL, which are capable of sustaining a significant fraction of the

hardwares peak performance. Exploiting OpenCL enables performance portability across a wide

range of different computer architectures, including CPUs, GPUs and accelerators. BUDE has

undergone extensive optimization, and can sustain over 40 % of floating point peak performance

on a wide range of different architectures. The main features of BUDE is the energy minimization

algorithm which is based on the Evolutionary Monte Carlo (EMC) techniques described in [29].

This genetic algorithm based optimization is performed in the space of the six degrees of freedom

– the rigid protein and ligand approximation and a tuned empirical free–energy force field is

employed for predicting the binding pose and for estimating the protein–ligand binding energy.

In the course of a single ligand conformation docking BUDE evaluates the binding energies for

hundreds of thousands of ligand poses, and each pose is evaluated independently. The optimized

version of BUDE is several times faster than the previous non–optimized version of BUDE on

eight different hardware with either GPU or CPU: NVIDIA GTX 680, NVIDIA GTX 780 Ti,

NVIDIA Tesla K20c, AMD Radeon HD7970, AMD Radeon R9290X, AMD FirePro S10000,

Intel Xeon Phi SE10P and Intel E5 − 2687W (x2). For example the optimizations developed

for the GTX 780 Ti have demonstrated the biggest improvement of the Nvidia GPUs with a

4.5× increase over the baseline version of BUDE. The optimized BUDE code achieves 44 billion

atom–atom interactions/s on the GTX 680, taking 37 s to dock the 128 conformations (∼ 0.3 s

per conformation). It achieved a sustained performance of 1.43 TFLOPS when measured across

the entire BUDE run, representing 46 % of the peak single precision performance of the device.

The obvious drawback of this work is a too simplified docking model but it shows a direction of

possible improvements of performance of any docking program.

2.4. VinaLC

This program is specially designed for the multi–core supercomputer performance with the

goal to carry out virtual screening of very large ligand databases by docking [108]. VinaLC

is the realization of the AutoDock Vina docking program [98] that is enhanced by a mixed

parallel scheme, where within each node multithreading is used, and across different nodes an

MPI parallel scheme is applied. VinaLC was developed and tested on petascale supercomputers

at Lawrence Livermore National Laboratory. It scales up to 15408 CPU cores demonstrating

overheads of less than 4% and it is able to dock 17 million flexible ligands on 15408 cores during

24 hours. The docking accuracy of VinaLC defined by a model implemented in AutoDock Vina
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was investigated in [108] using the Directory of Useful Decoys (DUD) dataset [35] and the

reassuring results were obtained.

AutoDock Vina was implemented and tested later [38] on four different HPC infrastructures

available to academic researchers in the Netherlands: an 8− core virtual machine on the Dutch

Academic HPC cloud, a local cluster at the Academic Medical Center of the University of Ams-

terdam with 128 cores, the Hadoop cluster for scientific research consisting of 90 data/compute

nodes (adding up to more than 1400 cores) and has a distributed file system with a capacity

of 630 TB, and the Dutch eScience grid which includes a dozen PBS (portable batch system)

clusters all around the Netherlands (>10000 cores). These HPCs were employed to perform

virtual screening of about 100000 compounds from ZINC [36] and other libraries investigating

parallelism, docking time, etc.

Some details of a more recent use of AutoDock Vina for virtual screening are presented in [20]

(docking on the Salomon (Czech Republic) supercomputer) and in [33] (docking on the peta–

flops–scale Anselm supercomputer https://www.it4i.cz). Another example of the adaptation of

the docking program from AutoDock family was presented in [21], where AutoDock4.lga.MPI

was used to dock 1 million compounds. Details of MPI–realization of the AutoDock4.lga.MPI

program were presented in [17], but in [21] particular attention was paid to the optimal orga-

nization of docking of millions of ligands on thousands of processors when file preparation and

result analysis define the effectiveness of the whole virtual screening job. Among others the clus-

terization of ligand poses found in independent runs plays an important role in the revelation of

best pose and finding best binders among millions of candidate molecules. As a result 1 million

ligands having from 0 to 32 torsions (but only 5 % of the database are ligands with at least 10

torsions) have been docked on the Jaguar Cray XT5 Supercomputer at Oak Ridge National

Laboratory using 65 thousand processors. This job took almost 24 hours, but nearly the whole

database was screened in 10 hours and only docking of extremely flexible ligands increased the

total time.

As predecessor of supercomputer docking, the grid technology should be mentioned. One

example of such distributed docking calculations on large scale grids is presented in [37] where

two docking programs, AutoDock and FlexX [72] were used for virtual screening millions of

ligands against two targets to struggle with malaria and avian influenza.

2.5. More Accurate

Some efforts have been undertaken in attempts to understand main reasons of unsatisfactory

reliability of most of docking programs and to improve the docking accuracy. The quick increase

of available supercomputer resources gives a fortunate opportunity for such investigations. We

present here main features of two docking programs of a new generation and then their use as

a tool for the employment of quantum–chemical methods for docking.

2.6. Generalized Docking Programs

2.6.1. FLM

FLM – massive parallel low energy minima search [48, 60, 92]. The MPI–based FLM dock-

ing program performs multi–processors local optimizations of the energy of the protein–ligand

complex from random initial ligand positions and conformations. As a result the spectrum of

all or almost all low energy minima is found. Among these minima the global energy minimum
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should present and in respect with the docking paradigm the best ligand pose should correspond

to this global minimum. The term “generalized” is used for this program because the result of

its performance is not only the global energy minimum but the whole spectrum of low energy

minima. Obviously, the good accuracy of ligand positioning is an indispensable prerequisite of

high accuracy of the protein–ligand binding energy calculation. FLM works in the frame of the

ab initio MMFF94 force field [32] without simplifications and a preliminary calculated grid of

protein–ligand interaction potentials and without the use of fitting parameters. There are two

versions of this docking program: faster FLM -0.05 where energy is calculated without taking

into account the interaction of protein–ligand complex with water solvent, and slower FLM -

0.10 where the PCM implicit solvent model is implemented. The initial ligand positions and

conformations in the docking space are generated by random translations and rotations of the

ligand as a rigid body and by internal rotations (torsions) of molecular groups around ordinary

single bonds which are not included in the cyclic structures, bond lengths and values of valence

angles are kept fixed. The local energy optimization is performed by the well–known gradient

based L-BFGS method. The optimization is made with variation of Cartesian coordinates of

all ligand atoms keeping all protein atoms fixed. The docking space is defined by a sphere of

a given radius and the location restricting the position of the geometrical center of the ligand.

The number of low energy minima kept in the docking procedure is defined by the input pa-

rameter which can be any integer number. The scalability of the FLM performance with the

growth of the number of CPU cores is very good up to several thousand cores because each

local optimization is performed on a single core. One of peculiarities of the FLM program is

the time unlimited performance when the job time and the number of cores are restricted only

by a supercomputer work organization. The goal of the FLM performance is not only to find

the global energy minimum with high reliability but also to find a given number of low energy

minima without skipping any minimum. Exercises with a test set of protein–ligand complexes

where FLM was used for docking native ligands into the proteins with which these ligands were

crystallized showed that as a rule the global energy minimum was found already after several

dozen of thousands of local optimizations, but for the detection of several thousand low energy

minima it was needed to perform several hundred thousand, sometimes (for ligands containing

about 15− 20 torsions) more than a million local energy optimizations and in tote ∼ 109 energy

calculations of the protein–ligand complex were needed for generalized docking of one ligand. It

was demonstrated that FLM -0.05 could find the global energy minimum near the crystallized

native ligand position only for a small portion of test complexes. However FLM -0.10, where

the implicit solvent model was implemented, could find the global energy minimum near the

crystallized native ligand pose for more protein–ligand complexes than FLM -0.05 could do. So,

the use of implicit solvent models together with force fields is obviously better for good dock-

ing positioning. FLM can be exploited also for finding the low energy minima spectrum of the

unbound ligand. This operation is needed for the determination of the global energy minimum

of the unbound ligand defining the ligand stress energy which is an important term in the ex-

pression for the protein–ligand binding energy. It turned out that FLM could be used for the

comparison of different force fields in the docking procedure and for the investigations of effec-

tiveness of different docking algorithms. Special energy minima indexes have been introduced

which are convenient for the description of the low energy minima spectrum of protein–ligand

complexes [48, 60, 61, 92–94]. In particular, the index of the minimum Near Native (INN) is

useful for the indication of the docking accuracy. Its meaning is as follows. All low energy minima
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found by a generalized docking program can be ranked by their energy in the ascending order.

After this ranking every minimum gets its own integer index which is equal to its number in this

ranked list of minima. The lowest energy minimum obtains the index equal to 1. INN indicates

the index of the minimum corresponding to the ligand pose differing from the crystallized native

ligand position with RMSD (the root mean–square deviation over all ligand atoms) less than

2 Å. If the docking program finds several minima close to the crystallized native ligand position,

INN will be equal to the index of the minimum with the lowest energy (the lowest index from

all possible ones). When INN equals to 1, the docking paradigm is satisfied: the found global

minimum of the energy of the protein–ligand complex is near the crystallized native ligand

pose. FLM is a very resource–intensive docking program and this is its main drawback: it needs

about 10000 − 20000 CPU ∗ hours for generalized docking of one ligand depending on its size

and flexibility.

2.6.2. SOL–P

SOL–P uses the tensor train global optimization algorithm [61, 93, 94]. SOL–P is also the

generalized docking program. It performs the search for the global energy minimum, as well

as for other low energy minima of the protein–ligand complex in the frame of the MMFF94

force field [32] without any simplifications and without using fitting parameters; it does not use

neither the preliminary calculated grid of potentials of ligand probe atom interactions with the

target protein, nor premeditated points of ligand positioning in the active site of the protein.

The main peculiarity of this program is the novel tensor train (TT) docking algorithm. This

algorithm is more effective than the widely used popular genetic algorithm [109]. SOL–P docks

flexible ligands into the rigid protein (the early versions of SOL–P have been designated as SOL–

T [61]), as well as into the protein with moveable atoms. In the latter case the space for the

global energy minimum search is described by the translations and rotations of the ligand as a

rigid body, internal torsions of the ligand and by Cartesian coordinates of selected protein atoms.

In the case of docking with moveable protein atoms the INON index (Index Near Optimized

Native) has been introduced instead of INN [93, 94]. The definition of INON is almost the same

as one of INN but the ligand pose corresponding to an energy minimum is compared by RMSD

with the optimized native ligand pose obtained by the local energy optimization from the initial

crystallized native ligand position. SOL–P for a rigid protein is much faster than FLM: SOL–P

needs only about 5 − 100 CPU ∗ hours for docking a flexible ligand depending on its size and

the number of torsions, but FLM carries out a more thorough search of low energy minima. The

effectiveness of finding of the global energy minimum by FLM and SOL–P is almost the same.

TT docking algorithm is based on the recently developed methods of the tensor analysis and in

particular on the TT global optimization algorithm. Tensors, multi–dimensional arrays, appear

in the docking problem as follows. The energy of the protein–ligand complex in the frame of the

MMFF94 force field is a continuous function depending on the variables describing all degrees

of freedom (d) of the molecular system. If the discretization of each of these variables is carried

out by a set of discretization points (n), e.g. equidistant points, the continuous energy function

is transformed into d–dimensional tensor with nd elements. If the discretization is sufficiently

fine, the solution of the continuous global optimization problem coincides with the solution of

the discrete global optimization problem. The TT global optimization algorithm determines the

largest in magnitude element of a tensor. Docking is the global minimization problem but it can

be easily converted into the global maximization problem applied for example to the functional:
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f(x,E∗) = exp100arccot(E(x)−E∗) (2)

where E(x) is the dimensionless MMFF94 energy for the given conformation x of the protein–

ligand complex, E∗ is the global minimum found on the previous iteration. The global max-

imization problem is solved on the base of TT–Cross method [65] which is used to obtain

approximation of the tensor A(i1, ..., id) in the tensor train (TT) representation:

A(i1, ..., id) ≈
r1,...,rd∑

α1=1,...,αd−1=1

G1(i1, α1)G2(α1, i2, α2)...Gd−1(αd−−2, id−1, αd−1)Gd(αd−1, id). (3)

The numbers r1, ..., rd−1 are called TT–ranks of the tensor. The 3–dimensional tensors

Gi ∈ Rri−1×ni×ri are called cores or carriages of the tensor train. Operations on tensors in the

TT format are reduced to standard matrix rules. If TT–ranks are reasonably small, then the TT

decomposition has several suitable properties allowing a fast tensor element evaluation, effective

storage and others [63, 64]. Note that TT–Cross method exploits the well–known matrix cross in-

terpolation [31] algorithm. There are three main parameters defining the TT–docking algorithm

performance, and their optimal values are determined during the SOL–P validation [93, 94]: the

number of discretization points for each variable corresponding to each degree of freedom, the

optimal value is 216, the maximal TT–rank, the optimal rank is 4, and the number of iterations

of the TT–algorithm, the optimal number is 15. SOL–P is written on C++ with usage of BLAS

and LAPACK libraries and it uses the parallel MPI. Details of the TT–docking algorithm and

the organization of performance of the SOL–P program are presented in [61, 93, 94].

SOL–P is successfully used for the docking flexible ligands into the proteins with moveable

atoms. The results of such docking are described in [93, 94] where results of successful docking

with 157 degrees of freedom are presented. The main distinction of this realization from the

widely used ensemble docking is that the global energy minimum search is performed with

variations of all variables describing ligand and protein degrees of freedom simultaneously and

equally. Actually there are no special restrictions on the number of mobile protein atoms, but

these atoms can move only in respective cubes with edges of about 1 Å and centered at the

position of these atoms in the structure taken from PDB. Such investigations have shown that

movements of some protein atoms in the docking process improves positioning accuracy of

docking [93, 94]. The effectiveness of the TT–docking algorithm makes it possible to dock by

SOL–P flexible ligands, oligopeptides, with a large number of torsions (more than 15− 20) [87].

Such flexible ligands cannot be docked usually by classical docking programs.

