
Supercomputing
Frontiers

and Innovations
2020, Vol. 7, No. 2

Scope

• Enabling technologies for high performance computing

• Future generation supercomputer architectures

• Extreme-scale concepts beyond conventional practices including exascale

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Distributed operating systems, kernels, supervisors, and virtualization for highly scalable

computing

• Scalable runtime systems software

• Methods and means of supercomputer system management, administration, and monitoring

• Mass storage systems, protocols, and allocation

• Energy and power minimization for very large deployed computers

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Parallel performance and correctness debugging

• Scientific visualization for massive data and computing both external and in situ

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA

• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany
• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• Victor Gergel, University of Nizhni Novgorod, Russia
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Andrei Tchernykh, CICESE Research Center, Mexico
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Yana Kraeva, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia

Contents

Performance Reduction for Automatic Development of Parallel Applications
for Reconfigurable Computer Systems
A.I. Dordopulo, I.I. Levin .4

Long Distance Geographically Distributed InfiniBand Based Computing
K. Niedzielewski, M. Semeniuk, J. Skomial, J. Proficz, P. Sumionka, B. Pliszka, M. Michalewicz24

Potential of I/O Aware Workflows in Climate and Weather
J.M. Kunkel, L.R. Pedro . 35

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties
of Modern Server Processors
J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein . 54

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather
and Climate Applications
C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer . 79

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.

Performance Reduction for Automatic Development

of Parallel Applications for Reconfigurable Computer Systems

Aleksey I. Dordopulo1, Ilya I. Levin2

c© The Authors 2020. This paper is published with open access at SuperFri.org

In the paper, we review a suboptimal methodology of mapping of a task information graph

on the architecture of a reconfigurable computer system. Using performance reduction methods,

we can solve computational problems which need hardware costs exceeding the available hardware

resource. We proved theorems, concerning properties of sequential reductions. In our case, we have

the following types of reduction such as the reduction by number of basic subgraphs, by number

of computing devices, and by data width. On the base of the proved theorems and corollaries,

we developed the methodology of reduction transformations of a task information graph for its

automatic adaptation to the architecture of a reconfigurable computer system. We estimated the

maximum number of transformations, which, according to the suggested methodology, are needed

for balanced reduction of the performance and hardware costs of applications for reconfigurable

computer systems.

Keywords: performance reduction, hardware costs, reconfigurable computer system, parallel

applications development, information graph.

Introduction

Most researchers of parallel computing [1–4] admit that parallel programming is a complex

area. It is necessary to organize and control a large number of processes that asynchronously

run on the nodes of a multiprocessor computer system (MCS). The demanding requirements

are decreasing of the calculation time and increasing of the results accuracy. To fulfill these

requirements, we increase the number of nodes of a multiprocessor computer system, but at the

same time, development of parallel programs becomes more complex.

For a long time, we believed that it is possible to cope with the growing complexity of

parallel program development with the help of automatic parallelization of sequential processor

(procedural) programs. In this case, a parallelizing compiler [1, 2, 5–10] receives an imperative

processor program, reconstructs the natural parallel structure of its initial algorithm, detects its

fragments for concurrent execution (e.g. loop iterations suitable for parallelization), and adds

all necessary instructions. However, the automatic parallelization of sequential programs is a

computationally expensive problem with an extremely large number of variants for analysis.

The parallelizing compiler has to analyze different variants of multiple fragments of the

procedural program. At the same time, it analyses distribution of data among the nodes of

the multiprocessor computer system according to its switching network. These two reasons

complicate automatic parallelization for clusters that are the most widely used multiprocessor

computer systems with distributed memory.

Let us have a cluster computer system, which consists of n nodes, and each node processes its

local part of data. In this case, we describe the data distribution among the nodes using an n-ary

tree. According to the Cayley theorem, we estimate the number of variants of data distribution

as the number of different trees for n vertices, i.e. nn−2. For example, the cluster MCS consists of

64 nodes. So, the number of possible distribution variants is 6462 = 2372. Analysis of such num-

ber of variants on any existing computer system and during any reasonable time is impossible.

1Supercomputers and Neurocomputers Research Center, Taganrog, Russia
2Southern Federal University, Taganrog, Russia

DOI: 10.14529/jsfi200201

4 Supercomputing Frontiers and Innovations

Therefore, the most part of research in this problem domain was devoted to heuristic methods

of search space reduction (e.g. the analysis of information dependencies [1], loop nests and it-

erations [4–6], private and reduction variables [7, 8], canonization, loop unrolling/unwinding,

loop fusion, loop distribution [9, 10], etc.). Formal transformations and heuristic methods, de-

veloped for rejection of inefficient parallel program variants [3], require some recommendations

and instructions given by the programmer; otherwise, they cannot provide efficient automatic

parallelization of any procedural program.

Nowadays, multi-chip reconfigurable computer systems (RCS) [11] with field-programmable

gate arrays (FPGAs) are widely used for solving of computationally expensive problems in

various fields of science and technology. RCSs contain multiple FPGAs of a large logical capacity.

The FPGAs are connected by a spatial switching system into a single computational field.

Within such computational field, we implement calculations as a computing structure [12–14]

and decrease the solution time [15, 16] by one or two orders of magnitude at the considerably

lower (by a factor of 6–8) processing rate. For certain problem domains [17, 18], RCSs are

considerably superior in real performance and power efficiency in contrast with cluster MCSs.

In the paper, we consider a theory which helps to reduce the number of variants parallel

calculations for analysis and further synthesis of a computing structure for an RCS. We represent

a task as an information graph and then, using performance reduction methods and a relatively

small number of steps, we transform it into the form, similar to the architecture of an RCS.

For most applications, it is possible to synthesize computing structures and to increase the task

solution time owing to the performance reduction methods. In this case, the efficiency of the

designed structures is not less than 50 % in comparison with those designed by circuit engineers.

Let us review the structure of the paper. In the first section we describe the forms of parallel

calculations, and the task information graph used for structural and procedural calculations on

the RCS. In the second section, we consider performance reduction as a way of implementing of

the task information graph on the RCS with the lack of its hardware resource. In the third section,

we represent the performance reduction methods for decreasing of hardware costs, required for

implementing of the information graph, and prove theorems on the applicability of reduction

transformations. In the fourth section, we represent the performance reduction principles for

mapping of the task information graph on the RCS architecture. Besides, here we estimate

the number of computing structures that are to be analysed for adaptation of the initial task

information graph to the architecture and hardware resource of the RCS. In the fifth section, we

describe the rules, according to which we use the reduction transformations in an experiment

for verification of our performance reduction methods. The rules were used in tools for parallel

application development. In the conclusion we generalize our results and discuss the directions

of our future research.

1. Forms of Calculations

According to the form of calculations, we can reveal the natural parallelism of the task [1, 19].

As a result, it simplifies the task solution and scaling. Usually, parallel calculations are repre-

sented in two most common forms – an algorithmic diagram (a flowchart) and a graph [1, 19].

According to the algorithmic diagram [1], calculations are a control transfer among computing

devices. Besides, the algorithmic diagram defines the order (or the sequence) of operations per-

formed by a computing device (or devices) using processor instructions. Generally, the algorith-

mic diagram is the task flowchart or pseudocode, but sometimes it is a control flow graph [1, 5, 8]

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 5

When we represent calculations as a graph, we describe a task or its fragment in an abso-

lutely parallel form, i.e. as an acyclic oriented graph with input, output, and operation vertices

connected by arcs according to the data processing order (but not according to the control

transfer). There are various forms of graph models for computational tasks such as algorithm

graphs [1], information graphs [1, 19], dependency and influence graphs, and lattice graphs [1].

Arcs of a graph show, how arguments of operation vertices depend on results of calculations,

performed by other operation vertices, or arguments, received from input vertices. This is an

information connection (or information dependence) that describes relations between two ver-

tices of a graph when the output argument of each vertex is the input of another one. If we

speak about multiprocessor architectures [1], then information dependence between two oper-

ators means addressing to the same memory cell during their execution. If we speak about

dataflow architectures, then it means addressing to one and the same element of a flow.

The most common forms are an algorithm graph [1] and an information graph [1, 19].

The algorithm graph describes a computational task as a set of simple operations (addition,

multiplication, division, etc.) distributed into levels. Although, it is possible to use complex

composite operations (macro operations) as level vertices [1]. All vertices of the algorithm graph,

represented in the canonical parallel form, are distributed into numbered subsets, which form

levels. Here, the first vertex of each arc belongs to the level, whose number is less than the

number of the level, which contains the last vertex. Besides, arcs cannot connect vertices which

belong to the same level.

The theory of structural and procedural calculations [19] deals with a task information graph

(TIG). In contrast to the parallel forms of an algorithm graph, the task information graph is a

combination of layers and iterations. A layer consists of isomorphic, functionally complete, and

information independent subgraphs of a task instead of operation vertices. Iterations describe

dependencies among processing data over time without considering latency. Subgraphs from one

and the same layer are information independent, i.e. not connected by arcs. Subgraphs, which

belong to different iterations, depend on processing data. The number of isomorphic subgraphs

in a layer is similar to the level width of the canonical parallel form, and the number of iterations

is similar to its height, if we consider isomorphic subgraphs as macro-operations. In comparison

with an algorithm graph, a TIG describes a task at a higher level of hierarchy. In this case,

we use separate operations, but subgraphs which consist of several operations. The information

graph describes the absolutely parallel form of the task. The task parameters define the number

of iterations. Therefore, the TIG has no dataflows.

A structural implementation of a TIG on a computer system provides the highest perfor-

mance. In this case, the number of devices is equal to the number of operation vertices (or

operations) of a solving task, and the number of input/output arcs is equal to the number of

external memory channels. For the majority of applications, such structural implementation of a

TIG is impossible, because the number of devices and channels in any RCS is limited. Therefore,

if we map a TIG on a real RCS with its limited hardware resource, we transform this TIG into

a computing structure with the lower performance and lower requirements for the number of

channels, the number of concurrently functioning devices, and/or the data width in comparison

with the structural implementation of this TIG.

A TIG (or its subgraph) describes the logical structure of calculations as vertices and arcs.

To implement the TIG on an RCS means to create its computing structure, which consists

of hardware-programmed devices with timing characteristics such as latency, data processing

Performance Reduction for Automatic Development of Parallel Applications for...

6 Supercomputing Frontiers and Innovations

Figure 1. Transformation of a TIG into the computational structure via layer- and iteration-

scalable form

interval, clock rate, etc. We assume, that the term “implementation of a subgraph on a computer

system” means a computing structure which consists of hardware-programmed devices with

timing characteristics (or so-called timing component).

Figure 1 shows the transformation a TIG for its structural implementation on an RCS.

To transform the absolutely parallel form of a TIG into the layer- and iteration-scalable

form, we obtain the functionally regular form [19] with functions of layer mapping between

iterations Φi, and functions of isomorphic subgraph ordering in a layer Fij :

G = Φ(Fij(gij)), (1)

where gij is a basic subgraph (a pipeline computing structure); Fij is an ordering function

for information-independent subgraphs in a computational layer; Φi is a mapping function of

information-dependent layers. The composition of functions Fij and Φi depends on an available

RCS hardware resource ARCS .

Figure 2 shows the task information graph, which consists of information-dependent

layers S1, ..., SN . Each layer consists of isomorphic information-independent subgraphs

G1,1, ..., G1,M , ...GN,M .

Owing to such form, we easily scale the task computing structure. If we change the number of

basic subgraphs gij in the composition of the functions Fij and Φi, then we scale the computing

structure both by layers and by iterations. If we increase the number of hardware-programmed

information-independent subgraphs within the layer, then we scale the computing structure by

layers. If we increase the number of hardware-programmed subgraphs with information depen-

dence among iterations, then we scale the computing structure by iterations.