2.6.3. Quasi–docking

Quasi–docking is a combination of a force field and quantum chemical methods [89]. The

validation of the FLM generalized docking program and investigations with it the spectra of

low energy minima of different test sets of protein–ligand complexes lead to the idea of the

quasi–docking procedure. Quasi–docking has been used for the comparison of quality of docking

with different force fields and quantum–chemical methods [88, 89]. Quasi–docking consists of

two steps. At the first step sufficiently wide range of low energy minima of a protein–ligand

complex is found with the help of the FLM docking program, the energy is being computed

in the frame of the MMFF94 force field [32]. At the second step energies of all these minima
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are recalculated with other force fields or quantum–chemical methods. It has been shown that

when the protein–ligand energy is calculated with the CHARMM force field and the respec-

tive GBSW implicit solvent model ligand positioning accuracy is better than in the case of the

energy calculated with the MMFF94 force field and with the respective PCM implicit solvent

model [89]. On the other hand the docking accuracy with CHARMM is worse than with either

PM6–D3H4X [101, 102], or PM7 [83] quantum–chemical methods used for the energy calcu-

lations with the COSMO implicit solvent model [43]. These quantum–chemical methods were

developed rather recently comparing with older AM1 or PM3 methods, which had been widely

used during latest 30 years. PM6–D3H4X and PM7 methods overcome the main limitations

of older semiempirical methods describing well dispersion interactions and hydrogen bonds at

the level of DFT ab initio methods [34]. These quantum–chemical semiempirical methods and

the COSMO solvent model are implemented in the MOPAC (http://OpenMOPAC.net) pack-

age [84] where the module MOZYME gives an opportunity to calculate sufficiently quickly the

whole protein–ligand complexes containing thousands of atoms. So, quasi–docking actually gives

an opportunity to perform docking with quantum–chemical methods which demonstrate the best

docking accuracy. A sufficiently wide low energy minima spectrum should be found at the first

step of quasi–docking and its optimal width, when the energy is calculated with MMFF94 with-

out solvent, is determined to perform minimal quantity of quantum–chemical recalculations [48].

Certainly, each step of the quasi–docking procedure essentially exploits supercomputing.

Conclusion

Materials presented in this review show that supercomputers are used for docking more and

more widely. To some extent this is amazing because the vast majority of docking programs are

still focused on working on laptops and workstations. However, the needs to increase effectiveness

of molecular modeling application to drug design, to perform docking more accurately and to

screen millions of virtual and on–the–shelf compounds force to attract supercomputer resources

for docking. The necessity to use large computing resources for docking appeared more than 10

years ago when grid technologies were used for virtual screening of large libraries of compounds

using docking. Currently two directions of supercomputer docking are formed. First, the adapta-

tion of existing docking programs to supercomputers to perform effectively docking of hundreds

of thousands or millions of ligands. Two problems should be solved on this road: to reach high

effectiveness of multi–core parallel calculations of a great amount of ligands, and to perform a

fast and effective analysis of the very large arrays of results yielded by docking. Second direction

of the supercomputer docking focuses on a more accurate docking of a single ligand. Along this

road novel docking programs are created which are free from simplifications and approximations

inherent in classical docking programs, and the novel programs can be used to obtain with max-

imal accuracy the spectrum of low energy minima of the protein–ligand system, which forms

its configuration space and actually defines the free energy of the system. This road is much

more tortuous and hard because one should overcome both computing and physical–chemical

problems. The outlines of quantum–chemical docking is appearing ahead along this road. How-

ever, efforts to achieve this goal will be justified by attaining much higher efficiency in the use

of docking programs for the drug development.
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In order to benefit from emerging high-performance computing systems, weather and climate

models need to be adapted to run efficiently on different hardware architectures such as accel-

erators. This is a major challenge for existing community models that represent extremely large

codebase written in Fortran. Large parts of the code can be ported using OpenACC compiler

directives but for time-critical components such as physical parameterizations, code restructuring

and optimizations specific to a hardware architecture are necessary to obtain high performance. In

an effort to retain a single source code for multiple target architectures, the CLAW Compiler and

the CLAW Single Column Abstraction were introduced. We report on the extension of the CLAW

SCA to handle ELEMENTAL functions and subroutines. We demonstrate the new capability on

the JSBACH land surface scheme of the ICON climate model. With the extension, JSBACH can

be automatically ported to OpenACC or OpenMP for accelerators with minimal to no change to

the original code.

Keywords: compiler, directive, GPU, OpenACC, OpenMP, automatic port.

Introduction

Numerical Weather Prediction and Climate modeling can highly benefit from computer tech-

nologies advances by increasing resolution or model complexity. In the recent years, architectures

such as Graphics Processing Unit (GPU) have emerged for scientific high performance comput-

ing offering new opportunities. Most of the current Numerical Weather Prediction and Climate

models are large Fortran based community codes which require to be adapted or re-written to

run on non traditional CPU architectures such as GPU. In order to prepare for heterogenous

supercomputer architectures, the global weather and climate model ICON [2, 4] is being ported

to accelerators. The major part of the porting is currently achieved using OpenACC [10] com-

piler directives. For many code sections simple insertion of OpenACC compiler directives is an

appropriate porting approach. But, for time-critical components such as the physical parameter-

izations, code restructuring and optimizations it is necessary to obtain optimal performance [6].

In some cases, the required code restructuring and optimization for GPU architectures have

a negative impact when running the same code on a CPU architecture. Multiple solutions to

address this problem have been proposed to achieve performance portability across architec-

tures [3, 5, 8]. Here we focus on CLAW [1], an open-source source-to-source translator that

allows to perform architecture-specific code transformations with minimal code modifications.

The CLAW SCA is designed to address the physical parameterizations of atmospheric mod-

els in Fortran. Physical parameterizations are typically horizontally independent so each vertical

column can be computed separately. With the CLAW SCA, the physical parameterizations are

written in Fortran only considering the vertical dependencies while the horizontal directions are

abstracted out. The CLAW Compiler can transform the code for a specific target architecture
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and insert horizontal loops and compiler directives such as OpenMP [11] for accelerator (version

≥ 4.5) or OpenACC.

In this paper, we focus on an CLAW SCA incorporation that extends CLAW capability to

address such performance portability issues without imposing disturbing changes to the code

base. We introduce a special case of the CLAW SCA connected with ELEMENTAL functions

and subroutines. We demonstrate the new feature on the JSBACH land surface scheme [7] used

in the ICON climate model. This paper is structured as follows: Section 1 describes the JSBACH

land surface scheme and its use of ELEMENTALs. In Sections 2 and 3 we present the CLAW

Compiler and the extension of SCA for ELEMENTALs. In Sections 4 and 5 we discuss our

performance results and some code metrics. Finally, in Section 5 we draw our conclusion and

discuss future work.

1. The JSBACH Land Surface Scheme and ELEMENTAL

In this section, we briefly describe the concept of ELEMENTAL subroutines and functions

and its application in the JSBACH land surface scheme. Further, we summarize its structure.

1.1. ELEMENTAL subroutines and functions

In Fortran, an ELEMENTAL function or subroutine is defined as a scalar operator. Dummy

arguments as well as potential return value must be scalars but it may be called with arrays of

arbitrary dimensionality as actual arguments. In this case, the operations defined in the function

or the subroutine are applied element-wise on the full arrays. The main benefit of ELEMENTAL

functions or subroutines is that it allows the user to write more compact code and allows the

compiler to parallelize function or subroutine execution.

1 PROGRAM main
2 IMPLICIT NONE
3 INTEGER : : x , y , z
4 INTEGER, DIMENSION(10) : : xa , ya , za
5 x = 2 ; y = 10
6 xa ( : ) = 2 ; ya ( : ) = 5
7

8 ! Ca l l ELEMENTAL with s c a l a r s
9 z = power (x , y )

10 print ∗ , ’ x ∗∗ y = ’ , z
11

12 ! Ca l l ELEMENTAL with arrays
13 za ( : ) = power ( xa ( : ) , ya ( : ) )
14 print ∗ , ’ xa ( : ) ∗∗ ya ( : ) = ’ , za
15

16 CONTAINS
17

18 ELEMENTAL FUNCTION power (a , b) RESULT( c )
19 INTEGER, INTENT(IN) : : a , b
20 INTEGER : : c
21 c = a ∗∗ b
22 END FUNCTION power
23 ENDPROGRAM

Figure 1. Code example with a basic ELEMENTAL function

A very basic ELEMENTAL function is implemented in Fig. 1 from line 18 to 22. First it is

mentioned with scalar arguments at line 9, second, with arrays arguments at line 13.
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1.2. JSBACH

JSBACH is the land surface scheme of the global ICON model in climate mode. It is designed

to serve as a land surface boundary for the atmosphere in the coupled simulation but it can also

be used offline as a standalone model. JSBACH simulates photosynthesis, phenology and land

physics with hydrological and bio-geochemical cycles.

JSBACH code is written in 2008 Fortran object-oriented style. It is designed as a pipeline

of tasks where each task is applied on various tiles of the soil depending on their properties.

Each task retrieves a number of fields from the internal memory object and applies several

ELEMENTAL functions and/or subroutines as well as vector operations to them.

JSBACH interface

Radiation interface

update surface radiation

calc radiation surface net

lwnet from lwdown

calc radiation surface net

lwnet from lwdown

Vector notation to expand

calc radiation surface net

lwnet from lwdown

Figure 2. Example of a typical task workflow using ELEMENTALs in JSBACH - update radi-

ation surface from the radiation interface

To hide some aspects of the design such as the memory access and pointers, JSBACH

includes a non-Fortran Domain Specific Language (DSL). The code must be preprocessed by

a Python script in order to obtain standard Fortran code. Section 2.1 describes where this

preprocessing sits in the CLAW Compiler workflow. The choices of using ELEMENTAL functions

and subroutines and the JSBACH DSL significantly simplify the code for the domain scientist.

In its original form, the code is not suited to be ported easily to accelerators using OpenACC

or OpenMP as compilers do not allow directives in PURE or ELEMENTAL functions and

subroutines. In some cases vector notation can be handled by compilers with the !$acc kernels

construct. But in practice, we have experienced several cases where the compiler was not able to

determine that the kernel can be run in parallel and thus generated a sequential version of the

code resulting in a significantly slower GPU execution comparing to the CPU version. This was

especially true with older version of OpenACC compatible compiler but can be solved having

reasonable amount of vector notation in an !$acc kernels block.
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In order to execute the code on a GPU, we need to either fundamentally refactor JSBACH

or to take advantage of a source-to-source translator such as CLAW. CLAW can automatize

the port while taking advantage of the current information we can extract from it. The latter

solution is the one described in this paper and has the advantage to bring portability across

compiler directives by supporting OpenACC and OpenMP simultaneosly.

Figure 2 is a typical call graph of a single task defined in JSBACH. update radiation surface is

part of the radiation interface. This task is calling a single ELEMENTAL subroutine three times

with different fields as arguments. This ELEMENTAL subroutine ( calc radiation surface net ) calls

another ELEMENTAL function.

As all ELEMENTAL code needs to be transformed to accept compiler directives, everything

in the task is transformed to be executed on the accelerator.

Table 1. JSBACH tasks with the number of automatically

generated kernel and the number of 1 dimensional (1D)

and 2 dimensional (2D) input/output fields for each task

Interface Task name Nb. kernels 1D in 1D out 2D in 2D out

Radiation surface radiation 4 11 7 0 10

radiation par 5 10 6 4 4

albedo 12 38 18 0 0

Phenology phenology logrop 11 30 21 0 0

fpc 3 2 1 0 10

Hydrology snow and skin fraction 11 11 4 0 0

soil properties 2 7 0 7 7

evaporation 3 16 6 0 0

surface hydrology 1 4 0 4 0

soil hydrology 3 3 3 1 0

canopy cond unstressed 1 2 1 0 0

canopy cond stressed 1 7 5 5 0

water balance 5 7 3 2 3

Surface energy surface energy lake 7 16 16 0 0

balance surface energy land 18 23 14 0 0

surface fluxes lake 1 11 6 0 0

surface fluxes land 1 7 4 0 0

asselin land 3 3 2 0 0

snowmelt correction 4 3 1 4 0

Soil snow soil and snow properties 14 2 4 2 2

energy soil and snow temperature 14 3 5 4 10

Assimilation assimilation scaling factors 2 1 0 0 1

canopy cond unstressed 2 4 1 3 1

Turbulence humidity scaling 10 14 3 3 0

roughness 3 3 1 0 0

The full JSBACH model in its ICON configuration is composed of about 30 different tasks

and represents roughly 30’000 lines of code. There is a total of 70 ELEMENTAL subroutines and

functions to transform. Our approach is applied to all required tasks for a climate simulation.
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Table 1 describes the list of tasks automatically ported to GPU. For each tasks, the number of

kernels generated and their corresponding inputs and outputs are detailed. 1 dimensional fields

includes only the horizontal dimension where 2 dimensional include the number of soil layer as

their second dimension.

2. The CLAW Compiler and the Single Column Abstraction

This section presents the CLAW Compiler and the Single Column Abstraction on which our

work is based.

2.1. The Compiler

The CLAW Compiler is an extensible open-source source-to-source compiler for modern

Fortran code. It is based on the OMNI Compiler Project [9].

original.f90

dsl4jsb

original dsl4jsb.f90

Fortran Preprocessor (FPP)

original.pp.f90

OMNI F-Front

XcodeML/F IR input

CLAW X2T

XcodeML/F IR output

OMNI F-Back

transformed.f90

Figure 3. CLAW Compiler workflow including the JSBACH DSL preprocessing

Figure 3 illustrates the internal workflow of the compiler. JSBACH code is pre-processed

by a dedicated Python script which initially translates the JSBACH DSL to standard Fortran

before entering the CLAW workflow. Fortran code is pre-processed and then parsed to the

XcodeML/F Intermediate Representation (IR) [12]. This IR - represented as an Abstract Syntax

Tree (AST) - is then manipulated by CLAW XcodeML to XcodeML Translator (X2T) to produce

the refactored version of the code for a specific target with inserted directives. Finally, the IR

is decompiled to standard Fortran code before being compiled by default compilers. Major

contribution to extend its transformations for ELEMENTALs was introduced in the CLAW

X2T.

2.2. CLAW Single Column Abstraction (SCA)

In weather and climate models, the physical parameterizations are, in most cases, single

column processes. Each column of the three-dimensional computational domain can be computed
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independently and does not have any data dependencies on its neighbors. The CLAW Single

Column Abstraction DSL [1] was introduced to exploit this information. A CLAW SCA source

code is fully standard Fortran code with the addition of specific CLAW directives. The code has

no notion of the horizontal dimensions in the declaration of the fields as well as in the execution

part. Loops iterating over horizontal dimension are omitted.

Figure 4. Invocation of the CLAW Compiler with a specified target architecture and desired

directives

The SCA code is processed by the CLAW Compiler as shown in Fig. 4. The user defines the

target architecture as well as the compiler directives to be used. Under the hood, the CLAW

Compiler performs create a data dependency graph to decide where to create kernels and there-

fore which temporary fields have to be promoted. Based on this analysis it inserts the necessary

iterations over the parallel dimensions and promotes the appropriate fields within the physical

parametrization. In addition, the compiler inserts the required compiler directives to parallelize

the loops and to manage data movement between the host and the device memory. The SCA

transformation comes with various user-configurable options to manage promotion and data

movement strategy, giving the end-user freedom to test various configurations.

3. Extension for ELEMENTAL Subroutines and Functions

An ELEMENTAL function or subroutine can be seen as a specific case of the CLAW SCA [1].

The land surface scheme is a point-wise computation on the grid that can be viewed as a column-

wise computation with a limited number of vertical level.

The depth of the subroutine or function in the call graph determines the transformation

applied to it. In Fig. 2, the leaf function lwnet from lwdown can be considered as a function to be

inlined but calc radiation surface net is a perfect candidate to apply SCA transformation rules.

Figure 5 is the original code of calc radiation surface net processed by the user with CLAW

SCA directive. Line 6 and 10 are defining the block of field coming from the model. These fields

are often defined globally and therefore have to comply with the memory layout imposed by

the calling model. The compiler then manages whether to apply promotion or not. The block

directive also marks the whole subroutine as a SCA subroutine and thus activates the CLAW

SCA transformation on it.

When a field is promoted or when a parallel iteration is inserted back into the code by

the compiler, the dimension information is taken from the SCA model configuration file. This

TOML formatted file defines the dimensions omitted in ELEMENTAL as well as layouts to

be applied during the promotion transformation. This allows the user to investigate different

data layouts depending on the target architecture. The user can update the default layout in

the configuration file (Fig. 6) or add a layout clause to the model−data directive with the desired

layout. The SCA model configuration file used for JSBACH is shown in Fig. 6. This file is read

by the compiler before applying transformation.

The CLAW SCA transformation applied to non-ELEMENTAL subroutine or function will

modifies the source code for both CPU and GPU targets. Since the original code with ELE-

MENTALs is already suited for CPU target, the extension of the SCA has no effect for this
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1 ELEMENTAL SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t ( swvis down , swnir down , &
2 a l b v i s , a l b n i r , lw down , t , rad net , swvi s net , swnir net , sw net , lw net )
3

4 USE mo phy schemes , ONLY: lwnet from lwdown
5

6 !$claw model -data

7 REAL(wp) , INTENT( in ) : : swvis down , swnir down , a l b v i s , a l b n i r , lw down , t
8 REAL(wp) , INTENT(out ) : : rad net
9 REAL(wp) , INTENT(out ) , OPTIONAL : : swv i s net , swnir net , sw net , lw net

10 !$claw end model -data

11

12 REAL(wp) : : z swv i s net , z swni r net , zsw net , z lw net
13

14 ! Compute net SW radiation from downward SW and albedo

15 z swv i s ne t = swvis down ∗ ( 1 . wp − a l b v i s )
16 z swn i r ne t = swnir down ∗ ( 1 . wp − a l b n i r )
17 zsw net = zswv i s ne t + zswn i r ne t
18 ! Compute LW net radiation from incoming and the thermal radiation

19 z lw net = lwnet from lwdown ( lw down , t )
20 ! Compute net radiation

21 rad net = zsw net + z lw net
22

23 IF (PRESENT( swv i s ne t ) ) swv i s ne t = zswv i s ne t
24 IF (PRESENT( swn i r ne t ) ) swn i r ne t = zswn i r ne t
25 IF (PRESENT( sw net ) ) sw net = zsw net
26 IF (PRESENT( lw net ) ) lw net = z lw net
27 END SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t

Figure 5. Original source code for an ELEMENTAL subroutine enhanced with CLAW SCA

directive inserted by the user

1 # CLAW SCA model con f i gu ra t i on fo r JSBACH in ICON
2

3 [ model ]
4 name = ”ICON JSBACH”
5

6 [ [ d imensions ] ] # Def in i t i on o f dimensions t ha t can be used in l a you t s
7 id = ” j s b h o r i ” # Hori zonta l dimension d e f i n i t i o n fo r JSBACH
8 [ d imensions . s i z e ]
9 lower = 1 # i f not s p e c i f i e d , 1 by d e f a u l t

10 upper = ”nc” # Number o f columns
11

12 [ [ d imensions ] ]
13 id = ” j s b s o i l ” # Dimension d e f i n i t i o n fo r the number o f s o i l l a y e r s
14 [ d imensions . s i z e ]
15 lower = 1 # Lower bound
16 upper = ” n s o i l ” # Upper boudn fo r the number o f s o i l l a y e r s
17

18 [ [ l ayout s ] ] # Def in i t i on o f l a you t s and d e f a u l t l ayou t f o r s p e c i f i c t a r g e t
19 id = ” de f au l t ” # mandatory layout , used i f no s p e c i f i c t a r g e t l ayou t
20 # sp e c i f i e d in the sca d i r e c t i v e
21 po s i t i o n = [ ” j s b h o r i ” , ” : ” ] # Inse r t j s b h o r i b e f o r e the e x i s t i n g dimensions
22

23 [ [ l ayout s ] ]
24 id = ” n c n s o i l ” # Name of the l ayou t
25 # Dimension layou t f o r promotion . j s b h o r i and j s b s o i l are i n s e r t e d be fo r e
26 # ex i s t i n g dimensions in the g iven order .
27 po s i t i o n = [ ” j s b h o r i ” , ” j s b s o i l ” , ” : ” ]

Figure 6. CLAW SCA configuration file for ICON model in TOML format
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1 SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t ( swvis down , swnir down , a l b v i s , &
2 a l b n i r , lw down , t , rad net , swv i s ne t , swn i r ne t , sw net , lw net )
3

4 USE mo phy schemes , ONLY: lwnet from lwdown
5

6 REAL ( KIND = wp ) , INTENT(IN) : : swvis down ( : )
7 REAL ( KIND = wp ) , INTENT(IN) : : swnir down ( : )
8 REAL ( KIND = wp ) , INTENT(IN) : : a l b v i s ( : )
9 REAL ( KIND = wp ) , INTENT(IN) : : a l b n i r ( : )

10 REAL ( KIND = wp ) , INTENT(IN) : : lw down ( : )
11 REAL ( KIND = wp ) , INTENT(IN) : : t ( : )
12 REAL ( KIND = wp ) , INTENT(OUT) : : rad net ( : )
13 REAL ( KIND = wp ) , INTENT(OUT) : : swv i s ne t ( : )
14 REAL ( KIND = wp ) , INTENT(OUT) : : swn i r ne t ( : )
15 REAL ( KIND = wp ) , INTENT(OUT) : : sw net ( : )
16 REAL ( KIND = wp ) , INTENT(OUT) : : lw net ( : )
17 REAL ( KIND = wp ) : : z swv i s ne t
18 REAL ( KIND = wp ) : : z swn i r ne t
19 REAL ( KIND = wp ) : : zsw net
20 REAL ( KIND = wp ) : : z lw net
21 INTEGER : : j s b h o r i
22

23 ! $acc data &
24 ! $acc present ( swvis down , swnir down , a l b v i s , a l b n i r , lw down , t , rad ne t &
25 ! $acc , swv i s ne t , swnir net , sw net , lw ne t )
26 ! $acc p a r a l l e l
27 ! $acc loop gang vec tor
28 DO j s b h o r i = 1 , s i z e ( swnir down , 1 ) , 1
29 z swv i s ne t = swvis down ( j s b h o r i ) ∗ ( 1 . wp − a l b v i s ( j s b h o r i ) )
30 z swn i r ne t = swnir down ( j s b h o r i ) ∗ ( 1 . wp − a l b n i r ( j s b h o r i ) )
31 zsw net = zswv i s ne t + zswn i r ne t
32 z lw net = lwnet from lwdown ( lw down ( j s b h o r i ) , t ( j s b h o r i ) )
33 rad net ( j s b h o r i ) = zsw net + z lw net
34 IF ( present ( swv i s ne t ) ) THEN
35 swv i s ne t ( j s b h o r i ) = zswv i s ne t
36 END IF
37 IF ( present ( swn i r ne t ) ) THEN
38 swn i r ne t ( j s b h o r i ) = zswn i r ne t
39 END IF
40 IF ( present ( sw net ) ) THEN
41 sw net ( j s b h o r i ) = zsw net
42 END IF
43 IF ( present ( lw net ) ) THEN
44 lw net ( j s b h o r i ) = z lw net
45 END IF
46 ENDDO
47 ! $acc end p a r a l l e l
48 ! $acc end data
49 END SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t

Figure 7. Transformed code with OpenACC directives

target in this case. We rely here on the Fortran compiler to efficiently compile ELEMENTAL

on CPU.

When applied to GPU, the following actions occur for non-leaf subroutine or function:

• The signature of the subroutine/function is updated and the ELEMENTAL or PURE

specifiers are discarded.

• The flagged fields are promoted according to the specified layout. If no layout is speci-

fied, the default layout is assumed. The promotion and layout information come from the

configuration file as shown in Fig. 6.

• Iterations over new dimensions specified in the layout are inserted.

• Data analysis is performed and temporary fields or scalars that need promotion are pro-

moted.

Leaf ELEMENTAL subroutines and functions have simpler transformations applied to them.

The code is processed as follows:
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• As for other ELEMENTAL subroutines/functions, the signature is updated and the EL-

EMENTAL or PURE specifiers are discarded.

• Compiler directives are inserted to set the subroutine or function as an OpenACC routine

or OpenMP target code.

Once the code is annotated with CLAW SCA directives, the CLAW Compiler is called the

same way for file with SCA or SCA with ELEMENTALs. Listing 4 can be executed in the same

way.

3.1. Expansion Directive

As mentioned in Section 1, vector notation is used widely in tasks. To automatize the port

of these blocks of Fortran code to OpenACC and OpenMP, the CLAW expand directive is used.

1 !$claw expand parallel

2 r a d s r f n e t ( : ) = ( 1 . wp − f r a c t l i c e ( : ) ) ∗ r ad ne t lw t r ( : ) + f r a c t l i c e ( : ) ∗
r a d n e t l i c e ( : )

3 sw s r f n e t ( : ) = ( 1 . wp − f r a c t l i c e ( : ) ) ∗ sw ne t lwt r ( : ) + f r a c t l i c e ( : ) ∗
sw n e t l i c e ( : )

4 l w s r f n e t ( : ) = ( 1 . wp − f r a c t l i c e ( : ) ) ∗ lw ne t lw t r ( : ) + f r a c t l i c e ( : ) ∗
l w n e t l i c e ( : )

5 !$claw end expand

Figure 8. Block of vector notation with CLAW expand directive

Figure 9. Expanded vector notation

Figure 8 presents a block of vector notation operations surrounded by a CLAW expand

block. The expand block works only for specific target as the CLAW SCA for ELEMENTAL.

Before the transformation is applied to the block, an analysis is performed to make sure all the

array dimensions are compatible to be transformed within the same loop structure. If the criteria

are met, iteration are inserted on appropriate range and parallelization for the given directives.

Figure 9 is the same code after transformation applied to it.

4. Performance Comparison

In this section we present the performance results that have been achieved by applying the

extended version of the CLAW Compiler to the JSBACH land surface scheme. The compu-

tational domain size (number of horizontal grid points × number of soil layers) used for the

performance measurement is 20480×5. All performance measurements in this section are ob-

tained using −03 optimization flag or equivalent for each compiler. The code is transformed with

the CLAW Compiler 2.0 and compiled with the PGI 18.10 Fortran compiler for the baseline
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CPU as well as the GPU OpenACC results. The CPU reference is obtained using multi-core

OpenMP parallelism available in the original version of ICON. The GPU OpenMP target results

were obtained with Cray Compiler CCE 8.7.4 and by running standalone version of the kernels

since the full ICON model is not ready to have a code mixing OpenMP for multi-core and for

accelerator.

Figure 10 shows the speedup achieved from the CLAW SCA transformed version with Ope-

nACC directives and the CLAW SCA transformed version with OpenMP directives over the

CPU reference. The original version of the code is exploiting the 12 cores available on the Intel

Xeon E5-2690 v3 Haswell CPU of Piz Daint at CSCS parallelized with multi-core OpenMP. The

CLAW OpenACC and OpenMP versions are executed on one NVIDIA P100 GPU. The theo-

retical floating point peak performance of the Intel Haswell is 500 GFLOPS, while the NVIDIA

P100 is 5.3 TFLOPS. In term of memory bandwidth, the Haswell has a theoretical peak at 68

GB/s while the P100 can reach up to 732 GB/s. For both compute and memory bandwidth

limited problem one can expect a maximum speedup of 11x.

As shown, OpenACC and OpenMP results are very similar and expected. Kernels issued

from the ELEMENTAL transformation are pretty simple to be handled by a compiler and we

did not expect PGI and Cray to fundamentally generate different code for them. Depending on

the size of the kernel and the tile it has to process, we are able to achieve speedup between 1.7x

up to 8.6x for kernel like the albedo: calc sky view fractions . Tiles can be viewed as a collection of grid

points from a specific type of land (e.g., lake or glacier) or as a mask for this specific type of

land. Therefore tiles can have more or less work to be performed due to a different set of grid

points. As GPUs need enough work to exploit massive parallelism, a reduced set of grid points

is one of the reason the speedup can vary this much. Another factor is the size of the kernel.

Some ELEMENTAL functions/subroutines are very small and the kernels generated from them

are also small. Kernel’s launch and synchronization is then a non-negligible part of the overall

kernel execution time. These overhead can be hidden in the execution of the full model with

asynchronous mechanism.

5. Code Metrics

This section briefly compares the original code with its CLAW SCA version before and

after applying transformations. Unlike the original SCA the SCA for ELEMENTAL imposes

less changes to the code. In order to comply with the specification, the user only annotates the

ELEMENTAL subroutines and functions to be executed on GPU, and relies on the compiler

from then on. There is no need to apply other code change in the ELEMENTALs.

The full JSBACH model is annotated with 40 CLAW SCA directives and about 130 CLAW

expansion directives to convert vector notation to parallelizable loops. In the transformed code

there are almost 2000 lines of OpenACC directives or OpenMP depending the user’s choice.

This is the amount of compiler directives a user would have had to write by hand to achieve the

same goal. A hand-written version would also have to change the code structure significantly,

for example by promoting fields and adding loops.