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 7

Figure 2. The information graph, its layers Fij and iterations Φi

A basic subgraph gij is a minimal indivisible element of a task. When its computing structure

is mapped on an RCS, it is completed with functions of reading, writing, and recursion, derived

from Fij and Φi functions. The obtained indivisible program structure is called a cadr. For all

obtained cadrs we specify an order relation, which, together with the von-Neumann determinism,

define the execution sequence of cadrs according to their control program.

A basic subgraph is a functionally completed fragment of a TIG. It consists of subgraphs

of one or several subtasks. It is possible to map any basic subgraph on an available RCS hard-

ware resource. Completed with the synthesized read/write functions, a basic subgraph provides

solution of a task. Within the theory of structural and procedural calculations, basic subgraphs

are selected according to available hardware resource. In this case, selection criteria are not

formalized; they are determined by the structure of a task, by available resource, and by the

developers experience. To select a basic subgraph, the developer analyzes the TIG and looks for

frequently used fragments of the TIG which are typical for a certain problem area. Here are the

examples of such frequently used fragments:

• addition, multiplication, and division of matrix elements (linear algebra);

• calculations in mesh points (mathematical physics);

• round transformations with logical “AND”, “OR”, “exclusive OR”, and fixed-size data

block offset (symbolic processing);

• the discrete fast Fourier transform operation (digital image and signal processing).

Usually, these standard fragments form basic subgraphs of various tasks. We can select basic

subgraphs in procedural programs, using descriptions of loops, because fragments with cyclic

processing correspond to functional subgraphs, i.e. to calculations with specified scaling functions

by layers Fij and by iterations Φi. Here, the operators of a loop body are a basic subgraph.

Information dependencies among operators, and cycle description determine the functions of

layers Fij and by iterations Φi. As a rule, any basic subgraph consists of multiple functional

subgraphs, and is a broader concept. However, for some tasks a functional subgraph and a basic

one are the same.

Performance Reduction for Automatic Development of Parallel Applications for...

8 Supercomputing Frontiers and Innovations

2. Mapping of Information Graphs on Reconfigurable

Computer Systems

The available hardware resource ARCS defines not only mapping functions Fij and Φi, but

also the calculations of the basic subgraph. That is why, we can represent (1) as

G(ARCS) = Φpar
ARCS◦ Φpipe(Fpar

ARCS◦ Fpipe(gstr
ARCS◦ gproc)), (2)

where “par” and “pipe” mean parallel and pipeline execution, respectively; gstr is the struc-

tural form of the basic subgraph; gproc is the procedural form of the basic subgraph;
ARCS◦ is

composition of scaling functions, which depends on the available hardware resource ARCS .

Using the dependence between the basic subgraph and the available hardware resource (2),

we can describe not only extreme variants of completely structural (gstr) and completely proce-

dural (gproc) calculations, but other intermediate ones. However, we cannot obtain the structural

form gstr for some tasks due to hardware resource limitations, and the procedural form cannot

provide results of adequate accuracy in reasonable time. The examples of such tasks are:

• molecular simulation (docking of inhibitors);

• synthesis of new chemical compounds;

• 3D simulation of spatial physical processes (e.g. tomography of the Earth surface);

• high-resolution simulation of physical processes;

• symbolic processing, etc.

Tasks with variable data flow density [20] belong to this type also. For such tasks, the

amount of processed data in various TIG subtasks may differ by 2–4 decimal places, and may

depend on input data. For such tasks, basic subgraphs from different layers are significantly non

isomorphic. If we try to transform them into isomorphic subgraphs, using the union operation,

then we need an inaccessible hardware resource for their structural (or structural-procedural)

variant. Hence, we cannot solve these tasks using structural, structural-procedural, or procedural

calculations.

If we want to solve these tasks during some reasonable time and using some available hard-

ware resource, it is necessary to reduce the hardware costs for gstr, not using the completely

procedural variant gproc, in order to create the basic subgraph within an RCS, and to provide the

specified task performance. Here, the task performance is lower than the one for the structural

variant gstr, but higher than the one for the procedural variant gproc.

Therefore, we consider a basic subgraph as a scalable, not an atomic object of a task. If we

reduce the performance and hardware costs, then it is possible to fulfill all requirements of the

task and solve it.

For the first time [20], it was suggested to use performance reduction methods for decreasing

of hardware costs in case, when RCS hardware resource is insufficient for even one basic sub-

graph. The main effect of performance reduction is a linear increase of the task solution time,

proportional to the reduction coefficient. The main reduction transformations, which provided

balanced scaling of molecular docking tasks in [20], are the following:

• RN – the reduction by number of basic subgraphs. It decreases the number of computing

structures, simultaneously mapped on RCS.

• ROp – the reduction by number of computing devices. It decreases the number of concur-

rently performed operations of the basic subgraph. Similar operations and data of similar

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 9

types are combined in one device. Besides, new connections for operands synchronizations

are synthesized.

• Rρ – the reduction by data width. It decreases the number of concurrently processed digits.

Absolutely parallel processing of digits in each operand is transformed in partly parallel

or sequential processing.

• RS – the reduction by data processing interval. It increases the data processing/supply in-

terval; the hardware costs remain unchanged. This type of reduction is used for matching of

data flow with different density among different subtasks or information graph fragments.

• RFreq – the reduction by clock rate. It decreases the clock rate of a computing structure,

which implements some information graph fragment, and matches data flows with different

density.

In [20], all reduction transformations were used to reduce hardware costs for solution of

some task. However, we can consider the methods of performance reduction as transformations,

which provide scaling of a TIG as a computing structure for further mapping on RCS architec-

ture. Moreover, we often use the reduction transformations to get a computing structure from

the absolutely parallel form of a task. As a result, the performance of the obtained computing

structure is lower, but the structure requires less number of channels and simultaneously oper-

ating devices, and/or less data width. That is why we may consider the computing structure of

a TIG, mapped on RCS architecture, as performance reduction. Of course, this is true only in

case, when RCS hardware resource is insufficient for task solution.

We efficiently use the methods of performance and hardware costs reduction for information

graph mapping on RCS architectures. These methods provide automatic (without the program-

mers instructions) adaptation of applications to various RCS architectures, and solve the problem

of application portability.

3. Methods of Performance and Hardware Costs Reduction

The task solution performance is a number of computing operations performed per time

unit during execution of an application. Let us have a computing structure F with NF basic

subgraphs. Each basic subgraph contains OpF computing devices, which process data of a ρF

width. The total number NCF of computing operations, required for processing of a data flow

with a length N , is

NCF = N ·NF ·OpF · ρF . (3)

The task solution time for a computing device with a clock period τ = 1/Freq and with an

interval S is t = N · S · τ . Here, the data processing interval is measured in cycles. Then, the

performance of the computing structure F is defined as

PerfF =
NCF
t

=
N ·NF ·OpF · ρF

N · S · τ =
NF ·OpF · ρF

S · τ =
NF ·OpF · ρF · Freq

S
. (4)

If we carry out the performance reduction with the integer reduction coefficient R, then the

performance (2) is reduced by R times:

PerfF (R) =
PerfF
R

=
NF ·OpF · ρF
S · τ ·R =

NF ·OpF · ρF · Freq
S ·R . (5)

The balance of a result computing structure is one of the main and the most important

distinction of the performance reduction methods. It means that data flows and hardware costs

Performance Reduction for Automatic Development of Parallel Applications for...

10 Supercomputing Frontiers and Innovations

for their switching and synchronization are multiply scaled. Concerning (5), it means that the

cofactors of the numerator are reduced by the reduction coefficient R (or by its prime cofactors).

According to (5), we can reduce the performance of a task computing structure by:

• decreasing of the number NF of hardware-programmed basic subgraphs in proportion to

R (or its prime cofactors). For each mapped BS, the length N of its processed data flow

increases. This method is traditional for scalable calculations, performed on RCS and

clusters;

• reducing of the number OpF of computing devices in the task basic subgraph [20] in

proportion to R(or its prime cofactors). The number of operations, performed by each

computing device, and the number of data processing cycles increase. This method is used

for RCS;

• decreasing of the processed data width ρF in proportion to R (or its prime cofactors).

The method is used for fixed-point data, and used with restrictions for floating-point data.

The number of processing cycles multiply increases. At the same time, the number of data

processing channels multiply decreases. This reduction is used in case of lack of input data

channels (the most typical case for RCS);

• increasing of the data processing interval S;

• decreasing of the clock rate Freq [20].

In the first, second, and third cases, we reduce both the performance and the hardware

costs for the computing structure F , if the switching and synchronization costs do not exceed

the reduced resources. If we use the two last methods, we only reduce the performance of a task

or its fragment. In this case, the hardware costs remain unchanged. We can use these methods

for matching of data processing rates in different task fragments.

So, we reduce the hardware costs and the number of RCS channels, needed for the computing

structure F , only if the hardware costs for switching and synchronization do not exceed the

reduced resources.

The performance reduction methods without hardware costs reduction are the following:

• the reduction by clock rate;

• the reduction by data processing interval.

A multiple integer, unified for all task fragments automatic performance reduction (5) pro-

vides a balanced computing structure. Thus, all task fragments are to be reduced not only with

the same reduction coefficient R, but the types and coefficients of performed reductions are to

be the same. However, for real tasks such requirement is almost impossible.

If we reduce the performance in order to decrease the hardware costs, then all types of

reduction transformations are performed in a balanced manner. Here, the reduction coefficient

is a positive integer not less than unity. Owing to the reduced computing structure, we can solve

the task on lesser hardware resource with longer solution time (in proportion to the reduction

coefficient).

In order to describe all reductions of the modifying computing structure, we suggest to use

an operation, which rounds rational numbers down to unity [21]. For natural numbers a ≥ 1

and b ≥ 1, the operation is defined as

⌊
a

b

⌋

1

=

a div b, a > b,

1, a ≤ b,
(6)

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 11

where div is integer division; b c1 is similar to the standard floor notation b c [21], and it

indicates that the result of the “floor” operation is bounded below by unity.

The result of the floor operation b c1 corresponds to the physical meaning of the param-

eters that are being reduced, because the number of basic subgraphs, computing devices, and

processed digits cannot be less than unity after the reduction. The traditional “floor” operation

b c has a useful property given in [21]. For the real numbers m, x and the natural number n

⌊⌊ x
m

⌋

n

⌋
=

⌊
x

m · n

⌋
. (7)

Since the set of natural numbers is a subset of the set of real numbers, and function (4) is

monotonic and continuous, equality (7) is valid for the proposed function, too. Taking into

account the commutative law, we obtain:

⌊⌊ x
m

⌋
1

n

⌋

1

=

⌊⌊x
n

⌋
1

m

⌋

1

=

⌊
x

m · n

⌋

1

. (8)

Taking into account (8), we prove the following important theorem, which represents the

reduction coefficient as a production of coefficients for the sequential reduction transformation.

We denote sequential reduction by ×.

For example, the sequential reductions by number of basic subgraphs and by number of

computing devices we represent as RTn ×RTOp = Rn·m.

Theorem 1.

Sequential T-type reductions RTmand RTn with natural coefficients m > 1 and n > 1 are

equivalent to the reduction RTn·m of the same type with a coefficient (m · n) > 1:

RTn ×RTm = RTn·m. (9)

Proof. Let F be a task fragment which contains NF basic subgraphs. Each basic subgraph

contains OpF computing devices and processes data with a width ρF . The total amount of

calculations NCF in F is

NCF = NF ·OpF · ρF . (10)

Since reduction transformations are independent, then we prove (9) for each type of reduc-

tion.

Let us prove condition (9) for the reduction RNn by the number of basic subgraphs with the

reduction coefficient n. The number of basic subgraphs in F is reduced to bNF

n c1, and the total

amount of calculations NCNn is:

NCNn =

⌊
NF

n

⌋

1

·OpF · ρF . (11)

The sequential reduction RNm of the same fragment provides m-fold decreasing of its number

of basic subgraphs. According to (8), we transform (11) and obtain

NCN×Nn×m =

⌊bNF

n c1
m

⌋

1

·OpF · ρF =

⌊
NF

n ·m

⌋

1

·OpF · ρF . (12)

The total amount of calculations (12), which we obtain as results of the sequential reductions

by number of basic subgraphs with the coefficients n and m, and as results of the reduction RNn·m

Performance Reduction for Automatic Development of Parallel Applications for...

12 Supercomputing Frontiers and Innovations

by number of basic subgraphs with n ·m instead of n in (11), have the same value. This fact

proves Theorem 1. In a similar way, we prove (9) for the reduction by number of computing

devices, and for the reduction by data width. As a result, we prove Theorem 1 in general. �
Let us formulate several corollaries for application of reduction transformations.

Corollary 1.1 of Theorem 1. Using factorization of performance reduction coefficients,

we decrease the number of steps, required for selection of reasonable coefficients for sequential

reductions of the same or different types. Besides, for the specified reduction coefficient we choose

the best suited type of reduction transformations according to the parameters of a solving task.

If the performance reduction coefficient R is a prime number, which exceeds 2, and if we cannot

obtain it by a single reduction, then it is reasonable to perform not an R-fold, but an (R + 1)-

fold reduction. In this case, we obtain fully R times lower hardware costs. Since (R + 1) is

an even composite number, we sequentially perform reduction transformations with reduction

coefficients taken from the prime factorization of (R+ 1).

Corollary 1.2 of Theorem 1. There is no need to return to the initial basic subgraph,

when the reduction coefficient multiply increases during sequential reduction of one and the same.

If the result of a reduction transformation is a computing structure, which requires additional

multiple (not less than twofold) decreasing of hardware costs, and its reduction type permits

multiple increasing of its coefficient, then, according to Theorem 1, sequential reduction with no

return to the initial basic subgraph lessen the number of steps to get a final reduced structure.

According to Theorem 1, Corollaries 1.1 and 1.2, the total coefficient of sequential reductions

equals to a product, but not to an algebraic sum of reduction coefficients. Therefore, it is

impossible to get a reduced computing structure with a coefficient from a structure with a

coefficient (n + 1) using sequential reductions of any type. Let us prove this statement (or

Theorem 2) more strictly for a generalized case with a reduction coefficient (n+ x).

Theorem 2.

In the general case, for a basic subgraph reduced with a coefficient n, we cannot obtain a

computing structure with a reduction coefficient (n+ x) for a prescribed x ≥ 1, using sequential

reductions of a type T with a natural coefficient k > 1:

RT1n ×RT2k 6= RTn+x. (13)

Proof. According to Theorem 1, it is possible to fulfil (13) for reductions of the same type

T only if

n · k = n+ x (14)

is valid.

Then, we transform (14) and obtain

k = 1 +
x

n
. (15)

According to Theorem 2, the numbers n, k and x are positive integers. So, we solve (15) for

k only when x is integrally divided by n, but not ∀x ≥ 1. This fact proves Theorem 2.

If we perform reductions of different types, then the similar computing structures from the

left and right sides of (13) have the same total amount of operations

NCT1×T2n×k = NCTn+k. (16)

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 13

Therefore, ⌊
NC

n · x

⌋

1

=

⌊
NC

n+ x

⌋

1

, (17)

which requires

n · k ≥ n+ x and n+ x ≥ n · k (18)

to be fulfilled.

Both conditions are true only if

n · k = n+ x. (19)

So,

k = 1 +
x

n
. (20)

Under hypothesis of Theorem 2, n, k, and x are positive integers. Hence, the solution of (20)

for k is possible in the natural domain only when x is integrally divisible by n, but not when

∀x ≥ 1. This conclusion leads to contradiction and, as a result, proves Theorem 2. �
Using Theorem 2, we formulate a corollary which is important for application of a sequence

of reduction transformations.

Corollary 2.1 of Theorem 2. For a reduced structure, it is impossible to increase the

reduction coefficient by an arbitrary value, performing sequential reductions of any types. Hence,

in general case, if additional reduction (of hardware costs) is needed, we return to the initial

basic subgraph and perform reduction transformations again with a new (increased) reduction

coefficient R. As a result, we need more steps to obtain the reduced computing structure.

Let us analyse, how a sequence of reduction transformations of various types influences on

a final computing structure.

Theorem 3.

The superposition of reductions of different types (e.g. a reduction T1 with a coefficient n,

and a reduction T2 with a coefficient m) is commutative. Therefore, if we change the order

of reductions of different types for a task fragment, then the result information graph of the

fragment remains unchanged:

RT1n ×RT2m = RT2m ×RT1n ,

where T1 and T2 are the types of reduction transformations; n and m are the reduction coeffi-

cients.

Proof. Let us prove commutativity of sequential reductions. The first reduction is performed

by number of basic subgraphs, and the second one – by number of computing devices:

RNn ×ROpm = ROpm ×RNn . (21)

After the reduction RNn , which is performed by number of basic subgraphs and has the

reduction coefficient n, the total amount of calculations NCNn over binary digit bits is

NCNn =

⌊
NF

n

⌋

1

·OpF · ρF . (22)

Since the number of basic subgraphs and the number of computing devices in each basic

subgraph are independent values, then the sequential reduction ROpm by number of computing

Performance Reduction for Automatic Development of Parallel Applications for...

14 Supercomputing Frontiers and Innovations

devices with the coefficient m decreases only the number of devices, and the total amount of

calculations over binary digit bits is

NCN×Opn×m =

⌊
NF

n

⌋

1

·
⌊
OpF
m

⌋

1

· ρF . (23)

For the right side of (21), the sequential reductions ROpm and RNn lead to the same total

amount of calculations over binary digit bits:

NCOp×Nm×n =

⌊
NF

n

⌋

1

·
⌊
OpF
m

⌋

1

· ρF . (24)

We prove commutativity for all other possible combinations of sequential reductions in the

same way. As a result, this fact proves Theorem 3. �
Using Theorem 3, we define a corollary for estimation of the number of reduction steps.

Corollary 3.1 of Theorem 3. If the order of reduction transformations is changed, it is

not necessary to return to the initial basic subgraph in order to decrease the number of steps.

4. Performance Reduction Methods for Information Graphs

Mapping on Reconfigurable Architectures

Taking into account the proved theorems and corollaries, let us formulate the main rules

information graph adaptation to RCS architectures.

1) To decrease the number of steps of reduction transformations, it is reasonable to choose

coefficients of each type of reduction from the prime factorization of the reduction coefficient.

2) If the number of basic subgraphs in an information graph is more than 1, then it is

reasonable to perform the reduction by number of basic subgraphs as the first step of reduction

transformations.

In this case, we linearly decrease the required hardware resource such as the number of

FPGA logic cells, and the number of channels for data parallelization.

3) If we perform the reduction by number of computing devices, and by data width to decrease

the number of steps of reduction transformations, it is reasonable to perform reductions of each

type until the value, specified by reduction criteria, is reached. After that, we perform reduction

of another type. Here, the value is chosen according to the cofactors of the reduction coefficient

of an information graph.

In this case, we reduce additional overhead of switching hardware.

Owing to the performance reduction methods, which we use for information graphs mapping

on RCS architectures, it is possible to divide the set of parallelization variants into several classes

that consist of isomorphic computing structures. As a result, we have few variants for analysis.

Let us estimate the number of steps of reduction transformations, which we need to adapt

an information graph to a reconfigurable architecture. We consider the most general case, when

it is necessary to perform all types of reduction transformations (by number of basic subgraphs,

by number of computing devices, and by data width) for reduction of hardware costs.

To define the initial value of a performance reduction coefficient R of a computing structure,

we use its approximate value the coefficient of necessary hardware costs reduction RT , defined

as a proportion of the hardware resource, needed for hardware-programmed information graph,

to the available RCS resource ARCS . The hardware resource AT for hardware-programmed

information graph is equal to the sum of hardware costs of all task subgraphs for each architecture

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 15

component of an FPGA (the number of Look-UP Tables (LUTs), Memory LUTs (MLUTs), Flip-

Flops (FFs), the number of Digital signal processor blocks (DSPs) and Block RAM (BRAMs)).

For an RCS we use the parameters of FPGA chips as follows:

AT = {ALUTT , AMLUT
T , AFFT , ADSPT , ABRAMT },

ARCS = {ALUTRCS , A
MLUT
RCS , AFFRCS , A

DSP
RCS , A

BRAM
RCS }. (25)

A hardware costs reduction coefficient for each resource is a proportion of the hardware

costs, needed for task solution, to the available resource. We select the task hardware costs

reduction coefficient as the maximum value among the calculated values:

RT = Max(
ALUTT

ALUTRCS

,
AMLUT
T

AMLUT
RCS

,
AFFT
AFFRCS

,
ADSPT

ADSPRCS

,
ABRAMT

ABRAMRCS

). (26)

The initial value of the performance reduction coefficient R0 is equal to the coefficient RT ,

rounded up to the nearest integer: R0 = dRT e.
For linear and iterative computing structures, used in tasks of symbolic processing and linear

algebra, respectively, the hardware costs reduction coefficient RT and the performance reduction

coefficient R0 can be the same. In most cases, it turns out that for performance reduction with a

coefficient, which is equal to the hardware costs reduction coefficient, it is necessary to increase

the performance reduction coefficient even more, due to unforeseen switching costs. Since the

overall reduction coefficient is nonadditive for sequential reduction (according to Theorem 2),

then it is necessary to increment R0 by 1, and to perform reduction with a new coefficient.

Performance reduction is carried out for the initial value of the performance reduction coeffi-

cient R0 > 1, which, according to the fundamental theorem of arithmetic, and to Corollaries 1.1

and 3.1, is a product of prime cofactors:

R0 =
∏

i

r0i. (27)

To perform reduction transformations, taking into account the task parameters, and the

prime factorization of the reduction coefficient R0, we represent it as a product of three coeffi-

cients of reduction transformations:

R0 = RN0 ·ROp0 ·Rρ0. (28)

If R0 is a prime number, we increment it by 1 according to Corollary 1.1.

Since in our case all reductions are performed, then all reduction coefficients RN0 (by number

of basic subgraphs), ROp0 (by number of computing devices) and Rρ0(by data width) exceed unity.

In the first step, it is reasonable to perform the performance reduction by number of basic

subgraphs with the coefficient RN0 . In the second step, we perform the reduction by number of

computing devices with the coefficient ROp0 . The extreme case of subgraph reduction by number

of computing devices means sequential execution of its operations as gproc (2) in one device

(a processor). If the coefficient ROp0 is less than the number of devices in a subgraph, then,

according to the type and number of used operations, several variants of computing structures

are possible (with the different latency time and data supply interval). The reduced computing

structure must provide data equivalency of results. Therefore, each of the considered variants

contains devices that perform the operations of the basic subgraph, in order to perform all its

operations within the reduced computing structure.

Performance Reduction for Automatic Development of Parallel Applications for...

16 Supercomputing Frontiers and Innovations

Let us consider reduction by number of devices for a basic operation of the fast Fourier

transform with calculation of coefficients. Its information graph contains 16 operations such as

8 multipliers, 4 adders, and 4 subtractors (see Fig. 3a). Taking into account, that hardware-

programmed addition and subtraction are identical, we claim that 8 multipliers and 8 adders

are enough for the hardware-programmed information graph.

In the case of reduction by number of devices for a basic operation of the fast Fourier

transform it is possible to suggest not less than 5 different variants called m-subgraphs. Each

m-subgraph is characterized by its own data processing interval and hardware costs:

1. An m-subgraph µ1 (minimal, Fig. 3d) contains not more than one device for each type of

the operations of the subgraph. For our example, µ1 contains 2 devices – a multiplier and

an adder.

2. An m-subgraph µ2 (multiple) represents a multiple reducing of the number of devices in

the subgraph, and is similar to factoring out. Several variants of µ2 are possible, such as

8 devices (4 multipliers, 4 adders, Fig. 3b), 4 devices (2 multipliers, 2 adders, Fig. 3c), and

2 devices (1 multiplier, 1 adder, Fig. 3d).