Conclusion

In this paper we propose an extension of the CLAW SCA DSL and its compiler to take

advantage of the ELEMENTAL construct in Fortran code and automatize the port to heteroge-
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us:calc radiation surface net - lake

us:calc radiation surface net - lake

us:expand - lake

us:calc radiation surface net - glacier

us:calc radiation surface net - pft01

us:calc radiation surface net - pft02

us:calc radiation surface net - pft03

us:calc radiation surface net - pft04

us:calc radiation surface net - pft05

us:calc radiation surface net - pft06

us:calc radiation surface net - pft07

us:calc radiation surface net - pft08

us:calc radiation surface net - pft09

us:calc radiation surface net - pft10

us:calc radiation surface net - pft11

albedo:calc alb lwtr - lake

albedo:calc alb lice - lake

albedo:calc glacier albedo - glacier

albedo:calc soil albedo - pft01

albedo:calc sky view fractions - pft01

albedo:merge albedos of vegtile - pft01

albedo:calc soil albedo - pft02

albedo:calc sky view fractions - pft02

albedo:merge albedos of vegtile - pft02

albedo:calc soil albedo - pft03

albedo:calc sky view fractions - pft03

albedo:merge albedos of vegtile - pft03

albedo:calc soil albedo - pft04

albedo:calc sky view fractions - pft04

albedo:merge albedos of vegtile - pft04

albedo:calc soil albedo - pft05

albedo:calc sky view fractions - pft05

albedo:merge albedos of vegtile - pft05

albedo:calc soil albedo - pft06
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Figure 10. Performance comparison (socket to socket) between CLAW OpenACC, CLAW

OpenMP and the CPU reference of kernels from two JSBACH tasks on Intel Haswell E5-2690v3

and NVIDIA P100. Domain size (number of horizontal grid points × number of soil layers) =

20480×5

nous architecture. The ELEMENTAL construct as exploited in JSBACH provides the necessary

abstraction to implement automatic code transformation and target GPU architectures with-

out writing lots of compiler directives by hand. Promotion, loop parallelization and compiler

directive generation are handled by the CLAW Compiler automatically.

For this paper, the CLAW SCA extension was applied to a wide portion of the JSBACH

land surface scheme, one of the physical parametrizations of the ICON global climate model.

From a single simple source code multiple programming paradigm can be targeted. Performance
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results show up to 8.6x speedup against a 12-core parallel CPU version for a specific kernel. All

kernels are a least 1.7x faster than the CPU version. The overall performance of the JSBACH

model running on GPU is typically between 5x to 6x speedup depending on its configuration.

In the current implementation of the extension, a single parallel subroutine or function

is generated from its ELEMENTAL counterpart. This is fine for the JSBACH use case as a

single ELEMENTAL is always called with the same kind of arguments. Future improvement to

generate several versions of a subroutine or a function if the type of argument used to call them

is different.

As it is possible to generate any source code, we can imagine to take advantage of new

compiler development such as exploiting the DO CONCURRENT construct from Fortran 2008 to

target accelerators as it is investigated in latest version of PGI. Instead of generating compiler

directives the CLAW Compiler could exploit this new Fortran feature.
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Optimizing Deep Learning RNN Topologies

on Intel Architecture
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Recurrent neural network (RNN) models have been found to be well suited for processing

temporal data. In this work, we present an optimized implementation of vanilla RNN cell and

its two popular variants: LSTM and GRU for Intel Xeon architecture. Typical implementations

of these RNN cells employ one or two large matrix multiplication (GEMM) calls and then apply

the element-wise operations (sigmoid/tanh) onto the GEMM results. While this approach is easy

to implement by exploiting vendor-optimized GEMM library calls, the data reuse relies on how

GEMMs are parallelized and is sub-optimal for GEMM sizes stemming from small minibatch.

Also, the element-wise operations are exposed as a bandwidth-bound kernel after the GEMM

which is typically a compute-bound kernel. To address this discrepancy, we implemented a parallel

blocked matrix GEMM in order to (a) achieve load balance, (b) maximize weight matrix reuse,

(c) fuse the element-wise operations after partial GEMM blocks are computed and while they

are hot in cache. Additionally, we bring the time step loop in our cell to further increase the

weight reuse and amortize the overhead to transform the weights into blocked layout. The results

show that our implementation is generally faster than Intel MKL-DNN library implementations,

e.g. for RNN, forward pass is up to ∼3× faster whereas the backward/weight update pass is up

to ∼5× faster. Furthermore, we investigate high-performance implementations of sigmoid and

tanh activation functions that achieve various levels of accuracy. These implementations rely on

minimax polynomial approximations, rational polynomials, Taylor expansions and exponential

approximation techniques. Our vectorized implementations can be flexibly integrated into deep

learning computations with different accuracy requirements without compromising performance;

in fact, these are able to outperform vectorized and reduced accuracy vendor-optimized (Intel

SVML) libraries by 1.6–2.6× while speep up over GNU libm is close to two orders of magnitude.

All our experiments are conducted on Intel’s latest CascadeLake architecture.

Keywords: LSTM, Intel Xeon, GEMM, compute-bound kernel, bandwidth-bound kernel.

Introduction

RNN models, unlike typical feed-forward artificial neural network models, allow connections

between nodes to form a directed graph along a temporal sequence and hence, by design, are well

equipped to learn from temporal data. These models have found applications in language trans-

lation [24], text generation [23], handwriting recognition [15] and image captioning [8] among

many others. A particular variant of RNN called long short-term memory (LSTM) provides

improvements over traditional RNN by handling exploding and vanishing gradient problems en-

countered during RNN training [16]. Another variant of RNN called gated recurrent unit (GRU)

has been proposed which has fewer parameters than LSTM [10]. However, the choice between

LSTM and GRU is not always clear and may depend on the dataset and/or the task at hand [10].

Therefore, it is important to have efficient implementations of the aforementioned RNN models

in order to expedite training and inference of the various RNN based applications, especially,

if these applications undergo continuous learning and/or deployed in scenarios where these are

expected to perform real-time predictions.
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Let us now dive into the RNN cell. It is pertinent to note that non-linear activation functions,

such as tanh and sigmoid (we use the term sigmoidal in this paper to refer to either of these

two activation functions) help with the generalization of the models and the differentiation

between the outputs. However, these functions are computationally expensive even in single

precision since their definitions require the calculation of the exponential function. To make

things even worse, emerging deep-learning hardware focuses mostly on the acceleration of the

GEMM-flavored computational kernels and consequently the fraction of the time spent in such

non-linear activation functions becomes even larger. Nevertheless, the current trend in deep

learning is to use lower precision (e.g. float16, bfloat16 [1], int16, int8) for activations in both

inference and training [12, 13] and as a result high-performance, reduced precision or lower

accuracy activation functions are a viable option.

In this paper, we present implementation of a vanilla RNN cell (with support for different

non-linearities) and the two popular variants, namely LSTM and GRU, which are specifically

tuned for Intel Xeon architecture. In the process, we showcase benefits of our approach over

Intel R© Math Kernel Library for Deep Neural Networks (MKL-DNN) [2] implementation of these

RNN variants, which is an open source performance library from Intel, intended for acceleration

of deep learning frameworks on Intel architecture. Moreover, we focus on high-performance and

reduced precision implementations of sigmoidal functions that are a natural fit for RNNs and

deep learning, in general. In particular, we investigate approximation techniques based on: (a)

Padé rational polynomials [7], (b) piecewise minimax polynomials [20] and (c) approximations

of the exponential function via Taylor expansions [11]. Our implementations are vectorized

with AVX512 instructions targeting modern Intel CPUs. We additionally explore the trade-off

between accuracy and speed of these approximations. All our code is publicly available at [3] as

part of the LIBXSMM library.

Rest of this paper is organized as follows. Section 1 provides an overview of the RNN

cell and its variants along with the details of the steps taken to optimize these on Intel Xeon

architecture. Section 2 describes the various approximation algorithms for sigmoidal functions

along with their implementations. Section 3 covers the experimental results; specifically, we

characterize the performance of our cell implementations vis-a-vis those of MKL-DNN; we further

showcase a comparative analysis of the various approximations of sigmoidal functions on Intel

Xeon architecture.

1. Implementation of RNN Cell and its Variants

1.1. (Vanilla) RNN Cell

W

xt

R

ht−1 b

∗

∗

+ + ht

Figure 1. A diagram of an RNN cell
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RNN models have found staggering success in learning from temporal data as documented

in [18]. A diagram of an RNN cell is shown in Fig. 1. The equation representing one forward

step of an RNN cell from timestep t− 1 to t is given below:

ht = Λ(W ∗ xt +R ∗ ht−1 + b),

where h is the hidden state of the RNN, x is the input from the previous layer, W is the weight

matrix for the input, R is the weight matrix for the recurrent connections, b is the bias and Λ

is a non-linear function which can be ReLU or tanh or sigmoid (σ) (while the former two non-

linearities are supported by cuDNN [9], the last one has been used by Baidu [14] – we support

all three variants in our implementation; note that the backpropagation equations depend on

the choice of Λ).

Typically, RNN implementations involve two GEMMs: W ∗ x and R ∗ h, or one GEMM:

concatenated WR with concatenated xh. The GEMM operation is followed by application of

element-wise operation Λ on the GEMM result. While this approach is easy to implement by

exploiting vendor-optimized GEMM library calls, the data reuse relies on how GEMMs are

parallelized and is sub-optimal for GEMM sizes stemming from small minibatch. Also, the

element-wise operations are exposed as a bandwidth-bound kernel after the GEMM which is

typically a compute-bound kernel. To address this inconsistency, our optimization of the LSTM

cell is based on a “data-flow” approach. We implemented a parallel blocked matrix GEMM in

order to (a) achieve load balance, (b) maximize weight matrix reuse and (c) fuse the element-wise

operations after partial GEMM blocks are computed and while they are hot in cache. Internally,

we use a blocked matrix layout for weights and traditional activation format so that we exploit

a better locality and avoid conflict misses. Additionally, we bring the time step LSTM loop in

our cell to further increase the weight reuse and amortize the overhead to transform the weights

into the blocked layout. Algorithm 1 captures the method described above succinctly.

1.2. LSTM Cell

Ri

Rc

Rf

Ro

Wo Wf Wc Wi

bi

bc

bf

bo+

+

+

+ σ

tanh

σ

σ

mul

+

mul
st−1

tanh

mul ht

st

ht−1

xt

Figure 2. A diagram of an LSTM cell

A diagram of an LSTM cell is given in Fig. 2. The equations to compute the output of the

LSTM cell at time step t are as follows:
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Algorithm 1 Forward propagation pass of RNN cell

Inputs: N : batch size, C: input channel size, K: output channel size, T : time steps,

Weight tensors W , R, bias b, input sequences x, h, blocking factors bN , bC , bK

Output: Output sequence h

1: Convert W , R, xt, ht−1 into blocked format. //cf. Section 3.1

2: Based on thread id i, calculate corresponding output block of ht: let its corner indices be

N start
i , N end

i , Kstart
i , Kend

i ; let Cstart
i and Cend

i , and Kstart
i and Kend

i be the corresponding

corner indices along input channels and output channels, correspondingly, in xt, W and R

which are required to compute ht.

3: for t = 0 . . . T − 1 {
4: for k = Kstart

i . . .Kend
i {

5: for n = N start
i . . . N end

i {
6: for c = Cstart

i . . . Cend
i {

7: A ← blocked GEMM(W [k][c][bC ][bK ], x[t][n][c][bN ][bC ]).

8: }
9: for c = Kstart

i . . .Kend
i {

10: B ← blocked GEMM(R[k][c][bK ][bK ], h[t][n][c][bN ][bC ]).

11: }
12: h[t+ 1][n][c][bN ][bC ] ← Λ(A+ B + b[k]).

13: } } }

it = σ(Wi ∗ xt +Ri ∗ ht−1 + bi),

ct = tanh(Wc ∗ xt +Rc ∗ ht−1 + bc),

ft = σ(Wf ∗ xt +Rf ∗ ht−1 + bf ),

ot = σ(Wo ∗ xt +Ro ∗ ht−1 + bo),

st = ft ◦ st−1 + it ◦ ct,
ht = ot ◦ tanh(st).

Typical implementations of LSTM involve two large GEMMs: W ∗ x and R ∗ h, where W

and R are obtained by concatenating Wi,Wc,Wf ,Wo and Ri, Rc, Rf , Ro respectively, or one

larger GEMM: concatenated WR with concatenated xh, for example, original implementation

of LSTM cell in TensorFlow has adopted this one larger GEMM approach. This GEMM step is

followed by application of element-wise operations (sigmoid/tanh) on the GEMM results. Our

implementation of LSTM cell follows the same principle as in Algorithm 1 with the exception

that steps 6–11 are repeated four times (one each for i, c, f and o), and instead of single step 12,

there are multiple element-wise operations which are applied to compute s and h.

1.3. GRU Cell

It is important to note that we have found subtle differences in the equations for GRU across

different implementations, e.g., those between cuDNN [9] and TensorFlow [5]. We have adopted

the formulation provided in TensorFlow (to aid in future integration) as stated below:

it = σ(Wi ∗ xt +Ri ∗ ht−1 + bi),

ct = σ(Wc ∗ xt +Rc ∗ ht−1 + bc),

ot = ht−1 ◦ it,
ft = tanh(Wf ∗ xt +Rf ∗ ot + bf ),
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ht = (1− ct) ◦ ft + ct ◦ ht−1.

We have followed the same design policies as mentioned for LSTM and hence we refrain

from further elaboration for brevity.

2. Implementations for Approximate Sigmoidal Functions

For neural networks, activation functions comprise an important feature that essentially

determines whether neurons in the network should be activated or not. The most widely used

activation functions are nonlinear like tanh and sigmoid because such functions help with the

generalization of the models and the differentiation between the outputs. However, these func-

tions are computationally expensive because their definitions require the calculation of the ex-

ponential function. Therefore, it is worth investigating algorithms which can approximate these

non-linear activation functions without sacrificing accuracy considerably. In this work, we focus

on algorithms which can be easily implemented in software with Intel’s existing 512bit SIMD

instruction set, and consequently, do not require any specialized hardware, such as the ones

reported in [19, 22].

For the remainder of this paper, we will be considering only the tanh function given that

the standard logistic sigmoid is a rescaled tanh:

sigmoid(x) = (tanh(x/2) + 1)/2.

2.1. Rational Padé Approximations

The tanh function has two asymptotes, therefore approximating it with a mere Taylor

expansion of low degree would result in poor approximation. Instead we consider rational ap-

proximations of tanh and more specifically the Padé rational polynomials. The rational Padé

approximation Padé[p/q]f(x) of a function f is a ratio of two polynomials with degrees p and q:

Padé[p/q]f (x) =

∑p
i=0 aix

i

∑q
i=0 bix

i
.

which agrees with f to the highest possible order, in essence:

f(0) =Padé[p/q]f (0),

f ′(0) =Padé′[p/q]f (0),

...

f (p+q)(0) =Padé
(p+q)
[p/q]f (0).

To calculate the coefficients ai and bi one can consider the first p + q derivatives of f

at zero and finally solve the corresponding system of equations. By construction, the error of

Padé[p/q]f(x) agrees with the truncation error of the Taylor series about 0 truncated at the

(p+ q)th term.