3. An m-subgraph µ3 contains all devices from a layer with the maximum total number of

operations. If it is necessary, the set of operations is complemented with devices to keep

data equivalency. In this case, the layer with the maximum total number of operations is

involved entirely, and it is executed during one clock cycle. For our example, µ3 contains

8 devices from the first layer (4 multipliers, 4 adders, Fig. 3b).

4. An m-subgraph µ4 is formed by a layer with the maximum number of operation types. If

it is necessary, the layer is complemented with devices to keep data equivalency. For our

example, µ4 is similar to µ3. It contains 8 devices from the first layer (4 multipliers, 4 adders,

Fig. 3b).

5. An m-subgraph µ5 (the improved minimal one) is the minimal µ1 with one supplementary

device that performs the most repeated operation of a basic subgraph. For some subgraphs,

it provides approximately twofold decrease in the data processing interval for the reduced

computing structure. For our example, µ5 contains 3 devices (2 multipliers, 1 adder).

We formed the list of m-subgraphs on the base of tasks from such problem domains as digital

signal processing, symbolic processing, linear algebra, and molecular docking. It is possible to

add to the list some new strategies of m-subgraphs synthesis for tasks from other problem

domains. However, the total number of possible strategies hardly ever exceeds 10, because the

number of problem domains of RCS application is limited. Here, µ1, µ2 and µ5 are the most

interesting m-subgraphs. The m-subgraph µ1 is the most common variant of basic subgraphs

from various problem domains; µ2 is the most acceptable for scaling of computing structures,

but not always suitable due to the task structure; µ5 is the most time-optimal, if hardware

resource is sufficient for additional hardware-programmed device.

After the reduction by devices, in the third step of transformations, the reduction by data

width with the coefficient Rρ0 is performed for each synthesized m-subgraph. Here, the number

of possible variants of reduction by data width for possible data types does not exceed 2:

• For the reduction by width of logical and integer data (fixed-point data), the decrease in

hardware costs is linearly proportional to the reduction coefficient. Therefore, the reduction

is performed with the specified coefficient that does not exceed the width of processing

data.

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 17

(a) The information graph

of hardware-programmed fast Fourier

transform basic operation

(b) The computational structure

of m-subgraphs µ2-8 devices, µ3 and µ4

(c) The computational structure

of m-subgraphs µ2-4 devices, µ3 and µ4

(d) The computational structure

of m-subgraphs µ1 and µ2-2 devices

Figure 3. The information graph of hardware-programmed fast Fourier transform basic operation

and m-subgraphs µ1, µ2, µ3, µ4, µ5

• If floating-point data are reduced, then it is reasonable to perform 2-fold reduction by data

width for 32-digit data, and 2- and 4-fold reduction by data width – for 64-digit data. It

is caused by the exponential growth of the overhead expenses for processing of a mantissa

and an order of magnitude for other reduction coefficients.

Thus, after reduction by data width, the number of m-subgraph variants is equal to 5 · 2 =

10. For each variant, it is necessary to analyze the required hardware resource, and the data

processing interval, which defines the task solution time. Sometimes, when the hardware costs AT

of the reduced task structure exceed the available RCS hardware resource ARCS , we perform the

additional or fourth step of transformations. Such situation occurs due to additional switching

costs, required for the reduction by number of computing devices and for the reduction by

floating-point data width, because hardware costs are decreasing non-linearly. For the reduction

by number of computing devices, we cannot always calculate the reduction coefficient ROp0 before

the transformations. Therefore, the coefficients ROp0 and Rρ0 may demand correction after the

reduction.

After all reduction transformations, we evaluate the achieved reducing of hardware costs

for task solution. Two variants are possible. We map the reduced computing structure on the

available RCS hardware resource, or we additionally reduce hardware costs due to growth of ex-

penses. In the first case, we perform the reduction transformations to map the information graph

on the RCS architecture, and it takes 3 steps with analysis of 10 variants. In the second case, we

return to the initial information graph (according to Theorem 2), and perform the performance

Performance Reduction for Automatic Development of Parallel Applications for...

18 Supercomputing Frontiers and Innovations

reduction (steps 1–3) with the increased coefficient R1 = R0 + 1. Or, if it is possible, we perform

multiple reductions by one parameter. Obviously, in the second case, the number of analysed

variants is duplicated and equal to 20. Even if the task structure consists of several fragments,

then the number of variants for justification performed by additional reduction transformations,

and by methods of data processing, is few. Here, the additional reduction transformations consist

in variation of the clock rate and data processing interval, and data processing can be parallel,

pipelined, or can be represented as a macropipeline or a nested pipeline. Practically, the number

of different fragments in the most part of tasks does not exceed 3–5; hence, the total number of

variants of reduction transformations for such tasks hardly ever exceeds 60.

When a sequential program for a multiprocessor computer system with distributed mem-

ory is parallelized automatically, the compiler evenly distributes all calculations among the

nodes without any splitting into several subtasks. It is necessary to analyse data distribution

into nodes to avoid data nonlocality that may occur during automatic distribution of calcula-

tions disregarding dependencies (Read-After-Write, Write-After-Read, Write-After-Write, Read-

After-Read) [21, 22] of the source program. So, the parallelizing compiler selects one parameter

the parallelizing coefficient according to the number of used multiprocessor computer system

nodes, the data spatial locality criterion, and the dependencies of the source program.

Reduction of performance and hardware costs of a RCS is performed with a reduction co-

efficient, which is the same for all subtasks. As a result, the reduced computing structure is

balanced. For an RCS, it is possible to reduce the performance by such parameters as the num-

ber of devices, data width, and interval of processing data, unavailable for processor computer

systems. For an RCS, in contrast to processor architectures, the overall reduction coefficient for

each subtask is represented as a product of reduction coefficients (by number of basic subgraphs,

devices, data width and interval). Owing to the fact, that we use a specific combination of re-

duction coefficients for each subtask, it is possible to take into account parameters of subtasks,

choosing the most rational coefficients of reduction transformations, and to decrease the variety

of reduced computing structures. Using such approach, we considerably decrease both the num-

ber of analyzed variants, and the time of information graph adaptation to the architecture and

configuration of the given RCS.

5. Order of Reduction Transformations For Synthesis

of Computing Structures

We created software tools for application development [24], based on our principles of auto-

matic mapping of information graphs on RCS architectures, and on our performance reduction

methods. With the help of the software, any sequential C-program is transformed into the

absolutely-parallel information graph form. After that, the information dependencies among the

task subgraphs are analyzed, and performance reduction of the subgraphs is performed for fur-

ther adaptation to the RCS architecture, selected by the user. The methodology of all these

transformations is the topic for another paper, and it transcends the scope of this work. There-

fore, let us represent the basic rules, which we use for reduction of tasks, containing several

subgraphs. To justify the speed of data processing in all subtasks of the information graph, and

to select the most rational form of calculations for each subgraph, taking into account computing

structures of other subgraphs and the whole task, we use the following order of reduction for

computing structure synthesis:

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 19

1. Scaling and performance reduction of the information graph starts from the biggest sub-

graph. Here, “the biggest subgraph” means the subgraph with the highest hardware costs.

The number of memory channels, and the data flow density of the biggest subgraph define

all these parameters for all the rest subgraphs.

2. For basic subgraphs partition during analysis of its hardware resource, it is reasonable to

compare it with the minimum resource, which is definitely implementable in one FPGA

chip. In this case, there is no need to scale the subgraph with the help of the methods

of reduction by number of devices, and by data width. If the given minimum resource is

sufficient for the subgraph, then the subgraph is hardware-programmed without scaling.

3. The first transformation is decreasing of the number of memory channels. It is performed

with the help of the reduction by number of subgraphs for data independent subgraphs.

Then, according to the reduction coefficient, all reviewed reduction transformations are per-

formed. Here, we take into account that the order and priority of reduction transformations

for different types of tasks can be different.

4. For subgraphs with low weights, it is reasonable to perform hardware implementation. Here,

a low weight is not more than a-priori specified value, for example, 5 % from the total

hardware costs of the task. If it is necessary to reach the specified reduction coefficient, we

use the reduction by data processing interval. Such subgraphs have no considerable influence

on exceeding of task hardware resource. Besides, the reduction by number of devices, and

by data width can both complicate hardware-programming, and increase hardware costs for

switching structure, and, as a result, lead to additional steps of reduction transformations

for all task subgraphs.

5. If reduction transformations are the same, but used with different coefficients and in different

subtasks, it is necessary to synchronize data flows density (is performed automatically). As

a rule, such synchronization leads to additional hardware costs, because hardware program-

ming of synchronization blocks is based on multiplexers/demultiplexers, buffers, internal

dual-port memory (BRAM).

6. When we perform the reduction by number of subgraphs, we keep at least one loop structure,

because this is the way to decrease the task solution time. Besides, it does not increase

the number of distributed memory channels, and it occupies hardware resource, which is

available and rather large. If it is impossible, then we program a multipipeline structure. It

inevitably contains a feedback, and larger data processing interval; hence, the task solution

time grows. Reduction of the data processing interval in such computing structure is possible,

if the structure is optimized, i.e. transformed into a nested pipeline or into a macropipeline.

In this case, the multipipeline computing structure contains the number of layers equal to

the latency of iterative rungs. Then, the computing structure can be reduced to one pipeline,

and the feedback sequence is completed with registers. The number of registers is equal to

the latency.

7. If the information graph layers have a data dependence, which is possible in the case of

functionally irregular graph, then basic subgraphs are reduced to the sequential form.

We experimentally verified all these rules with the help of our compiler prototype and testing

tasks of linear algebra, symbolic processing and digital signal processing, such as SLAE solution

by the Gaussian method, SLAE solution by the Jacobi method, SLAE solution by lower-upper-

decomposition, the basic operation of fast Fourier transform with coefficients calculation. For

all these problems, the number of steps of reduction transformations, calculated according to

Performance Reduction for Automatic Development of Parallel Applications for...

20 Supercomputing Frontiers and Innovations

the suggested methodology, does not exceed 16. The obtained values of reduction coefficients,

numbers of transformation steps, and practical results for the scaled tasks, prove that the re-

duction transformation methods for automatic creation of parallel RCS applications, reviewed

in the paper, are correct and efficient. The efficiency of solutions, created with the suggested

methods, is not less than 50–75 % in comparison with optimal solutions, designed by circuit

engineers.

Conclusion

The task information graph, used as the absolutely parallel form of a task for an RCS, pro-

vides the maximum performance with the maximum hardware costs. When a task is hardware-

programmed on an RCS, the user transforms its information graph into a computing structure

which provides lower performance and occupies smaller hardware resource. This transforma-

tion, decreasing the performance and hardware costs, is performed by reducing the number of

subgraphs, computational devices, the processing data width, by increasing the data processing

interval, and by reducing the rate. We use performance reduction not only for those tasks, that

need more resource, than it is available, but also as a method of mapping (or adaptation) of

an information graph to an RCS architecture. Owing to the performance reduction methods for

RCS, it is possible to use reduction by number of devices, by data width and interval. This is

unachievable for processor computer architectures.

Owing to the proved theorems on reduction transformations, we defined the main principles,

and suggested the methodology of information graphs mapping on RCS architectures with the

help of the performance reduction methods. Besides, we estimated the number of performed

reduction transformations. Performance reduction does not change the total number of variants

of a parallel application, but helps us to distribute these variants into several classes for further

analysis. It is sufficient to analyze only one variant from each class, not the whole class. The

obtained estimation of the number of analyzed variants of the computing structure, synthesized

as a result of reduction of performance and hardware costs, is considerably less than the similar

indicator for a multiprocessor computer system with distributed memory. We explain it by

decomposition of the whole set of variants into topologically isomorphic groups of solutions,

performed during reduction. Decrease of the number of analyzed variants to a single computing

structure from each class considerably decreases the creation time of a parallel application,

adapted to a RCS architecture (or configuration).