The implementation of the Padé[3/2](x) for tanh with AVX512 instructions is shown in Fig. 3

(for simplicity we do not include the initialization of the constant vectors). This implementation

uses Fused Multiply and Accumulate (FMA) instructions to evaluate the polynomials in the

numerator and the denominator of the rational approximation via the Horner’s rule. For perfor-

mance reasons, instead of dividing the numerator by the denominator, we use the approximate
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reciprocal intrinsic (line 5 in Fig. 3) and a multiplication. Also, in order to ensure that the

function is bound within the asymptotes at y = ±1, we clip it for input values beyond two limits

lo and hi by leveraging two compare and two blend instructions (lines 7–10). In Section 3.2, we

also include the evaluation of the Padé[7/8](x) approximation which performs more FMAs for

the respective polynomial evaluations but also achieves higher accuracy.

__m512 x2 = _mm512_mul_ps(x, x); //line 1

__m512 t1_nom = _mm512_fmadd_ps(x2, c1, one); //line 2

__m512 nom = _mm512_mul_ps(t1_nom, x); //line 3

__m512 denom = _mm512_fmadd_ps(x2, c2, one); //line 4

__m512 denom_rcp = _mm512_rcp14_ps(denom); //line 5

__m512 result = _mm512_mul_ps(nom,denom_rcp); //line 6

__mmask16 maskHi = _mm512_cmp_ps_mask(x, hi, _CMP_GT_OQ); //line 7

__mmask16 maskLo = _mm512_cmp_ps_mask(x, lo, _CMP_LT_OQ); //line 8

result = _mm512_mask_blend_ps(maskHi, result, one); //line 9

result = _mm512_mask_blend_ps(maskLo, result, neg_one); //line 10

Figure 3. Rational Padé 3/2 approximation

2.2. Piecewise Minimax Polynomials Approximations

Another approach for approximating transcendental functions is to use piecewise polynomial

approximations. Various polynomials may be chosen for approximation; in this section we lever-

aged minimax polynomials [20]. Therefore, we divide the input range of the function tanh(x)

into intervals and for each interval [a, b] we find a polynomial p of degree at most n to minimize:

max
a≤x≤b

| tanh(x)− p(x)|.

In our approximations, we utilize truncated Chebyshev series [21] that closely approximate

the minimax polynomials.

Figure 4 shows the implementation of the tanh function approximation using minimax

polynomials of second degree. First, the function’s input range is divided into 16 intervals using

the argument’s exponent and the Most Significant Bit (MSB) and an index register idx is

generated (lines 2–5). Then, the code uses 3 lookup tables (tanh c0 reg, tanh c1 reg and

tanh c2 reg) consisting of 16 entries each to simultaneously load 16 triples of coefficients of

the approximating polynomial. In order to load the coefficients in three registers, we utilize

the mm512 permutexvar ps intrinsic which shuffles single-precision values in a zmm register

using the corresponding index idx (lines 6–8). This in-register look-up table is much faster

(∼4×) than using AVX512’s gather instructions from memory. The polynomial evaluation is

materialized with FMAs and the Horner’s rule. Only the positive range of inputs is represented;

maenwhile, for negative input values, we exploit the property tanh(−x) = − tanh(x) resulting

from the point symmetry (line 11).

There are two ways to reduce the approximation error:

Divide the input range to more intervals: Increasing the number of intervals from 16 to 32 will

require 3 additional zmm registers to hold the coefficients. The number of instructions will not

change but the loading of the coefficients will have a greater latency because we have to use

the mm512 permutex2var ps instruction which shuffles single-precision elements in two zmm
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registers using the corresponding selector/index in idx.

Use polynomials of higher degree: Every additional degree will need an additional zmm register

to store the coefficients, one additional instruction to load the coefficients and one additional

FMA to evaluate the polynomial. In Section 3.2, we also evaluate the tanh approximation using

minimax polynomials of third degree.

__m512 signs = _mm512_and_ps(x, ps_sign_mask); //line 1

__m512 abs_x = _mm512_and_ps(x, ps_sign_filter); //line 2

__m512i idx = _mm512_srli_epi32(_mm512_castps_si512(abs_x),22); //line 3

idx = _mm512_max_epi32(idx, lut_low); //line 4

idx = _mm512_min_epi32(idx, lut_high); //line 5

__m512 c0 = _mm512_permutexvar_ps(idx, tanh_c0_reg); //line 6

__m512 c1 = _mm512_permutexvar_ps(idx, tanh_c1_reg); //line 7

__m512 c2 = _mm512_permutexvar_ps(idx, tanh_c2_reg); //line 8

__m512 result = _mm512_fmadd_ps(abs_x, c2, c1); //line 9

result = _mm512_fmadd_ps(abs_x, result, c0); //line 10

result = _mm512_xor_ps(result, signs); //line 11

Figure 4. Approx. with 2nd degree minimax polynomials

2.3. Tanh via exp() Approximation with Taylor Series

In this approximation method (see Fig. 5), we use the definition of tanh:

tanh(x) = 1− 2

1 + e2x

and we approximate the calculation of e2x.

In order to approximate the function ex, we exploit the property ex = 2x log2 e = 2n+y = 2n·2y
with n = round(x log2 e) and y = x log2 e − n. With these properties in mind, all we have to

do is to compute the term 2n with n being an integer, and the term 2y with |y| ∈ [0, 1). For

the term 2y we use a second-degree Taylor polynomial (lines 3-4). Once 2y is calculated, we

leverage the instruction mm512 scalef ps(A,B) which returns a zmm holding ai · 2floor(bi) for

each ai ∈ A and bi ∈ B. This scale instruction (line 5) concludes the approximation of the

exponential part in the denominator. The approximation error can be further reduced by using

a larger-degree Taylor expansion for the 2y term; in Section 3.2, we also evaluate a third-degree

Taylor polynomial.

__m512 _x = _mm512_fmadd_ps(x, twice_log2_e, half); //line 1

__m512 y = _mm512_reduce_ps(_x, 1); //line 2

__m512 t1 = _mm512_fmadd_ps(y, c2, c1); //line 3

__m512 two_to_y = _mm512_fmadd_ps(y, t1, c0); //line 4

__m512 exp = _mm512_scalef_ps(two_to_y, _x); //line 5

__m512 den_rcp = _mm512_rcp14_ps(_mm512_add_ps(exp,one)); //line 6

__m512 result = _mm512_fmadd_ps(den_rcp,minus_two,one); //line 7

Figure 5. Tanh via exp() approximation

Optimizing Deep Learning RNN Topologies on Intel Architecture

70 Supercomputing Frontiers and Innovations



3. Experimental Results

3.1. Evaluation of RNN Cell and its Variants

Intel R© Math Kernel Library for Deep Neural Networks (MKL-DNN) is an open source

performance library from Intel intended for acceleration of deep learning frameworks on Intel

architecture. Hence, we choose to compare our LSTM cell with that of MKL-DNN (version 1.0.2).

We also compare it with BLAS where we perform W ∗ x and R ∗ h followed by element-wise

operations for the forward pass; note that we cannot concatenate weights and perform a single

large BLAS call (with enhanced performance) in the backward/weight update pass and hence

we omit comparison with BLAS during this pass. Note that all the numbers reported in this

subsection are measured on Intel R© Xeon R© Platinum 8280 processor codenamed CascadeLake

(CLX) with 28 cores at 2.4 GHz AVX turbo frequency.

3.1.1. RNN cell efficiency

As mentioned earlier, we have adopted a “dataflow”-based approach for optimizations. We

use blocked layout to better exploit locality and avoid conflict misses. Given N = minibatch

size, C = input channels and K = output channels and T = total time steps, internally, we

transform the inputs in blocked format as mentioned below:

• input activations: [T ][N ][C] → [T ][N/BN ][C/BC ][BN ][BC ];

• hidden activations: [T ][N ][K] → [T ][N/BN ][K/BK ][BN ][BK ];

• weights: [C][K] → [K/BK ][C/BC ][BC ][BK ];

• recurrent weights: [K][K] → [K/BK ][K/BK ][BK ][BK ],

where BN , BC and BK are blocking factors for N , C and K, respectively. We perform compu-

tation with fused-time steps which amortizes the cost of blocking.

The heart of our blocked matrix GEMM consists of a JIT-ed small batch-reduce GEMM

kernel which we implemented in LIBXSMM. The batch-reduce GEMM materializes the operation

C =

n∑

i=1

Ai ∗Bi

while it keeps the C accumulator in registers. Once a block of GEMM is computed, we apply

element-wise operations on it while hot in cache. It is worth noting that we use Intel AVX512

intrinsics for vectorization and Intel Short Vector Math Library (SVML) for fast tanh and

sigmoid computations. Same optimization principles are applied to backward and weight-update

passes as well. Furthermore, our RNN operators are thread-library agnostic (can use any of

pthreads, OpenMP, C++ threads, Cilk, TBB, etc.) – thus enabling an easy integration with

any choice of framework.

Our experiments show that LIBXSMM RNN cell-forward pass can outperform that of MKL-

DNN by ∼3× for smaller hidden-state sizes. However, this performance’s speed-up gradually

decreases for larger hidden state sizes because GEMM has cubic complexity while the element-

wise operations are quadratic and, as such for large sizes, the element-wise operations’ bandwidth

overheads are less emphasized. The results are shown in Fig. 6. Note that we have reported

the floor values of all numbers for better readability. The performance difference is even more

highlighted for combined backward and weight update passes as given in Fig. 7. As can be seen

in this figure, LIBXSMM RNN cell outperforms that of MKL-DNN for smaller hidden states by
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up to ∼5×. It is worth noting that the activation function used in Fig. 6 and Fig. 7 is tanh; we

see similar patterns for sigmoid and ReLU activation functions as well.
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Figure 6. RNN cell-forward pass results for batch sizes: (top) 128, (middle) 168, (bottom) 256
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Figure 7. RNN cell-backward/weight update pass results for batch sizes: (top) 128, (middle)

168, (bottom) 256
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3.1.2. LSTM cell efficiency

In LSTM, there are four different weights and recurrent weights; consequently, we block

these in the following way:

• weights: [C][4K] → [4K/BK ][C/BC ][BC ][BK ];

• recurrent weights: [K][4K] → [4K/BK ][K/BK ][BK ][BK ].

We compared our optimized LSTM cell with the latest MKL-DNN LSTM cell on a single

socket Xeon Platinum 8280. The LIBXSMM LSTM cell-forward pass based on our approach

always outperformed that of MKL-DNN and BLAS as shown in Fig. 10. For small/medium-size

problems our implementation is ∼1.3× faster than MKL-DNN; however, with an increase in

hidden-state size, the performance of MKL-DNN becomes comparable with ours. It is worth

noting that since the GEMM sizes of LSTM are four times larger than RNN for given N , C

and K values, the blocking factors are accordingly smaller for LSTM, so that identical number

of elements (as RNN) can fit into the cache. For the fused backward/weight-update pass, the

LIBXSMM LSTM cell’s performance is ∼2.2×, on average, with respect to MKL-DNN LSTM

cell as shown in Fig. 11.

3.1.3. GRU cell efficiency

For GRU cell, which has three different weights and recurrent weights (in contrast to four

of LSTM), we follow an identical policy of blocking the inputs and weights as that of LSTM.

Hence, we do not elaborate on this cell. The results of its forward and backward/weight-update

passes can be found in Fig. 8 and Fig. 9, respectively, where we can see that while the forward

pass can be up to ∼1.5× faster, backward/weight-update pass can even surpass 2× speedup in

comparison to MKL-DNN.

We belive a dataflow approach is better suited for CPUs than GPUs since it relies on coarse-

grained parallelization and precise locality control. It is noteworthy that in LIBXSMM, the same

optimizations as mentioned here have also been applied to the implementation of fully connected

layer, which is the main computational kernel in multi-layer perceptron networks.

3.1.4. Application level impact of LSTM cell

Googles neural machine translation (GNMT) [24] is state-of-the-art LSTM-based language

translation application. As shown in Fig. 12, we compare between four variants of GNMT code

to highlight the speed-up that our code achieves for 8-layer German-to-English GNMT model.

For all the experiments, we consider a minibatch size of 168 with the number of inter op threads

equal to 1 and a number of intra op threads equal to 28.

1. Reference w/o MKL: This is the default TensorFlow code which does not support MKL.

2. Reference w/ MKL: This is TensorFlow with MKL support.

3. XsmmLSTM: This is the GNMT code which has LIBXSMM LSTM cell integrated with-

out the support for fused time steps. This is an intermediate code that we tried out because

it allowed an easy integration with other TensorFlow wrappers, thereby enabling fast de-

ployment. Moreover, we maintained the activation and the weight layouts identical to that

of TensorFlow which aided in correctness checks.

4. +Fused Encoder: This code supports LIBXSMM LSTM cell having fused time steps

along with optimal blockings for activations and weights. However, note that the LIBXSMM

LSTM cells are deployed only for the encoders. We could not change decoders to use our cell

because the time step loop for decoding stage is implemented inside seq2seq library [4] and

we presently leave it as a future work. Note that at this step, we achieve 2.35× performance

compared to the default implementation.
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Figure 8. GRU cell forward pass results for batch sizes: (top) 128, (middle) 168, (bottom) 256
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Figure 9. GRU cell backward/weight update pass results for batch sizes: (top) 128, (middle) 168,

(bottom) 256
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Figure 10. LSTM cell forward pass results for batch sizes: (top) 128, (middle) 168, (bottom) 256
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Figure 11. LSTM cell backward/weight update pass results for batch sizes: (top) 128, (mid-

dle) 168, (bottom) 256

Optimizing Deep Learning RNN Topologies on Intel Architecture

78 Supercomputing Frontiers and Innovations



1.16

2.03

2.51
2.72

1x 1.75x 2.17x 2.35x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Reference Reference XsmmLSTM +Fused Encoder

Stock TF w/o
MKL

TF with MKL

K
il

o 
w

or
ds

 p
er

 s
ec

on
d

WPS Speed Up

Figure 12. GNMT 4-layer performance on CascadeLake (with turbo enabled)

2

20

200

2000

20000

1 38 75 11
2

14
9

18
6

22
3

26
0

29
7

33
4

37
1

40
8

44
5

48
2

51
9

55
6

59
3

63
0

66
7

70
4

74
1

77
8

81
5

1 2 3 4

P
er

pl
ex

it
y

#Training Iterations (in Hundreds)
#Epochs

Reference (Stock TF) Reference

XsmmLSTM  +Fused Encoders

Figure 13. GNMT convergence: Perplexity

Perplexity is a measure of how easy a probability distribution is to predict; thus, the lower

the value of perplexity, the better it is. Figure 13 shows how the perplexity varies during the

training of the 8-layer GNMT model for the four different GNMT codes described above. As

is evident from the figure, all the codes converge and follow a similar trend. In our recent

work [17], we explain in detail how we have integrated our LIBXSMM LSTM cell (with fused

time steps) into TensorFlow [5] framework and for the first time scaled GNMT to a 16-node

Intel CPU cluster. Our code outperformed Googles stock CPU-based GNMT implementation

by more than 25× on the 16 node CPU cluster. Along with the efficient scaling libraries and

a smart batching strategy, the LIBXSMM LSTM cell played a crucial role in obtaining this

milestone.
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3.2. Evaluation of Approximate Sigmoidal Functions
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Figure 14. Absolute error of the tanh implementations on CascadeLake

In order to assess the accuracy and the performance of our approximations, we conducted

experiments on Intel’s CascadeLake (CLX) as described earlier.

3.2.1. Accuracy of approximations

Figure 14 (Left) shows the absolute error of the approximations on CLX in the positive

range [10−4, 10] since tanh is symmetric with respect to the origin. In regard to the rational

approximations, the Padé[7/8] has maximum absolute error of 10−4, whereas the Padé[3/2] has

maximum absolute error of 10−2. The 2nd- and 3rd-degree piecewise minimax polynomials have

maximum absolute errors of 10−3 and 10−4, respectively. Notably, the 3rd-degree minimax poly-

nomials exhibit a smaller absolute error than the Padé rational approximations in most of this

regime. Finally, regarding the tanh via exp() approximation with Taylor polynomials of order

2 and 3, we get maximum absolute errors of 10−3 and 10−4 respectively. We also observe that

the latter approximations are more accurate among all other considered variants for large x

values. These observations imply that one can get an even better approximation by combining

properly the aforementioned algorithms in the relevant intervals, similarly to previous work [6].

In this work, since we prioritize the speed of the approximations, we do not consider such hybrid

algorithms.

At first sight these errors are undoubtedly much higher than single precision’s machine

epsilon of roughly 10−7. However, one has to keep in mind that the emerging datatypes for deep

learning training are float16 which offers a bit more than three digits precision and bfloat16

which has a bit less than three digits of precision. Deep learning inference tasks are often able

to run fine with 8 bit fix-point datatypes. Given such input data, the obtained accuracies are

perfectly sufficient as they are in the regime of these datatypes’ machine epsilons. Figure 14

shows the absolute error of the approximations on CLX.
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Table 1. Performance of the various implementations on

CascadeLake

Algorithm Cycles per tanh computation

Rational Padé 3/2 0.39

Rational Padé 7/8 0.59

Minimax polynomials of degree 2 0.35

Minimax polynomials of degree 3 0.42

Approximation via exp (Taylor degree 2) 0.42

Approximation via exp (Taylor degree 3) 0.47

SVML (high precision) 1.53

SVML (low precision) 0.95

libm 28.32

3.2.2. Performance evaluation

Table 1 shows the performance of various approximation algorithms on CLX, where the

figure of merit is cycles-per-tanh computation (since all implementations leverage AVX512 in-

structions, each function call performs 16 tanh computations at once). In addition to our imple-

mentations, we measured the performance of the Intel Short Vector Math Library (SVML) and

the tanh implementation in libm.

On CLX, the fastest implementations are the 2nd-degree minimax polynomials and the

Padé[3/2] approximation with 0.35 and 0.39 cycles-per-tanh computation, respectively. Among

these two implementations and given the absolute errors depicted in Fig. 14, we conclude that

the 2nd-degree minimax polynomials yield the best tradeoff in speed and accuracy. This approx-

imation is 2.7× faster than the low-precision SVML tanh implementation and 81× faster than

the implementation in libm. The accuracy level of the 2nd-degree minimax polynomials should

be sufficient for most of the low-precision deep learning applications. However, if accuracy higher

then the Padé[7/8] requested, the 3rd-degree minimax polynomials and the tanh via exp() ap-

proximation with Taylor polynomial of order 3 may be used, yielding speedups of 1.6×, 2.3×
and 2× over the low-precision SVML tanh implementation.

We further used the Intel Architecture Code Analyzer (version v3.0-28) to assess how the

instructions are scheduled on CLX. As an illustrative example, we will use the assembly code

of the benchmarking loop with the 3rd-degree minimax polynomials exhibited at Tab. 2. Based

on the scheduling of the instructions, we observe that the critical path is determined by ports

P0 and P5 where the permute, FMAs and the remaining vector compute instructions are sched-

uled. This critical path with the length of 6.5 cycles determines the reciprocal throughput, and

this calculation agrees with out empirical result: each iteration computes 16 tanh evaluations;

therefore, each tanh evaluation is estimated to take 6.5/16 = 0.41 cycles, which is close to the

measured throughput 0.47.

Finally, by considering the instruction mix in the approximations, we gain some intuition

about how to create hardware that accelerates such implementations. For example, a common

method used in all our approximation algorithms is the polynomial evaluation via FMA instruc-

tions that implement the Horner’s rule. One could accelerate such method via fixed function

hardware, e.g. by chaining k FMA units to perform a k−th degree polynomial evaluation. Such

specialized hardware can provide faster and higher accuracy approximations by making high

degree polynomial computations inexpensive.
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Table 2. Assembly code and CLX instruction scheduling

of the benchmarking loop with the 3rd degree minimax

polynomials

Uops Ports pressure in cycles Instructions

P0 P1 P2 P3 P4 P5 P6 P7

1 1.0 inc eax

1 1.0 vmovups zmm10, zmmword ptr [rsp+0x600]

1 0.5 0.5 vandps zmm0, zmm10, zmm8

1 0.5 0.5 vandps zmm1, zmm10, zmm9

1 1.0 vpsrld zmm11, zmm0, 0x16

1 1.0 vpmaxsd zmm12, zmm11, zmm7

1 1.0 vpminsd zmm13, zmm12, zmm6

1 1.0 vpermps zmm15, zmm13, zmm3

1 1.0 vpermps zmm14, zmm13, zmm2

1 1.0 vpermps zmm10, zmm13, zmm4

1 1.0 vpermps zmm11, zmm13, zmm5

1 1.0 vfmadd231ps zmm15, zmm14, zmm0

1 0.5 0.5 vfmadd231ps zmm10, zmm15, zmm0

1 0.5 0.5 vfmadd213ps zmm0, zmm10, zmm11

1 0.5 0.5 vxorps zmm0, zmm0, zmm1

2 1.0 1.0 vmovups zmmword ptr [rsp+0x640], zmm0

1 cmp eax, r13d

0 jl 0xffffffffffffff94

3.2.3. Application level impact of approximate tanh

In order to study the impact of approximate tanh at the application level, we implemented

LSTM cell with various approximate tanh implementations and used these LSTM cells for

Google Neural Machine Translation (GNMT) training. We ran our convergence experiments on

a small 4-node CLX cluster with global minibatch size of 1024 for German-to-English WMT16

training dataset using Adam solver with learning rate of 0.0005 for 5 epochs. We evaluated

translation accuracy as a BLEU score after every epoch using newstest2013 as development

(DEV) and newstest2015 as test (TEST) datasets. As seen in the Fig. 15, there is little impact

of tanh approximation on training convergence and even though there is some variation at the

beginning of the training, at the end of 5th epoch, all the evaluated versions converge to similar

accuracy. Particularly, Rational Padé approximation produces best TEST BLEU score of 26.9

which is slightly better than the BLEU score of 26.7 for the reference SVML version. Similarly,

a minimax polynomial-degree 3 version produces the best DEV score of 26.2 compared to 26.1

for the reference SVML version.

Conclusion

In summary, we propose an implementation of LSTM cell using a “dataflow”-approach

small-blocked GEMMs instead of large GEMMs on Intel Xeon architecture. Out strategy helps

in maximizing locality, weight reuse and fuse element-wise operations which are, otherwise, ex-

posed as bandwidth-bound kernels. For small/medium sized problems, our implementation of

RNN-forward pass is ∼3× faster than the MKL-DNN cell, while for backward/weight update it

is up to ∼5× faster. For large weight matrices, the two approaches, however, have similar perfor-

mance which stems from the fact that GEMM has cubic complexity, whereas fusing element-wise
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Figure 15. Convergence of GNMT with various approximate tanh implementations

operations are only of quadratic complexity. It should be noted that this conclusion might change

with GEMM acceleration hardware.

We also assessed the accuracy/speed tradeoffs of the various implementations of sigmoid and

tanh functions on Intel’s CascadeLake processor. Our approximations obtain accuracies that are

sufficient for contemporary inference and training deep learning applications with low preci-

sion (e.g. float16, bfloat16, 8 bit fix-point datatypes) while they outperform the low-precision

tanh SVML implementations by factors of 1.6–2.6×. We envision that our implementations will

have a magnified importance in the context of emerging deep-learning hardware that acceler-

ates GEMM-flavored computations and, as a result, a fast evaluation of non-linear activation

functions is necessitated.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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As the number of cores and the memory bandwidth have increased in a balanced fashion,
modern vector processors achieve high sustained performances, especially in memory-intensive ap-
plications in the fields of science and engineering. However, it is difficult to significantly increase
the off-chip memory bandwidth owing to the limitation of the number of input/output pins inte-
grated on a single chip. Under the circumstances, modern vector processors have adopted a shared
cache to realize a high sustained memory bandwidth. The shared cache can effectively reduce the
pressure to the off-chip memory bandwidth by keeping reusable data that multiple vector cores
require. However, as the number of vector cores sharing a cache increases, more different blocks
requested from multiple cores simultaneously use the same set. As a result, conflict misses caused
by these blocks degrade the performance.

In order to avoid increasing the conflict misses in the case of the increasing number of cores,
this paper proposes a skewed cache for many-core vector processors. The skewed cache prevents
the simultaneously requested blocks from being stored into the same set. This paper discusses
how the most important two features of the skewed cache should be implemented in modern
vector processors: hashing function and replacement policy. The proposed cache adopts the odd-
multiplier displacement hashing for effective skewing and the static re-reference interval prediction
policy for reasonable replacing. The evaluation results show that the proposed cache significantly
improves the performance of a many-core vector processor by eliminating conflict misses.

Keywords: HPC, vector architecture, cache, skewed-associativity.

Introduction
Modern vector processors achieve high computing capability and high memory performance.

Enhancing the architecture specialized for vector instructions with long vector lengths and the
memory system focusing on high memory bandwidth, modern vector processors can achieve high
sustained performances in scientific and engineering applications. The performance requirement
of these applications is growing because these applications are eagerly developed for the demands
of improving their accuracy and widening the applicable area. Thus, vector processors have been
expected to provide higher performance.

In order to provide higher performance, modern vector processors have adopted two features
different from the typical one. First, modern vector processors have increased their computing
capability by increasing the number of vector cores, even though historically the vector processors
have a single powerful core. As this trend may continue, many-core technology will play an essential
role in driving computing capability growth in the future. Second, modern vector processors adopt
multi-banked caches to keep the high sustained memory bandwidth. Since the further improvement
of off-chip memory bandwidth is difficult due to the limitation of the number of input/output pins
integrated on a single chip, a cache provides reusable data to vector cores at the high bandwidth.

As the number of vector cores increases, the off-chip memory readily becomes a bottleneck
on memory-intensive applications in the future. In order for the vector processors to mitigate the
gap between computing capability and off-chip memory performance, efficient utilization of the
shared cache becomes an essential key factor. Since the shared cache can reuse the data among the
∗The paper is recommended for publication by the Program Committee of the International Supercomputing
Conference 2019 “HPC in Asia”.
1Tohoku University, Sendai, Japan
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vector cores, unnecessary off-chip memory accesses can be reduced if the same data already exists
on the shared cache. Thus, applications that run on the future vector processors are ought to be
optimized to arrange the data on the shared cache as much as possible. Under the well-optimized
applications, the number of cache hits will certainly increase if the number of vector cores sharing
the data on the cache increases. Thus, less off-chip memory pressure can be realized by increasing
the number of vector cores sharing data on the shared cache as much as possible.

First, this paper preliminarily evaluates the effect of the shared cache organizations on a
many-core vector processor. A simple optimization is applied to an application so that more data
can be shared as the number of vector cores increases. Thus, if the number of vector cores that
share the cache architecturally increases, the more cache hit rate will be obtained. However, the
preliminary evaluation clarified that a cache shared by many vector cores suffers from a lot of
conflict misses. Although increasing the cache associativity is a common solution that can reduce
the conflict misses, this solution brings a substantial overhead for a multi-banked cache.

Therefore, this paper proposes a skewed cache for many-core vector processors. The skewed
cache is a cache that adopts skewed-associativity [13]. The skewed cache can suppress the number
of conflict misses by preventing the simultaneous data requests of multiple vector cores from using
the same cache set. This paper also discusses two features of the skewed cache: hashing functions,
and replacement policies. The proposed cache adopts the odd-multiplier displacement hashing for
effective skewing and the static re-reference interval prediction policy for reasonable replacing. In
the evaluation, this paper evaluates the cache hit rates by using a stencil calculation kernel with
varying the number of vector cores sharing a cache and its associativity. The evaluation results
show that the proposed cache can eliminate the conflict misses and achieve nearly ideal hit rates
in the case of the shared cache configurations.

The rest of the paper is organized as follows. Section 1 introduces a many-core vector processor
assumed in this paper and indicates that the multi-banked cache suffers from conflict misses
through the preliminary evaluation. Section 2 proposes a skewed multi-banked cache for many-
core vector processor. Section 3 evaluates the proposal by simulation and discusses the results.
The final section concludes this paper.

1. Challenges in Many-core Vector Processors
This section describes an organization of a many-core vector processor assumed in this paper.

Then, various shared cache configurations of the many-core vector processor are preliminarily
evaluated to show the impacts of conflict misses on the hit rates of the shared caches.

1.1. Many-core Vector Processors

1.1.1. Vector cores

Figure 1 shows the many-core vector processor assumed in this paper. One of the main parts
of this processor is a vector core. The vector core is mainly divided into a scalar processing unit,
a vector processing unit, and a load/store unit. The scalar processing unit fetches and decodes all
the instructions and is responsible for the subsequent execution stages of scalar instructions.

The vector processing unit consists of vector operating units and vector registers. The vector
operating units execute vector instructions, which can apply the arithmetic operations to vector-
ized data. A vector instruction can operate multiple elements at once. The number of elements
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Figure 1. The overview of the many-core vector processor

that can be operated by one vector instruction is called vector length. For example, the maximum
vector length is 256 in double-precision floating-point elements in the latest vector processor,
SX-Aurora TSUBASA [8]. Compared to SIMD instructions of general-purpose processors, vector
instructions can process large amount of data by one instruction.