Further research will be directed at extension of classes from various problem domains, at

mapping of information graphs on RCS architectures with the help of the reviewed methods of

automatic reduction of performance and hardware costs.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Voevodin, V.V., Voevodin Vl.V.: Parallel computing. BHV-Petersburg (2002)

2. Palkowski, M., Bielecki, W.: TRACO Parallelizing Compiler. In: Wiliski, A., Fray, I.,

Peja, J. (eds.) Soft Computing in Computer and Information Science. Advances in Intelligent

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 21

Systems and Computing, vol. 342, pp. 409–421. Springer, Cham (2015), DOI: 10.1007/978-

3-319-15147-2 34

3. SAPFOR system. https://www.keldysh.ru/dvm/SAPFOR/, accessed: 2020-05-22

4. Bielecki, W., Palkowski, M.: Perfectly Nested Loop Tiling Transformations Based on the

Transitive Closure of the Program Dependence Graph. In: Wiliski, A., Fray, I., Peja, J. (eds)

Soft Computing in Computer and Information Science. Advances in Intelligent Systems and

Computing, vol. 342, pp. 309–320. Springer, Cham (2015), DOI: 10.1007/978-3-319-15147-

2 26

5. Devan, P.S, Kamat, R.K.: A Review – LOOP Dependence Analysis for Parallelizing Com-

piler. International Journal of Computer Science and Information Technologies 5(3) (2014)

https://www.ijcsit.com/docs/Volume%205/vol5issue03/ijcsit20140503305.pdf, ac-

cessed: 2020-05-22.

6. Jensen, N., Karlsson, S.: Improving Loop Dependence Analysis. ACM Transactions on

Architecture and Code Optimization 14(3), 1–24 (2017), DOI: 10.1145/3095754

7. Solihin, Y.: Fundamentals of parallel computer architecture: multichip and multicore sys-

tems. Chapman and Hall/CRC (2016)

8. Cooper, K.D., Torczon, L.: Engineering a Compiler. Morgan Kaufmann (2005)

9. Kennedy, K., Allen, R.: Optimizing Compilers for Modern Architectures: A Dependence-

based Approach. Morgan Kaufmann (2001)

10. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann (1997)

11. Levin, I., Dordopulo, A., Fedorov, A., Kalyaev, I.: Reconfigurable computer systems: from

the first FPGAs towards liquid cooling systems. Supercomputing Frontiers and Innovations

3(1), 22–40 (2016), DOI: 10.14529/jsfi160102

12. Liu, S., Liu Z., Huang, H.: FPGA implementation of a fast pipeline architecture

for JND computation. In: Proceedings of 5th International Congress on Image and

Signal Processing, 16-18 Oct. 2012, Chongqing, China. pp. 577–581. IEEE (2012),

DOI: 10.1109/CISP.2012.6469995

13. Trimberger, S.M.: Three Ages of FPGAs: A Retrospective on the First Thirty

Years of FPGA Technology. Proceedings of the IEEE 103(3), 318–331 (2015),

DOI: 10.1109/JPROC.2015.2392104

14. Wahiba, M., Abdellah, S., Aichouche, B.: Implementation of parallel-pipeline H.265 CABAC

decoder on FPGA. In: Proceedings of the First International Conference on Embedded &

Distributed Systems, EDiS 2017, 17-18 Dec. 2017, Oran, Algeria. pp. 1–6. IEEE (2017),

DOI: 10.1109/EDIS.2017.8284037

15. Khatami, R.I., Ahmadi, M.: High throughput multi pipeline packet classifier on FPGA.

In: Proceedings of the 17th CSI International Symposium on Computer Architec-

ture & Digital Systems, 30-31 Oct. 2013, Tehran, Iran. pp. 137–138. IEEE (2013),

DOI: 10.1109/CADS.2013.6714253

Performance Reduction for Automatic Development of Parallel Applications for...

22 Supercomputing Frontiers and Innovations

https://dx.doi.org/10.1007/978-3-319-15147-2_34
https://dx.doi.org/10.1007/978-3-319-15147-2_34
https://www.keldysh.ru/dvm/SAPFOR/
https://dx.doi.org/10.1007/978-3-319-15147-2_26
https://dx.doi.org/10.1007/978-3-319-15147-2_26
https://www.ijcsit.com/docs/Volume%205/vol5issue03/ijcsit20140503305.pdf
https://dx.doi.org/10.1145/3095754
https://dx.doi.org/10.14529/jsfi160102
https://dx.doi.org/10.1109/CISP.2012.6469995
https://dx.doi.org/10.1109/JPROC.2015.2392104
https://dx.doi.org/10.1109/EDIS.2017.8284037
https://dx.doi.org/10.1109/CADS.2013.6714253

16. Prihozhy, A., Bezati, E., Ab Rahman, A.A., Mattavelli, M.: Synthesis and Optimiza-

tion of Pipelines for HW Implementations of Dataflow Programs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 34(10), 1613–1626 (2015),

DOI: 10.1109/TCAD.2015.2427278

17. Korcyl, G., Korcyl, P.: Investigating the Dirac Operator Evaluation with FPGAs. Super-

computing Frontiers And Innovations 6(2), 56–63 (2019), DOI: 10.14529/jsfi190204

18. Qu, Y.R., Prasanna, V.K.: High-Performance and Dynamically Updatable Packet Classi-

fication Engine on FPGA. IEEE Transactions on Parallel and Distributed Systems 27(1),

197–209 (2016), DOI: 10.1109/TPDS.2015.2389239

19. Kalyaev, I.A., Levin, I.I., Semernikov, E.A., Shmoilov, V.I.: Reconfigurable multipipeline

computing structures. Nova Science Publishers, New York, USA (2012)

20. Sorokin, D.A., Dordopulo, A.I., Levin, I.I., Melnikov, A.K.: Solving problems with es-

sentially variable intensity of data flows on reconfigurable computing systems. Bulletin of

computer and information technologies 2, 49–56 (2012), DOI: 10.14489/issn.1810-7206

21. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A foundation for com-

puter science (2nd ed.). Addison-Wesley Professional (1994)

22. Patterson, D., Hennessy, J.: Computer Architecture: A Quantitative Approach (5th ed.).

Morgan Kaufmann (2011)

23. Unnikrishnan P., Shirako J., Barton K., Chatterjee S., Silvera R., Sarkar V.: A Practical

Approach to DOACROSS Parallelization. In: Kaklamanis, C., Papatheodorou, T., Spi-

rakis, P.G. (eds) European Conference on Parallel Processing, 27-31 Aug. 2012, Rhodes

Island, Greece. Euro-Par 2012 Parallel Processing, Lecture Notes in Computer Science,

vol. 7484, pp. 219–231. Springer, Berlin, Heidelberg (2012), DOI: 10.1007/978-3-642-32820-

6 23

24. Levin I., Dordopulo, A., Gudkov, V., Gulenok, A., Bovkun A., Yevstafiyev, G., Alekseev, K.:

Software Development Tools for FPGA-Based Reconfigurable Systems Programming. In:

Voevodin, Vl., Sobolev, S. (eds) Russian Supercomputing Days, 23-24 Sept., Moscow, Rus-

sia. Supercomputing, Communications in Computer and Information Science, vol. 1129,

pp. 625–640. Springer, Cham (2019), DOI: 10.1007/978-3-030-36592-9 51

A.I. Dordopulo, I.I. Levin

2020, Vol. 7, No. 2 23

https://dx.doi.org/10.1109/TCAD.2015.2427278
https://dx.doi.org/10.14529/jsfi190204
https://dx.doi.org/10.1109/TPDS.2015.2389239
https://dx.doi.org/10.14489/issn.1810-7206
https://dx.doi.org/10.1007/978-3-642-32820-6_23
https://dx.doi.org/10.1007/978-3-642-32820-6_23
https://dx.doi.org/10.1007/978-3-030-36592-9_51

Long Distance Geographically Distributed InfiniBand Based

Computing

Karol Niedzielewski1, Marcin Semeniuk1, Jaros law Skomia l1,

Jerzy Proficz2, Piotr Sumionka2, Bartosz Pliszka2, Marek Michalewicz1

c© The Authors 2020. This paper is published with open access at SuperFri.org

Collaboration between multiple computing centres, referred as federated computing is becom-

ing important pillar of High Performance Computing (HPC) and will be one of its key components

in the future. To test technical possibilities of future collaboration using 100 Gb optic fiber link

(Connection was 900 km in length with 9 ms RTT time) we prepared two scenarios of operation.

In the first one, Interdisciplinary Centre for Mathematical and Computational Modelling

(ICM) in Warsaw and Centre of Informatics – Tricity Academic Supercomputer & networK (CI-

TASK) in Gdańsk prepared a long distance geographically distributed computing cluster. System

consisted of 14 nodes (10 nodes at ICM facility and 4 at TASK facility) connected using Infini-

Band. Our tests demonstrate that it is possible to perform computationally intensive data analysis

on systems of this class without substantial drop in performance for a certain type of workloads.

Additionally, we show that it is feasible to use High Performance Parallex [1], high level abstrac-

tion libraries for distributed computing, to develop software for such geographically distributed

computing resources and maintain desired efficiency.

In the second scenario, we prepared distributed simulation - postprocessing - visualization

workflow using ADIOS2 [2] and two programming languages (C++ and python). In this test we

prove capabilities of performing different parts of analysis in seperate sites.

Keywords: HPC, distributed computing and systems, InfiniBand, federated supercomputing,

geographically distributed workflows, ADIOS, HPX, High Performance Parallex.

Introduction

Growth of computing capabilities in connection with big data manipulation and analysis

gives us new tools for broadening knowledge and bringing new scientific breakthroughs. How-

ever new possibilities introduce new challenges. Great scale of stored information requires new

approches to data storage and manipulation. Sometimes data movement between data centres

requires a lot of time (measured in days or months) or is even impossible because of property

rights (the data is owned by one entity and cannot be shared). Such cases occur more and more

frequently and demand close cooperation between data centres. Collaboration between multiple

computing centres is referred to as federated computing and will be one of the key components

of High Performance Computing (HPC) in the future.

Between 2014–2016, A*STAR Computational Resource Centre (A*CRC) in Singapore en-

gaged in exploration of long-range InfiniBand technology to build globally distributed concurrent

computing system called InfiniCortex. These exploration led to integrating computing resources

over four continents and six countries connected with RDMA enabling InfiniBand fabric [3–6].

The technology for long-haul global reach extended InfiniBand has been created by two

companies: Obsidian Strategics, a Canadian company [7, 8], which apparently is not in operation

anymore, and Bay Microsystems which was recently bought by Vcinity [9].

Mellanox Technologies built MetroX InfiniBand long-haul extenders [10], but they have

limited range of about 40 km.

1Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, Warsaw,

Poland
2Centre of Informatics – Tricity Academic Supercomputer & networK (CI TASK), Gdańsk University of Tech-

nology, Gdańsk, Poland

DOI: 10.14529/jsfi200202

24 Supercomputing Frontiers and Innovations

The extended range InfiniBand has been initially used for remote storage, and for mov-

ing very large data (so-called “Large Data”) between the sites. In 2007 it was reported that

“Obsidian Research Corporation’s Longbow Campus products have enabled NASA to relocate

15 percent (1,536 processors) of its high-ranking SGI Altix-based Columbia Supercomputer to

another facility and connect both locations without any performance degradation.” [11].

The early instances of long range InfiniBand connectivity were implemented at:

1. NASA: connecting Pleiades at NASA Ames Research Center and Hyperion elements at

Lawrence Livermore National Laboratory with Obsidian Longbow extenders.

2. NASA: secure wire-speed storage synchronisation between NASA Ames Research Center in

California and NASA Goddard Space Flight Center in Maryland.

3. Arizona State University testbed [12].

4. Swiss Supercomputer Center: “We evaluated the Obsidian Longbow InfiniBand Range Ex-

tender with the overall goal to ensure continuous availability of GPFS through the complete

CSCS relocation period by running one single GPFS file system over both sites. The geo-

graphical distance between the current and the future location is about 3 km, the measured

distance of dark fiber is 10 km. The evaluation results for the range extender are encouraging

and are in line with our expectations and requirements.” [13].

5. IT Centers at the Heidelberg to Mannheim Universities [14].

InfiniCortex built by A*CRC over three year period 2014–2016 was by far the largest and

the most extensive, global scale InfiniBand distributed concurrent computing system ever built.

A notable application created on the top of InfiniCortex was InfiniCloud – a globally distributed

cloud infrastructure used to run cancer mutation calling pipeline over four continents [15, 16].

Recently an idea of Superfacilities was formulated within the US Department of Energy

Labs. Superfacilities would encompass supercomputing resources with large scale data storage,

large scale experimental facilities, mathematical methods, software and human expertise – and,

of course, with all infrastructure elements connected with super-efficient network fabric [17–19].

In the words of Gregory Bell, with creation of Superfacilities “Scientific progress will be com-

pletely unconstrained by the physical location of instruments, people, computational resources,

or data.” [20].

It should be noted, that InfiniCortex created several years earlier was a precursor of a DoE

defined Superfacility. European prototype, named Fenix Infrastructure is currently being built

by five major supercomputing centres [21].

Based on the success and experiences of the global scale InfiniCortex infrastructure, Sin-

gapore implemented a country-wide STAR-N Singapore InfiniBand Fabric connecting Nanyang

Technological University, Singapore National University and A*STAR into one 100 Gbps Infini-

Band network. The fabric is based on the shorter range Mellanox MetroX extenders. It allows

for easy access to ASPIRE Supercomputer based at the National Supercomputer Centre at the

A*STAR central location through login nodes at remote locations, and efficient data transfer

between the sites [22].

The main objectives of our project, reported here, were to:

• establish the first long-haul InfiniBand connection between two Polish HPC centres, which

will serve as the first step towards federating all Polish HPC centres;

• test Vcinity 40 Gbps long-range InfiniBand technology over distance of 900 km;

• run High Performance ParalleX enabled application over long-haul distributed network;

• test ADIOS workflows over this distributed infrastructure.

K. Niedzielewski, M. Semeniuk, J. Skomial, J. Proficz, P. Sumionka, B. Pliszka...

2020, Vol. 7, No. 2 25

To test technical possibilities of future collaboration, ICM and TASK teams decided to test

40 Gb InfiniBand connection over optic fiber link in various scenarios.

The first step was to prepare a long distance geographically distributed computing cluster

and to examine its data analysis capabilities. We demonstrate possibilities of using high level

abstraction libraries for distributed computing (High Performance Parallex) to develop software

for such clusters. What is more we show that some of the workflows (with low comunication

requirements) can perform without drop in performance on such distributed clusters. More

comprehensive tests involving MPI all-reduce algorithms on this distributed computing cluster

were presented in a separate conference report [23]. The second test was focused on distribut-

ing different parts of data analysis workflow between seperate sites. Here we show that it is

feasible to implement efficient distributed workflows using geographically distributed hardware

configuration.

The paper is organized as follows. In Section 1 we describe our distributed computing cluster

in two separate locations. It includes hardware, software and storage specification. In Section 2

we present the results of data analysis performed using geographically distributed computing

cluster. Section 3 presents the capabilities of distributed simulation-postprocessing-visualization

ADIOS workflow on the distributed infrastructure. The last section, Conclusions, contains a

summary of the study and provides some hints to the future activities.

1. Testbed

For testing purposes ICM in collaboration with TASK, prepared a distributed computing

cluster that consisted of the nodes located at ICM datacenter in Warsaw, and some nodes at

TASK datacenter in Gdańsk. Facilities which are about 350 km apart were connected using

Pionier academic network fiber optic link running in a round-about way over ∼900 km path

(Fig. 1a and 1b).

(a) Map of Poland with Pionier network architecture

and 100 gb links marked in black
(b) Zoom in on the map of Poland with Pionier net-

work architecture. Link used in tests is marked in

black

Figure 1. Pionier network architecture map (courtesy of Artur Binczewski, PSNC, Pozna)

Long Distance Geographically Distributed InfiniBand Based Computing

26 Supercomputing Frontiers and Innovations

1.1. Hardware

There were 10 compute nodes at ICM site. Each node was a dual socket HUAWEI RH-

1288 v3 server with two Intel E5-2680 v3 CPUs, four 6 TB SATA drives and 128 GB DDR4

RAM. Each CPU has 12 cores and operate at 2.50 GHz clock frequency. At TASK facility there

were four nodes. Each diskless node was HPE ProLiant XL230a Gen9 server with two Intel

E5-2670 v3 processors and 128 GB DDR4 RAM. Each CPU has 12 cores operating at 2.3 GHz

clock frequency.

InfiniBand interconnect in both clusters consisted of Mellanox SX6025 – InfiniBand switch-

ing system with 36 (FDR) 56 Gb/s ports and 4 Tb/s aggregate switching capacity. Each server

was equipped with Mellanox FDR (56 Gb/s) Connect-X3 interface card used for the InfiniBand

link and 1GE link for management. InfiniBand Extenders used in this tests were IBEX G40 –

QDR InfiniBand RDMA based Extension Platform3 and each was equipped with one QDR In-

finiBand interface and one 40 GE port. IBEX G40 form factor is 1U rack unit and its power

consumption is less than 140 W. Total buffer capacity allows extending InfiniBand connection

up to 15,000 km.

The 100 GE circuit spanned between Warsaw and Gdańsk is routed via Balystok and was

delivered by Pionier Polish National Research and Education Network in cooperation with Poz-

nan Supercomputing and Networking Center. The ∼900 km long circuit introduces 9 ms RTT

latency that is consistent with theoretical results calculated using (1):

ping =
l

Vglass
=

1800 km

200 km
ms

= 9 ms, (1)

where l – length of optic fiber connection, Vglass – velocity of light in glass.

Storage was located at ICM and shared using Network File System (NFS) technology, there-

fore nodes on TASK side had to download dataset before analysis.

1.2. Software

For testing purposes we decided to use Multidimensional Feature Selection algorithm imple-

mented together with High Performance Parallex (HPX) [24]. We chose this application because

of its very good parallel scaling on our Okeanos Cray XC40 supercomputer (each node equipped

with 24 Intel Xeon E5-2690 v3 cpu cores). The scaling results are presented in Fig. 2. We can

see that analysis of Madelon dataset exhibits almost perfect parallel scaling up to 64 nodes

(1,536 cores), and then deteriorates due to the size of the problem being too small (starvation).

Possible applications of Multidimensional Feature Selection exhaustive search include many do-

mains of science such as genomics, economics, social sciences and others. Full details of this work

can be found in [24].

For MPI connectivity openMPI v3.1.4 [25] was used. HPX was built using this openMPI

library. MPI processes count was equal to the number of used computing cores (number of cores

* number of nodes).

Tests on a distributed cluster were performed using Madelon dataset. Madelon [26] is a

synthetic dataset with 2,000 objects and 500 variables that can be accessed from the UCI

Machine Learning Repository [27] that was prepared in csv format. Data was located on ICM

side, therefore nodes on TASK side had to download dataset before analysis. Jobs were invoked

on ICM side, therefore latency of the excecution on TASK side was ∼5 ms caused by the

connection latencies.
3The test InfiniBand Range Extenders were provided by Vcinity, Inc. and 2CRSI SA.

K. Niedzielewski, M. Semeniuk, J. Skomial, J. Proficz, P. Sumionka, B. Pliszka...

2020, Vol. 7, No. 2 27

20 21 22 23 24 25 26 27 28

21

23

25

27

Nodes

S
p

ee
d

-u
p

Perfect Scaling
Madelonx4
Madelonx2
Madelon

Figure 2. Measured speedup of 3-Dimensional analysis with 100 discretizations on different

Madelon dataset sizes and with first algorithm implementation [24] (e.g. dataset that is twice

as big has twice the number of variables. Additional variables are copies of variables from the

original data set). Each node was equiped with 24 Intel Xeon E5-2690 v3 cores

2. Results

We tested the first implementation of MDFS [24] on groups of nodes of varying sizes and

locations. Scenarios were prepared so that the amount of work was split evenly between sites

(ICM and TASK) or was performed on nodes located only at one site.

We decided to perform 2-Dimensional analysis tests because it is the minimal size of the

problem that fits well on up to 4 nodes. The measured time of the analysis performed on different

configurations of nodes is presented in Fig. 3 and in Tab. 1. Speed-up of analysis is seen in Fig. 4

and the Tab. 2.

The results are presented using following coding (2):

G[Number of nodes on TASK side (Gdansk)]W [Number of nodes on ICM side (Warsaw)]

Example : G2W3 − 2 nodes on TASK sideand 3 nodes on ICM side. (2)

Table 1. Measured time of Madelon dataset analysis at

ICM-TASK

Nodes configutation Number of nodes Measured time [s]

G1W0 1 66.4

G0W1 1 60.9

G2W0 2 33.4

G1W1 2 33.5

G0W2 2 30.8

G2W2 4 16.9

G0W4 4 16.0

Long Distance Geographically Distributed InfiniBand Based Computing

28 Supercomputing Frontiers and Innovations

G1W0 G0W1 G2W0 G1W1 G0W2 G2W2 G0W4
0

10

20

30

40

50

60

70

Nodes configuration

T
im

e
[s

]

Figure 3. Measured time of madelon dataset analysis at ICM-TASK

Table 2. Measured speedup of madelon dataset analysis at

ICM-TASK

Nodes configuration Number of nodes Measured speedup

G1W0 1 0.9

G0W1 1 1

G2W0 2 1.8

G1W1 2 1.8

G0W2 2 1.9

G2W2 4 3.6

G0W4 4 3.8

G1W0 G0W1 G2W0 G1W1 G0W2 G2W2 G0W4
0

1

2

3

4

5

Nodes configuration

S
p

ee
d
u
p

Perfect scaling
ICM-TASK

Figure 4. Measured speedup of madelon dataset analysis at ICM-TASK

K. Niedzielewski, M. Semeniuk, J. Skomial, J. Proficz, P. Sumionka, B. Pliszka...

2020, Vol. 7, No. 2 29

It is clear that location of computations affects time of the analysis. Please see Tab. no. 1.

Speedup changes are the outcome of analysis time changes (Tab. 2). Computations at ICM are

faster (better performance) for the following reasons:

1. Jobs were invoked on the ICM side, therefore the excecution is delayed as well as receiving of

the results is delayed. Globally the latency will be at least ∼9 ms because of the connection

latencies.

2. Data was located on the ICM side, therefore nodes on the TASK side had to download

dataset using NFS before analysis. Here again we observe minimum ∼9 ms latencies.

3. Nodes on the ICM side and the TASK side were equiped with different hardware (CPUs,

RAM, Network card, etc.). This results in different computation times which are slower on

the TASK side.

Nevertheless, location of the computations affect analysis time (performance) no more than

10 % and could be reduced by selection of optimal load balancing (less computations on TASK

side). This brings us to conclusions that the differences of analysis time are not significant.

Adventages (speedup) of computations on ‘distributed’ cluster overcome disadventages and can

be beneficial in the future. We can observe linear scalability of MDFS method up to 4 nodes.

3. Simulation - Postprocessing - Visualization Distributed

Workflow

We prepared simple simulation - postprocessing - visualization distributed workflow using

the Gray-Scott MiniApp [28] and ADIOS 2 (version 2.4.0). ADIOS 2 (The Adaptable Input

Output System version 2) is a framework dedicated for data I/O to write and read data when

and where required. Its design introduces new approach to high level API that allows easy

building of the data dependencies between components of applications. Important feature is

possibility to build dependencies in distributed manner that makes ADIOS really interesting

and powerful tool.

ADIOS2 remote IO between ICM and TASK was based on RDMA connection using SST

files. This approach allows efficient reads of remote files and synchronous staging of sequences

of simulation steps. Therefore none of the steps of the simulation data was omitted during

postprocessing and visualization.