The vector registers store operands used for executing vector instructions. The vector func-
tional units can always be fed by the elements from the vector registers for calculations. These
units consist of multiple arithmetic pipelines of addition, multiplication, division/square root, and
logical calculation. Each unit can operate independently. Thus, it is possible to perform multiple
types of operations in parallel. The vector mask register masks the execution results of a vector
instruction. By using the vector mask register, loops including conditional branches are executed
by using vector instructions.

The load/store unit generates memory addresses from vector load/store instructions and
continuously sends memory access requests to the memory system. After all the data have arrived
from the memory system, the data are transferred to the vector register immediately.

1.1.2. Multi-banked shared cache

With the improvement of the computing capability of vector cores, the demand for memory
performance also increases to supply the data required by vector cores. However, the improve-
ment of memory performance is behind in that of computing capability. Hence, cache memory
is essential to fulfill the gap between them, and it is implemented in modern vector processors.
For example, since the SX-9 or later vector processors of NEC SX series, an on-chip multi-banked
cache memories are implemented inside the processor [5, 8]. This paper also assumes that the
many-core vector processor includes a multi-banked cache memory.

If the number of vector cores increases in the future, it is considered that several numbers
of cores are connected to one cache. Figure 2 shows an example where each cache is shared by
M vector cores when the total number of vector cores is N . The following equation expresses the
relationship between M and N

C = N

M
, (1)

where C is the number of caches, and M means the number of vector cores connected to one
cache. Equation (1) indicates that the number of caches C varies depending on the M and N .
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1: for z = 1, ...Nz − 1 do
2: for y = 1, ...Ny − 1 do
3: for x = 1, ...Nx − 1 do
4: b[z][y][x]=(a[z][y][x]+
5: a[z][y][x-1]+a[z][y][x+1]+
6: a[z][y-1][x]+a[z][y+1][x]+
7: a[z-1][y][x]+a[z+1][y][x] )/7
8: end for
9: end for

10: end for

Figure 3. 3D 7-point stencil calculation

Thus, the number of cache banks in a cache, b, is expressed by the following equation.

b = B

C
= BM

N
, (2)

where B is the total number of banks in a many-core vector processor.
In this paper, N and B are constant because the various configurations of the shared cache

are examined under the same computing capability and memory performance. Thus, the number
of vector cores connected to the cache M only changes the number of banks per cache b according
to Equation (2). Moreover, the capacity of each bank is fixed so that the number of banks per
cache determines the cache capacity.

1.2. Conflict Misses on The Many-core Vector Processor

1.2.1. 3D 7-point stencil calculation

This paper examines various configurations of the shared cache using a representative memory-
intensive computing kernel, the 3D 7-point stencil kernel. The stencil computations including this
kernel occupy major roles in scientific and engineering simulation codes.

Figure 3 shows a pseudo-code for the 3D 7-point stencil kernel. This code derives arithmetic
mean of a central element and its six neighboring elements along with x, y, and z axes. The
calculation is repeated for all the elements in the 3D space. Thus, for each iteration of the inner-
most loop of Fig. 3, a total of seven elements are required.

Figure 4(a) shows the elements used for one calculation in Fig. 3. The translucent elements
represent the calculation space, and solid elements indicate the seven elements used for the cal-
culation.

1.2.2. Stencil calculation with a shared cache

This paper assumes that the parallelization is performed based on the outermost loop regard-
ing z-axis in Fig. 3. Therefore, each z-axis iteration of the loop is cyclically assigned to each core.
The k-th iteration of the outermost loop is calculated by the core whose ID is (k mod N).

In the stencil calculation, each vector core accesses the central element and its neighboring
elements. If other vector cores are already accessing these neighboring elements, the data might
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Figure 4. 3D 7-point stencil kernel calculation

have already been placed in the cache. Thus, these elements can be reused on the cache, resulting
in pressure reduction to off-chip memory.

Based on this parallelization, the theoretical cache hit rate of the 3D 7-point stencil calculation
can be derived. Note that, in this paper, one layer of elements in an x-y plane cannot fit in the
cache while one line of elements along with the y-axis can. First, the theoretical cache hit rate is
calculated in the case where the vector core does not share the cache at all. Figure 4(b) shows
which elements will hit on the cache. The translucent elements show the group of the elements
that are calculated by one core. The solid blue element in Fig. 4(b) should miss irrespective of
whether the cache is shared or not. The red elements: a[z][y][x], a[z][y][x-1], a[z][y][x+1], and
a[z][y-1][x] should hit because the last iteration brings those elements in the cache irrespective of
whether the cache is shared. The solid yellow and green elements cannot become hits because the
one layer of the x-y plate cannot fit in the cache. Thus, in the case where the vector cores do not
share a cache, the theoretical hit rate becomes 4/7 (57.14 %).

Next, the theoretical cache hit rate is calculated in the case where the vector cores share
the cache with its neighboring cores, as shown in Fig. 2. The yellow and green elements can
hit by sharing the cache because neighboring cores also bring the elements in the cache. Thus,
a[z-1][y][x] and a[z+1][y][x] can hit additionally. However, since there is only one neighboring core
for the cores which core numbers are 0 or M − 1, either a[z-1][y][x] or a[z+1][y][x] always misses
for these cores. From this observation, the 3D 7-point stencil calculation can be shared at most
2/7 (28.57 %) of elements by the shared cache.

Here, there are 7 × M accesses by M cores when M iterations of the outermost loop are
calculated in parallel. If the first core is calculating the outermost loop 1, the second core is
calculating loop 2, ..., the M -th core is calculating loop M ; the core in charge of loop 1 and the
core in charge of loop M can reuse only 5 elements by the shared cache, and the other cores can
reuse 6 elements by the shared cache. From this observation, for all the cores, the number of hits
in one iteration is calculated as 6(M − 2) + 5 × 2. Thus, the theoretical hit rate of 3D 7-point
stencil calculation can be expressed as the following equation

H7 = 6(M − 2) + 5 × 2
7M = 6

7 − 2
7M . (3)

From Equation (3), it is possible to predict the hit rate of the stencil calculation theoretically
from the number of cores sharing one cache M . It can be seen that, as the number of cores M
increases, the cache hit rate monotonically increases, asymptotically approaching to 6/7(85.71 %).
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Overall, increasing the number of vector cores sharing a cache enables more vector cores to
reuse the data on the shared cache. In the stencil calculation, the theoretical cache hit rate can
increase if more cores share a cache.

1.3. Preliminary Evaluation

Equation (3) expresses the upper-bound of the cache hit rate because this equation only
considers the reusability of the elements, and other effects are ignored. In order to confirm the
model defined by Equation (3), a preliminary evaluation is conducted to investigate the hit rate
in the many-core vector processor by varying the number of cores that share a cache. The stencil
calculation is parallelized to share the data, as discussed in Section 1.2.2. Thus, the larger number
of cores suggests the higher cache hit rate, as expected from Equation (3). Under this situation,
various configurations of a many-core vector processor are evaluated. The number of cores sharing
a cache is set to 1, 2, 4, 8, 16, and 32, and the cache associativity is set to 4, 8, 16, and 32. The
other configurations correspond to the configuration described in Section 3.1.

Figure 5 shows the results of the preliminary evaluation. The vertical axis indicates the cache
hit rate, and the horizontal axis indicates the number of cores sharing one cache and associativity.
In Fig. 5, the theoretical cache hit rate increases as increases the number of cores sharing one
cache. On the other hand, the cache hit rate of the set-associative cache with LRU replacement
policy becomes significantly low in the case of a large number of cores sharing one cache and the
low associativity. This is because, when the stencil calculation is executed in parallel, multiple
cores simultaneously access the same set, resulting in conflict misses. Therefore, the number of
conflict misses must be reduced to exploit the effect of sharing data among the vector cores by
the shared cache.

1.4. Related Work

One of the methods to reduce conflict misses is to increase the associativity; however, it
is challenging to realize the higher associativity because of cost, power consumption, and area
overheads on the chip in large-capacity and multi-banked caches. Therefore, this paper discusses
the other ways to eliminate conflict misses instead of increasing the associativity.
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Some papers have tackled with the reduction in the number of conflict misses. Qureshi et
al. [11] have proposed the V-Way cache, which includes the flexible tag mechanism, enables a
global replacement to eliminate conflict misses. The V-Way cache has additional tag entries so
that associativity of a set can vary depending on the demand to the set. Incidentally, the tag
and data entries are associated with each other by indirection pointers. This mechanism enables
to select victims flexibly from the global view of data, not limited to the same set. However, the
V-Way cache requires a lot of additional hardware cost for the implementation.

Sanchez et al. [12] have proposed the ZCache. The ZCache has focused on an insight that
conflict misses occur by the lack of replacement candidates on an eviction. Hence, the ZCache
selects several replacement candidates using multiple hashing functions for the same way on each
miss. If a necessary block is about to be evicted, another useless block of another way would
be evicted so that the necessary block can be relocated to and kept in the cache. However, the
ZCache requires several array lookups to find a block in the cache, and additional data movement
for the relocations. Consequently, these features cause too much cost for the multi-banked cache
focusing on high bandwidth.

Although these proposals are effective in eliminating conflict misses, they require unignorable
hardware and performance overheads. Moreover, the effect of these proposals is only evaluated
for the scalar processors, not for the vector processors. Therefore, this paper focuses on a more
straightforward way to reduce the number of conflict misses at low costs for the vector processors,
looking back to the beginning of skewed-associativity.

There are several studies to clarify the usefulness of caches in vector processors. Musa et
al. [10] have clarified that a four-core vector processor with one shared cache or two shared
caches can improve the performance by 15-40% compared to the case without caches. This is
because neighboring cores can reuse data by sharing the cache. Thus, the cache hit rate and the
performance are improved. On the other hand, they have studied the effects of the shared caches
by only up to 4 cores. The number of cores in modern vector processors is increasing, and this
trend is expected to continue. Hence, a vector processor with more vector cores should be studied
for the future. Additionally, they do not consider the cache associativity.

Egawa et al. [3, 4] have studied the shared cache up to 16 cores using real applications in a
multi-core vector processor and clarified that increasing the number of cores and capacity of shared
cache improves the hit rate. They have also clarified the improvement of the performance efficiency
and the reduction in power consumption by the shared cache. Besides, they confirmed that an
8MB shared cache configuration is the most efficient for a 16-core vector processor. However, their
studies are only for the number of cores and the cache capacity, not for the cache associativity.
Additionally, the gap between the computing capability and the memory bandwidth has further
widened after their study has done.

In order for the vector processors to obtain the high sustained performance even with increas-
ing the number of vector cores, it is necessary to consider the cache associativity, as discussed in
Section 1.3. Therefore, this paper studies the shared cache configurations for vector architectures
in terms of the cache associativity and the number of cores sharing one cache, assuming that the
number of vector cores significantly increases in the future.
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Figure 6. The difference of the 2-way set-associative and the 2-way skewed-associative

2. Skewed Multi-banked Cache for Many-core Vector Processors
Skewed-associativity [13] is an effective method to eliminate conflict misses without increasing

the associativity. Hence, this paper proposes the skewed cache for the many-core vector processors
in order for the shared cache to reduce the number of conflict misses on vector load/store data.

2.1. Skewed Cache

A skewed cache eliminates conflict misses by allocating a block to a set using the hashing
function for each way. Figure 6 shows the difference between a 2-way set-associative cache and a
2-way skewed cache.

In Fig. 6(a), the set-associative cache allocates addresses D1, D2, and D3 to the same set.
Thus, if the blocks of these addresses are stored in this order, the block of D1 inserted at first
will be evicted by inserting the block of D3 due to the set conflict. In contrast, in Fig. 6(b),
hashing function f0 for way 0 and hashing function f1 for way 1 individually generate different
set indices so that these addresses are indexed to different sets. Since the block of D3 is stored to
the different set where that of D1 is indexed to, it is possible to avoid evicting the block of D1
and avoid causing a conflict miss.

In order to obtain the high cache hit rate on the skewed cache, the hashing function and
the replacement policy are essential. The hashing function intrinsically affects the ability of the
skewed cache to avoid set conflicts. Thus, the hashing function should output non-biased values;
otherwise, blocks are placed in the same set, causing conflict misses. Furthermore, it is desirable
to easily create the various hashing functions based on a single rule so that they can produce
different outputs for each way.

The replacement policy is also essential. One of the well-known problems with the skewed
cache is that it is challenging to implement the Least Recently Used policy (LRU) on the skewed
cache in the case of a higher associativity of three or more. This is because LRU generally deter-
mines an evicted block by using insertion order of blocks in the set. In the case of the set-associative
cache, replacement candidates are always chosen from the same set, and an evicted block is se-
lected from them. Thus, it is necessary to keep the insertion order within the sets. However, the
skewed cache chooses replacement candidates from the different sets depending on the address of
the block and the hashing function, so that the insertion order within the sets cannot determine
whether the blocks recently used or not. If absolute timestamps are added to every block, LRU
can be realized for the skewed cache. However, it requires an impractical hardware cost.
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The remaining of this section discusses the implementations of the hashing function and
the replacement policy that significantly affects the performance and implementation cost of the
skewed cache.

2.2. Hashing Functions

2.2.1. XOR-based hashing function

An exclusive OR (XOR) based hashing function based on the XOR operations is used when
the skewed-associativity is proposed [2, 13, 14]. The following equation calculates the set index.

index = σw(A2) ⊕ A1 mod nset, (4)

in which ⊕ represents the bitwise exclusive OR operator. A1 and A2 denote fields of an address in
Fig. 7. The bit lengths of A1 and A2 are log2(nset). σw represents a w-bit circular shift operation.
Here, w generally represents the way ID for each way. For example, the hashing function for way
0 is A2 ⊕ A1 mod nset, and that for way 1 is σ1(A2) ⊕ A1 mod nset.

The advantages of the XOR-based hashing function are simpleness for implementation, and
this function satisfies two requirements for skewing. The blocks that may be mapped to the same
set in a way are spread over other sets of the other ways. Moreover, two blocks with the same
higher bits (A2 or tag field in Fig. 7) cannot be mapped to the same set by the function.

However, the XOR-based hashing function is known to suffer from specific stride patterns
called pathological behavior [7]. For example, if nset is 16, A1 is fixed, and A2 varies as a stride
of 8, the XOR-based hashing function will generate the sequence of set indices 1,9,1,9,...,1,9. The
same problem occurs even when w changes. Furthermore, if either A1 or A2 is 0 or 11..111, the
outputs stay the same value despite any w. Thus, this paper examines another hashing function
for the skewed cache.