Distributed workflow is presented in Fig. 5 where we can see its several components written

in C++ and python:

1. Gray-Scott (C++) – 3-D simulation of Gray-Scott reaction diffusion model [29] (using 4 mpi

processes). Simulation and staging of data is run at the TASK site.

2. PDF Analysis (C++) – postprocessing of simulation data that prepares pdf images (using

1 mpi process). Run at the ICM site.

3. 2-D visualization (python) – 2-D cross section visualization of 3-D simulation (using 1 mpi

process). Run at the ICM site. Example frame can be seen in Fig. 6a.

4. PDF ploting (python) – visualization of the plots from PDF Analysis (using 1 mpi process).

Run at the ICM site. Example frame can be seen in Fig. 6b.

Long Distance Geographically Distributed InfiniBand Based Computing

30 Supercomputing Frontiers and Innovations

TASK

ICM

Gray-Scott

staging

PDF Analysis

staging

staging

Figure 5. Workflow diagram

(a) Histogram of U in simulation of Gray-

Scott reaction diffusion model

(b) 2-D cross section of 3-D simulation of

Gray-Scott reaction diffusion model

Figure 6. Visualization examples

Conclusions

Our tests demonstrate that it is possible to perform computationally intensive data anal-

ysis on long distance geographically distributed computing cluster without substantial drop in

performance. Additionally, we demonstrate that it is feasible to use high level abstraction li-

braries for distributed computing, such as High Performance Parallex, to develop software for

K. Niedzielewski, M. Semeniuk, J. Skomial, J. Proficz, P. Sumionka, B. Pliszka...

2020, Vol. 7, No. 2 31

geographically distributed clusters and to maintain computational performance comparable to a

cluster in a single location. Moreover our application has potential to be used in many domains

such as genomics, economics or social sciences. Our approach is not limited to feature selection

methods and can be applied to many other data analysis and machine learning workflows that

have low communication requirements.

In second test we present capabilities of using simulation - post-processing - visualization

distributed workflow to execute parts of application in geographically separated sites. As a

consequence, it opens new ways for sharing of data and distributing various components of

applications.

Our successful tests of the connection between ICM and TASK present new technical possi-

bilities and potential benefits of future collaboration between computing centres and federated

computing in general.

Furthermore, presented solutions can be widely used and are not limited to the two centres

listed above. We envisage a Polish InfiniCortex federating all six top Polish HPC centres into the

Polish National (Distributed, Concurrent) Supercomputer utilising the Pionier fibre-optic fabric

and six new generation InfiniBand range extenders offering 100 Gbps bandwidth and unlimited

range.

Acknowledgements

This research was carried at the Interdisciplinary Centre for Mathematical and Compu-

tational Modelling (ICM), University of Warsaw, and at the Centre of Informatics – Tricity

Academic Supercomputer & networK (CI TASK) at Gdańsk University of Technology. We ac-

knowledge support of Vcinity R© Inc. and 2CRSI SA who provided us with the InfiniBand Range

Extenders. This project would not be possible without infrastructure and support of person-

nel of Pionier, a Polish National Research and Education Network (NREN) – providing 100 G

connectivity to all academical HPC centers in Poland.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Kaiser, H., Lelbach aka wash, B.A., Heller, T., Bergé, A., et al.: STEllAR-GROUP/hpx:

HPX V1.3.0: The C++ Standards Library for Parallelism and Concurrency (2019),

DOI: 10.5281/zenodo.3189323

2. The Adaptable Input Output System version 2, https://github.com/ornladios/ADIOS2/,

accessed: 2020-02-08

3. Or lowski, L., Deng, Y., Michalewicz, M.: Galaxies of supercomputers and their underlying

interconnect topologies hierarchies. In: International Supercomputer Conference, Leipzig,

Germany (2014), DOI: 10.13140/2.1.4798.2728

4. Michalewicz, M., Southwell, D., Tan, T., Poppe, Y., et al.: InfiniCortex: concurrent su-

percomputing across the globe utilising trans-continental InfiniBand and Galaxy of Su-

percomputers. In: Supercomputing 2014: The International Conference for High Perfor-

Long Distance Geographically Distributed InfiniBand Based Computing

32 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.5281/zenodo.3189323
https://github.com/ornladios/ADIOS2/
http://dx.doi.org/10.13140/2.1.4798.2728

mance Computing, Networking, Storage and Analysis, At New Orleans, LA, USA (2014),

DOI: 10.13140/2.1.3267.7444

5. Michalewicz, M.T., Lian, T.G., Seng, L., Low, J., et al.: InfiniCortex: Present and Fu-

ture Invited Paper. In: Proceedings of the ACM International Conference on Computing

Frontiers, May 2016, Como, Italy. pp. 267–273. Association for Computing Machinery, New

York, NY, USA (2016), DOI: 10.1145/2903150.2912887

6. Noaje, G., Davis, A., Low, J., Lim, S., et al.: InfiniCortex-From Proof-of-

concept to Production. Supercomputing Frontiers and Innovations 4(2), 87–102 (2017),

DOI: 10.14529/jsfi170207

7. Obsidian Strategics Inc., https://www.cybersecurityintelligence.com/obsidian-str

ategics-106.html, accessed: 2020-06-01

8. Obsidian Strategics Inc., https://obsidianstrategics.com/index.html, accessed:

2020-06-01

9. Vcinity Inc., https://vcinity.io/, accessed: 2020-06-01

10. Mellanox MetroX R©-2 Systems, https://www.mellanox.com/products/long-haul, ac-

cessed: 2020-06-01

11. Obsidian Longbow Campus Solutions Extend Its Columbia Supercomputer across Multiple

NASA Locations, https://www.militaryaerospace.com/home/article/16725502/obsi

dian-longbow-campus-solutions-extend-its-columbia-supercomputer-across-mul

tiple-nasa-locations, accessed: 2020-06-01

12. Eikenberry, S., Lindekugel, K., Stanzione, D.: Long Haul InfiniBand Technology: Implica-

tions for Cluster Computing, Arizona State University (2006), https://obsidianstrate

gics.com/archives/2006/asu stanzione ccs.pdf, accessed: 2020-06-28

13. El-Harake, H.N., Gamboni, C., Gorini, S., Schoenemeyer, T.: Evaluation of infiniband range

extension offered by obsidian (2011)

14. Richling, S., Kredel, H., Hau, S., Kruse, H.G.: A long-distance infiniband interconnection

between two clusters in production use. In: State of the Practice Reports, November 2011,

Seattle, Washington. Association for Computing Machinery, New York, NY, USA (2011),

DOI: 10.1145/2063348.2063368

15. Ban, K., Chrzeszczyk, J., Howard, A., Li, D., Tan, T.W.: InfiniCloud: Leveraging the

Global InfiniCortex Fabric and OpenStack Cloud for Borderless High Performance Com-

puting of Genomic Data. Supercomputing Frontiers and Innovations 2(3), 14–27 (2015),

DOI: 10.14529/jsfi150302

16. Chrzeszczyk, J., Howard, A., Chrzeszczyk, A., Swift, B., Davis, P., Low, J., Tan, T.W.,

Ban, K.: InfiniCloud 2.0: distributing High Performance Computing across continents.

Supercomputing Frontiers and Innovations 3(2), 54–71 (2016), DOI: 10.14529/jsfi160204

17. Antypas, K.: Superfacility: How new workflows in the DOE Office of Science are influencing

storage system requirements? (2016), https://storageconference.us/2016/Slides/Kat

ieAntypas.pdf, accessed: 2020-06-01

K. Niedzielewski, M. Semeniuk, J. Skomial, J. Proficz, P. Sumionka, B. Pliszka...

2020, Vol. 7, No. 2 33

http://dx.doi.org/10.13140/2.1.3267.7444
http://dx.doi.org/10.1145/2903150.2912887
http://dx.doi.org/10.14529/jsfi170207
https://www.cybersecurityintelligence.com/obsidian-strategics-106.html
https://www.cybersecurityintelligence.com/obsidian-strategics-106.html
https://obsidianstrategics.com/index.html
https://vcinity.io/
https://www.mellanox.com/products/long-haul
https://www.militaryaerospace.com/home/article/16725502/obsidian-longbow-campus-solutions-extend-its-columbia-supercomputer-across-multiple-nasa-locations
https://www.militaryaerospace.com/home/article/16725502/obsidian-longbow-campus-solutions-extend-its-columbia-supercomputer-across-multiple-nasa-locations
https://www.militaryaerospace.com/home/article/16725502/obsidian-longbow-campus-solutions-extend-its-columbia-supercomputer-across-multiple-nasa-locations
https://obsidianstrategics.com/archives/2006/asu_stanzione_ccs.pdf
https://obsidianstrategics.com/archives/2006/asu_stanzione_ccs.pdf
http://dx.doi.org/10.1145/2063348.2063368
http://dx.doi.org/10.14529/jsfi150302
http://dx.doi.org/10.14529/jsfi160204
https://storageconference.us/2016/Slides/KatieAntypas.pdf
https://storageconference.us/2016/Slides/KatieAntypas.pdf

18. NERSC Superfacility, https://www.nersc.gov/research-and-development/superfaci

lity/, accessed: 2020-06-01

19. Creating Super-facilities: a Coupled Facility Model for Data-Intensive Science, Internet 2

Global Summit 2015, http://meetings.internet2.edu/2015-global-summit/detail/1

0003679/, accessed: 2020-06-01

20. Bell, G.: The Energy Sciences Network: Overview, Update, Impact (DoE) - presentation,

https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/20150324/Bell ESN

et.pdf?la=en&hash=46C0168F7ADAB232EC32E4452C49A159453859C9, accessed: 2020-06-

01

21. Fenix Research Infrastructure, https://fenix-ri.eu/about-fenix, accessed: 2020-06-01

22. Noaje, G.: InfiniCortex, InfiniBand nation-wide and world-wide, a talk given at Journee

Scientifique ROMEO’2016, Reims, France (2016), https://romeo.univ-reims.fr/news/2

08/Journee Scientifique ROMEO 2016 le 9 juin 2016 a REIMS, accessed: 2020-06-01

23. Proficz, J., Sumionka, P., Skomia l, J., Semeniuk, M., Niedzielewski, K., Walczak, M.: Inves-

tigation into MPI All-Reduce Performance in a Distributed Cluster with Consideration of

Imbalanced Process Arrival Patterns. In: International Conference on Advanced Informa-

tion Networking and Applications, 15-17 April, Caserta, Italy. pp. 817–829. Springer (2020),

DOI: 10.1007/978-3-030-44041-1 72

24. Niedzielewski, K., Marchwiany, M.E., Piliszek, R., Michalewicz, M., Rudnicki, W.: Multidi-

mensional feature selection and high performance parallex. SN Computer Science 1(1), 40

(2020), DOI: 10.1007/s42979-019-0037-5

25. Open MPI: Open source high performance computing, https://www.open-mpi.org/,

accessed: 2020-02-08

26. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature selection

challenge. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information

Processing Systems 17, pp. 545–552. MIT Press (2005), http://papers.nips.cc/paper/2

728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf

27. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.uci.ed

u/ml

28. Application examples for the ADIOS2 I/O library, https://github.com/ornladios/ADI

OS2-Examples, accessed: 2020-02-08

29. Pearson, J.E.: Complex Patterns in a Simple System. Science 261(5118), 189–192 (1993),

DOI: 10.1126/science.261.5118.189

Long Distance Geographically Distributed InfiniBand Based Computing

34 Supercomputing Frontiers and Innovations

https://www.nersc.gov/research-and-development/superfacility/
https://www.nersc.gov/research-and-development/superfacility/
http://meetings.internet2.edu/2015-global-summit/detail/10003679/
http://meetings.internet2.edu/2015-global-summit/detail/10003679/
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/20150324/Bell_ESNet.pdf?la=en&hash=46C0168F7ADAB232EC32E4452C49A159453859C9
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/20150324/Bell_ESNet.pdf?la=en&hash=46C0168F7ADAB232EC32E4452C49A159453859C9
https://fenix-ri.eu/about-fenix
https://romeo.univ-reims.fr/news/208/Journee_Scientifique_ROMEO_2016_le_9_juin_2016_a_REIMS
https://romeo.univ-reims.fr/news/208/Journee_Scientifique_ROMEO_2016_le_9_juin_2016_a_REIMS
http://dx.doi.org/10.1007/978-3-030-44041-1_72
http://dx.doi.org/10.1007/s42979-019-0037-5
https://www.open-mpi.org/
http://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf
http://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/ornladios/ADIOS2-Examples
https://github.com/ornladios/ADIOS2-Examples
http://dx.doi.org/10.1126/science.261.5118.189

Potential of I/O Aware Workflows in Climate and Weather

Julian M. Kunkel1 , Luciana R. Pedro1

© The Authors 2020. This paper is published with open access at SuperFri.org

The efficient, convenient, and robust execution of data-driven workflows and enhanced data

management are essential for productivity in scientific computing. In HPC, the concerns of storage

and computing are traditionally separated and optimised independently from each other and the

needs of the end-to-end user. However, in complex workflows, this is becoming problematic. These

problems are particularly acute in climate and weather workflows, which as well as becoming

increasingly complex and exploiting deep storage hierarchies, can involve multiple data centres.