2.2.2. Odd-multiplier displacement hashing function

This paper examines the Odd-Multiplier Displacement Hashing Function (oDisp) [7] as the
alternative hashing function. the oDisp is known as a more uniform hashing function than the
XOR-based hashing function. Thus, even in the case where access patterns contain strides of a
specific length, the oDisp can be expected to reduce conflict misses further. The following equation
expresses the set index

index = (o× A2 + A1) mod nset, (5)

where o is an arbitrary odd number changed for each way.
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Require: Candidates
Ensure: An evicted block
1: if counter > (the number of blocks / 4) then
2: Reset RU of all blocks
3: Set counter 0
4: else
5: Increment counter
6: end if
7: if Cache hits then
8: Set RU of the hit block to 1
9: else if Cache misses then

10: g1 :=Candidates.where(RU is 0)
11: g2 :=Candidates.where(RU is 1 and clean)
12: g3 :=Candidates.where(RU is 1 and dirty)
13: if g1 is not empty then
14: Return one randomly from g1
15: else if g2 is not empty then
16: Return one randomly from g2
17: else if g3 is not empty then
18: Return one randomly from g3
19: end if
20: end if

Figure 8. The flow of NRUNRW policy

Require: Candidates
Ensure: An evicted block
1: if Cache hits then
2: Set RRPV of the hit block to 0
3: else if Cache misses then
4: while True do
5: for c in Candidates do
6: if c.RRPV is 3 then
7: Return c
8: end if
9: end for

10: Increment RRPVs of all candidates
11: end while
12: end if

Figure 9. The flow of SRRIP policy

Another advantage of this hashing function is that the hardware cost is low. Equation (5)
means that an arbitrary odd number multiplied by A2 is added to A1, and the remainder is
calculated by the number of sets. Multiplication of an arbitrary odd number can be realized by
one logical shifter and two adders instead of a multiplier. Furthermore, it is easy to change the
output of the hashing function for each way by selecting different odd numbers for each way.
Therefore, the index of the oDisp can be simplified by the following equation

index = ((A2 � w) + A2 + A1) mod nset, (6)

where w represents the way number and � represents a logical left-shift operation.

2.3. Replacement Policies

2.3.1. Not recently used not recently written

There are some studies about a replacement policy for the skewed cache, Seznec et al. [15]
have proposed the Not Recently Used Not Recently Written policy (NRUNRW) based on the Not
Recently Used (NRU). Figure 8 shows the flow of NRUNRW. This policy requires one bit per cache
block as a Recently Used bit (RU) and selects one of the non-latest cache blocks as an evicted
block. If the policy cannot determine the evicted block depending on the RUs of candidate blocks,
the policy selects the evicted block from clean blocks among the candidate blocks. Furthermore,
all RUs in the cache is reset every interval when the number of requests to the cache reaches
one-fourth of the number of the total cache blocks.
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The advantage of NRUNRW is that it requires a small hardware cost of only one bit per cache
block. However, Seznec [14] pointed out that the performance of NRUNRW did not reach that
of LRU because of the randomness by resetting the RUs. Therefore, this paper also examines an
alternative replacement policy for the skewed cache.

2.3.2. Static Re-Reference Interval Prediction

In order to obtain the hit rate equivalent to LRU at a realistic hardware cost, the proposed
skewed cache adopts the Static Re-Reference Interval Prediction policy (SRRIP) [6] as a replace-
ment policy.

SRRIP is implemented as an extension of NRU and can achieve hit rates comparable to LRU
with a simple replacement algorithm and low hardware cost. Fig. 9 shows the flow of SRRIP.
SRRIP prepares an m-bit Re-Reference Prediction Value (RRPV) per cache block and predicts
when the block will be re-referenced. SRRIP takes advantage of the fact that recently hit blocks
have higher reusabilities than newly-inserted blocks. Since SRRIP lets hit blocks be hardly evicted,
newly-inserted blocks can be evicted earlier than the recently hit block. Therefore, only recently
hit blocks tend to remain in the cache, and other blocks are replaced.

SRRIP can be used for the skewed cache because the information used when replacing blocks,
i.e. an RRPV for each block, can predict the re-reference interval of a block independent from
the RRPVs of the other blocks in the same set. Thus, an evicted block can be determined even if
replacement candidate blocks come from different sets, as in the case of the skewed cache.

3. Evaluation
3.1. Experimental Environment

In order to confirm the effect of the skewed cache on the performance of many-core vector
processors, we conduct experiments. The simulator of a many-core vector processor is developed
based on the gem5 simulator [1], which is a general-purpose architecture simulator. The simulator
uses an instruction trace data as an input, which is obtained by the vector supercomputer SX-ACE.
Based on the trace data, it simulates the occupancy of hardware resources inside the processor
and calculates the various performance metrics.

The simulation of the many-core vector processor is performed by implementing pseudo cores.
The pseudo cores only issue requests to the memory system so that a simple implementation
of pseudo cores enable to simulate many-core vector processors at high speed. In the stencil
calculation targeted in this paper, it is assumed that parallelization is performed in the outermost
loop of Fig. 3 discussed in Section 1.2.2. Therefore, the widths specified for the pseudo cores
correspond to the amount of data for one z-iteration. The space of the calculation is set to
2048x2048x512.

Table 1 shows the system configurations of the many-core vector processor. The total number
of cores is set to 32 based on the trend in the future many-vector core processor, and the configu-
ration of the core is based on that of NEC SX-ACE [5]. In addition, this paper assumes that the
Bytes/Flop (B/F) value of the system used for the evaluation is set to 0.125. This is because the
trend in the gap between computing capability and memory performance has widened, and the
B/F value is diminishing. In fact, the B/F values of SX-ACE and SX-Aurora TSUBASA are 1.0
and 0.5, respectively. The newer generation vector processors ought to have lower B/F values.
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Table 1. Configurations of the simulation

Base architecture NEC SX-ACE
Total number of core 32

Number of cores sharing a same cache 1, 2, 4, 8, 16, 32
Main memory bandwidth 256GB/s

Total cache size (size per bank) 32MB (128KB)
Associativity 4, 8, 16, 32

Cache block size 128Bytes
MSHR (Target) [9] 8 (8)

System B/F 0.125 B/F
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Figure 10. Cache hit rate results

In the evaluation, several parameters affect the performance of the multi-banked cache mem-
ory. The associativity is set to 4, 8, 16, and 32, and the number of cores sharing one cache is set to
1, 2, 4, 8, 16, and 32. The total capacity and the total number of banks are set to 32MB and 256
banks, respectively. The total capacity is fixed during the evaluation to focus on only the effect
of the shared cache, and the total number of banks is also fixed to keep the bandwidth the same
in all the configurations.

In addition to the proposed skewed cache, we evaluate the conventional set-associative cache
to compare the results. On the proposed cache, NRUNRW, LRU, and SRRIP policies are used as
replacement policies. This paper sets two bits to the RRPV for SRRIP in the evaluation, which
can achieve the performance comparable to LRU [6]. Since the implementation of LRU in the
realistic hardware cost for the skewed cache is difficult, LRU is implemented as the insertion
order of blocks is judged by the absolute timestamps given to blocks.

3.2. Evaluation Results and Discussion

3.2.1. Cache hit rate

Figure 10 show the cache hit rates of the conventional cache and the skewed cache with various
replacement policies and hashing functions. In the figures, the vertical axis represents the cache
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hit rate, and the horizontal axis represents the number of cores sharing a cache and associativity
of the cache.

Figure 10(a) shows the cache hit rate with various replacement policies. In order to discuss
the difference among the replacement policies, we use the odd-multiplier displacement hashing as
the hashing function. The hit rates of the proposed skewed cache with SRRIP are very close to
the theoretical hit rates for each configuration. SRRIP follows theoretical values only when the
associativity is 4-way or 8-way, although the hit rates of the high associativities are slightly lower
than those of LRU. Compared to the set-associative cache when the cache is 4-way and 8-way,
the number of hits is improved by a maximum 70% and 60%, respectively. In the case where the
32 cores share a 16-way cache, the number of hits increases by about 50%.

In contrast, the cache hit rate drastically decrease with the low associativity in the set-
associative cache. Particularly, when the associativity is 4-way, 8-way or even 16-way, and the
number of cores sharing a cache is large, the gap between set-associative cache and theoretical
hit rates becomes apparent. This is because the stencil calculation consists of relatively regular
memory access patterns. In the evaluation, the stencil calculation is parallelized, as discussed
in Section 1.2.2. Every core issues memory access requests of the z-iteration assigned to each
core. However, a difference in the requests can be distinguished mainly by the tag field of their
addresses. Thus, these requests tend to be indexed to the same set in the set-associative cache,
which results in conflict misses. On the other hand, the skewed cache could avoid conflict misses
since it uses a broader range of an address field including a part of the tag field so that the skewed
cache can distinguish the difference of the z-iteration on the address to determine the set.

As a replacement policy of the skewed cache, the hit rate of LRU achieves almost equal to
the theoretical value. When LRU is applied, the skewed cache can maintain a higher hit rate than
the set-associative cache or a high hit rate equal to the skewed cache with SRRIP. This is because
the skewed cache with LRU is based on the timestamp so that blocks can be ideally replaced.
Although its implementation requires impractical hardware costs, it is possible to eliminate more
conflict misses than SRRIP regardless of the associativity. Note that NRUNRW has a low hit rate
in all cases. This is because all the RUs are reset at each fixed access interval so that an evicted
block can be randomly selected every interval. It causes that the necessary blocks are suffering
from random eviction.

When the number of cores sharing one cache is 16 cores or more, and the associativity is
32-way, the cache hit rate decreases on both SRRIP and LRU. Two reasons can be considered.
The first reason is that the number of sets per way decreases if the associativity is too high.
Therefore, the possibility to select the same set many times becomes high, resulting in increasing
the number of conflict misses. The second reason is due to the implementation matter of the oDisp
hashing functions. In the skewed cache, the oDisp hashing function is implemented, as shown in
Equation (6). When the number of ways is larger than the number of bits of A2, the shifted A2

does not affect the calculation of the index on the larger way numbers than the bitfield length of
A2. Therefore, these cache hit rates could become lower than those of the theoretical value. Note
that the miss rates of SRRIP are slightly lower than those of LRU. When the associativity is very
high, SRRIP meets many replacement candidates with the same RRPVs at once and becomes
closer to a random replacement, which causes the increase in the number of misses.

Figure 10(b) shows the hit ratio of the skewed cache where a hashing function is changed. In
order to discuss the difference among the hashing functions, we use SRRIP for the replacement
policy of the skewed cache and the set-associative cache. From Fig. 10(b), it is observed that both
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Figure 11. Performance comparison of the conventional set-associative cache and the proposed
skewed cache

hashing functions can obtain a high cache hit rate across almost all cases. However, in the case
where the associativity and the number of cores sharing one cache are extremely large, the XOR-
based hashing function decreases the cache hit rate. Two reasons can be considered. The first
reason is that the skewed cache with the XOR-based hashing function sometimes suffers from the
specific access pattern called pathological behavior, as mentioned in Section 2.2.1. It is considered
that, because the memory addresses requested from the vector cores coincidentally meet these
kinds of specific stride pattern, the cache hit rate degradation is observed, specifically in the case
of 16-way cache shared by 16 cores and 32 cores. The second reason is due to the implementation
matter of the XOR-based hashing functions. When the number of ways is larger than the number
of bits of A2 on the XOR-based hashing function, the bit rotation is circulated, and the same
index is calculated again on the larger way numbers. This leads to the cache hit rate degradation.
In contrast, the oDisp can take care of this kind of access patterns. Therefore, it can obtain a
stable high cache hit rate by the oDisp. Note that the set-associative cache with SRRIP suffers
from lowering the cache hit rate due to the same reason of the set-associative cache with LRU in
Fig. 10(a).

3.2.2. Performance

Figure 11 shows the performance comparison of the set-associative cache with the proposed
skewed cache. The set-associative cache is based on LRU, and the skewed cache with oDisp &
SRRIP is the proposed cache that can achieve a high hit rate at a reasonable implementation
cost. In Fig. 11, the vertical axis represents the performance normalized by the case where each
core privately owns a set-associative cache. The horizontal axis shows the number of cores sharing
a cache and the associativity. Figure 11 shows that the proposed cache outperforms the set-
associative cache when the associativity is low. Notably, in the case where 16 cores share a 4-
way cache, the skewed cache obtains a six times higher performance than the set-associative
cache. On the other hand, if there is sufficient associativity, there are no significant differences in
performances between the skewed cache and the set-associative cache. This is because, if there is
sufficient associativity, fewer conflict misses occur in both cases.

In Fig. 11, there are typical cases where one cache shared by 16 cores, and its performance is
higher than that of the case shared by 32 cores, although the cache hit rate in 32 cores is higher
than that in 16 cores. It is due to cache bank conflicts. Since the cache configuration of the many-
core vector processor assumes a multi-banked configuration in this paper, memory access requests
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go to each cache bank according to the memory address. Therefore, when many cores share one
cache, the possibility of accessing the same cache bank is increasing. Additionally, in this cache
configuration, the write buffer size and MSHR per bank are only 16 and 8, respectively. Therefore,
in the case where 32 cores share a cache, their requests are concentrated on some bank due to
bank conflicts, and the shortages of the write buffer or MSHR cause the performance degradation.

Overall, the skewed cache can realize the better performance than the conventional set-
associative cache, especially when the associativity is low. This is because the skewed cache can
successfully eliminate conflict misses. It is clarified that SRRIP can bring almost ideal cache
hit rate to the skewed cache at reasonable implementation costs. Moreover, the oDisp hashing
function avoids performance degradation from conflict misses.

Conclusions
This paper proposes a skewed multi-banked cache for many-core vector processors. The skewed

cache can prevent simultaneously requested blocks from using the same cache set. The data block
is stored for a cache set by using a hashed value of theÂăblock address. This paper discusses
how the most important two features of the skewed cache should be implemented: the hashing
functions and the replacement policies. This paper evaluates three replacement policies, LRU,
NRUNRW, and SRRIP, and two hashing functions, XOR-based and oDisp for the skewed cache.

The evaluation results show that the skewed cache with SRRIP and oDisp can increase the
number of hits by up to 70% and marks the closest results to those of the theoretical upper
bound of the hit rate of the shared cache. From the individual evaluations of hashing functions
and replacement policies, SRRIP can obtain the highest cache hit rate at low hardware cost,
and oDisp can solve the problem of the XOR-based hashing function. The evaluation results also
show that the skewed cache can realize a six times higher performance than the conventional set-
associative cache on the stencil calculation. As future work, the skewed cache should be evaluated
with more various real applications developed for modern vector processors.
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