The key contributions of this paper are: 1) A sketch of a vision for an integrated data-driven

approach, with a discussion of the associated challenges and implications, and 2) An architecture

and roadmap consistent with this vision that would allow a seamless integration into current

climate and weather workflows as it utilises versions of existing tools (ESDM, Cylc, XIOS, and

DDN’s IME).

The vision proposed here is built on the belief that workflows composed of data, comput-

ing, and communication-intensive tasks should drive interfaces and hardware configurations to

better support the programming models. When delivered, this work will increase the opportu-

nity for smarter scheduling of computing by considering storage in heterogeneous storage systems.

We illustrate the performance-impact on an example workload using a model built on measured

performance data using ESDM at DKRZ.

Keywords: workflow, heterogeneous storage, data-driven, climate/weather.

Introduction

High-Performance Computing (HPC) harnesses the fastest available hardware components

to enable the execution of tightly coupled applications from science and industry. Typical use-

cases include numerical simulation of physical systems and analysis of large-scale observational

data. In the domain of climate and weather, there is a considerable demand for the orchestration

of ensembles of simulation models and the generation of data products. A service such as the

operational weather forecast workflow in Met Office writes around 200 TB and reads around

600 TB every day. In total, at the Met Office, on average 1.5 PB and 14 PB are written and

read per day, respectively, for all climate and weather forecasts across all HPC clusters.

Based on the needs of climate and weather researchers, the HPC community has developed

a software ecosystem that supports scientists to execute their large-scale workflows. While the

current advances correspond to a big leap forward, many processes still require experts. For

example, porting a workflow from one system to another requires adjusting runtime parameters

of applications and deciding on how data is managed.

Since performance is of crucial importance to large-scale workflows, careful attention must

be paid to exploit the system characteristics of the target computing centre. For instance, a data-

driven workflow may benefit from the explicit and simultaneous use of a locally heterogeneous

set of computing and storage technologies. This aspect means that substantial changes may be

required to a workflow to tailor it to a particular supercomputer environment in order to obtain

the best performance.

Knowing the capabilities, interfaces, and performance characteristics of individual compo-

nents are mandatory to make the best use of them. As the complexity of systems expands and

alternative storage and computing technologies provide unique characteristics, it becomes in-

1University of Reading, Reading, United Kingdom

DOI: 10.14529/jsfi200203

2020, Vol. 7, No. 2 35

https://orcid.org/0000-0002-6915-1179
https://orcid.org/0000-0001-8365-6264

creasingly difficult, even for experts, to manually optimise the usage of resources in workflows.

In many cases, modifications are not performed because: 1) They are labour intense: any change

to the workflow requires careful validation which may not pay off for small scale runs; 2) It is

a one-time explorative workflow and; 3) Users are not aware of the potential of the complex

system.

In this paper, we illustrate how knowing the Input/Output (I/O) characteristics of workflow

tasks and overall experimental design helps to optimise the execution of climate and weather

workflows. Exploiting this information automatically may increase the performance, throughput

and cost-efficiency of the systems, providing an incentive to users and data-centres that cannot

be neglected any longer. Our approach intends to reduce the burden on researchers and, at the

same time, optimise the decisions about jobs running on HPC systems.

This paper is structured as follows. First, we describe the software stack involved in exe-

cuting workflows in climate and weather in Section 1. Related work in heterogeneous storage

environments and solutions for workflow processing is presented in Section 2. Next, the vision

for including knowledge about data requirements and characteristics is sketched in Section 3

outlining the potential benefit the automatic exploitation might bring. Our design, based on

existing components in climate and weather, is described in Section 4. An example use case

demonstrates the impact on running a workload at the Mistral supercomputer in Section 5. The

paper is concluded in Section 5.

1. Workflows in Climate/Weather

In this section, we describe how workflows are executed in a conventional software stack

and the typical hardware and software environment involved in running a climate and weather

application.

1.1. Cylc

Cylc [19] is a general-purpose workflow engine in charge of executing and monitoring cyclic

workflows in which each step is submitted to the batch scheduler of a data centre. With Cylc,

tasks from multiple cycles may be able to run concurrently without violating dependencies and

preventing the issue of delays that cause one cycle to run into another. Cylc was written in

Python and built around a new scheduling algorithm that can manage infinite workflows of

cycling tasks without a sequential cycle loop. At any point during workflow execution, only the

dependence between the individual tasks matters, regardless of their particular cycle points. The

information Cylc uses to control a given workflow is the task dependency. In a script file, the

developers define, for each task, the parallelism settings and where data is to be stored.

Consider the Cylc workflow for a toy monthly cycling workflow in Fig. 1. In this workflow,

an atmospheric model (labelled as model in the figure) simulates the physics from a current state

to predict the future, for example, a month later. In climate research, this process is repeated in

the model to simulate years into the future. Once the simulation of any month is computed, data

for this month becomes available and can now be analysed. In this workflow, the task model

is followed by tasks postprocessing (post), forecast verification (ver), and product generation

(prod), all specified as a workflow in a Cylc configuration file (flow.cylc).

Potential of I/O Aware Workflows in Climate and Weather

36 Supercomputing Frontiers and Innovations

Figure 1. Example of a Cylc workflow with its configuration file [19]

1.2. Workflow Execution

While Cylc is directing the execution of workflows, several components are presented in the

implementation. The software stack involved in a general workflow is depicted in Fig. 2. Next,

each stage of the execution is further described.

JobCylc Workload
Manager

ApplicationWorkflow Script

Define

Start

Config File

Figure 2. Software stack and stages of execution

1. Scientist specifies the workflow and provides a command or a script for each task. As part

of the Cylc configuration, the command(s) to be run, any environment variables used by

these application(s), and any workload manager directives. After that, the user enacts Cylc

to start the workflow.

2. Cylc parses the workflow configuration file (flow.cylc), generates tasks dependencies,

defines a schedule for the execution, and monitors the progress of the workflow. Once a task

can be executed (dependencies are fulfilled), the workflow engine submits a job script for

the workload manager with the required metadata that will run the Cylc task script.

3. Workload Manager such as Slurm [10] is responsible for allocating compute resources

to a batch job and performing the job scheduling. The selected tool queues the job that

represents the Cylc task and plans its execution, considering the scheduling policy of the

data centre. Once the job is scheduled to be dispatched, i.e., resources are available, and

the job priority is the highest, it is started on the supercomputer.

4. Job provides the environment with the resources and runs the user-provided program or

script on one of the nodes allocated for it. Local variables containing information about the

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 37

environment of the batch job, e.g., the compute nodes allocated, enact the Cylc provided

script on the node.

5. Script starts the commands sequentially (a command can be a parallel application). During

the creation of the script, Cylc has included variables that describe the task in the workflow.

The information is typically fed into the application(s) representing the task and defining

the storage location. The script uses commands to generate filenames considering the cycle

and may store data in a workflow-specific shared directory. Either these commands are set

in the Cylc workflow and then injected as environment variables or directly utilised as a

part of the user-provided script.

6. Application is executed taking the filenames set by the script.

1.3. I/O Stack of a Parallel Application

Climate applications may have complex I/O stacks, as can be seen in Fig. 3a. In this case, we

assume the application uses XIOS [17], which is providing domain-specific semantics to climate

and weather. It may gather data from individual fields distributed across the machine (exploiting

MPI for parallelism) and then uses NetCDF [4] to store data as a file. Under the hood, NetCDF

uses the HDF5 API with its file format. Internally, HDF5 uses MPI and its data types to specify

the nature of data stored. Finally, data is stored on a parallel file system like Lustre which, on

the server-side, stores data in a local file system on block devices such as SSDs and HDDs.

Different applications involved in a workflow may use different I/O stacks to store their

outputs. Naturally, the application which uses previously generated data as its inputs must use

a compatible API to read the specific data format. In Fig. 3a, for example, XIOS may perform

parallel I/O via the NetCDF API, allowing subsequent processes to read data directly using

NetCDF. Within the ESiWACE project2, we are developing the Earth System Data Middleware

(ESDM) [14] to allow applications with this kind of software stack to exploit heterogeneous

storage resources in data centres. The goal of ESDM is to provide parallel I/O for parallel

applications with advanced features to optimise subsequent read accesses. Implemented as a

standalone API, it also provides NetCDF integration allowing its usage in existing applications.

Hence, in Fig. 3a, the HDF5 layer can be replaced with ESDM.

Application

XIOS

MPI-IO

Parallel File System

File system

Block device

HDF5

NetCDF

D
ata m

odel
T
ypes

B
yte array

D
o

m
ain

(a) I/O path for an MPI application

HDD

Node

Memory

Node

Memory

NVM

Memory HDD

S3

Cloud

EC2
HDDSSD HDDTape

...

SSD

HDDBurst
Buffer

Data Center
Local Facility

(b) Example of an heterogeneous HPC landscape

Figure 3. Typical hardware and software environment for applications

2https://www.esiwace.eu/

Potential of I/O Aware Workflows in Climate and Weather

38 Supercomputing Frontiers and Innovations

https://www.esiwace.eu/

1.4. Data Centre Infrastructure

At present-day, data centres provide an infrastructure consisting of computing and storage

devices with different characteristics, making them more efficient for specific tasks and satisfying

the needs of different workflows. Take, for example, the supercomputer Mistral at DKRZ, that

consists of 3,321 nodes3 and offers two types of compute nodes equipped with different CPUs

and GPU nodes. Each node has an SSD for local storage, and DKRZ has additionally two shared

Lustre file systems with different performance characteristics. Individual users and projects are

mapped to one file system explicitly, and users can access it with work or scratch semantics.

While data is kept on the work file system indefinitely, available space is limited by a quota.

The scratch file system allows storing additional data, but data is automatically purged after

some time.

Future centres are expected to have even more heterogeneity. A variety of accelerators

(GPU, TPU, FPGAs), active storage, in-memory, and in-network computing technologies will

provide further storage and processing capabilities. Fig. 3b shows such a system with a focus on

computation and storage. Some of these technologies might be locally (specific compute nodes)

or globally available. Depending on the need, the storage characteristics range from predictable

low-latency (in-memory storage, NVMe) to online storage (SSD, HDD), and also cheap storage

for long-term archival (tape). The tasks within any given workflow could benefit from utilising

different combinations of storage and computing infrastructure.

1.5. Data Management

Usually, the scripts representing tasks define how data is placed on the available storage

system. What happens in many current workflows is that they ignore the benefits of using

multiple file systems concurrently and data locality between tasks to colocating them. On top of

that, in the current state-of-the-art scientists optimise the available storage resources intuitively

and compile the information about this decision-making process manually.

If a user knows the workflow and the system characteristics, data placement decisions can

be optimised. Consider, for instance, the situation where each computing node has access to

three file systems: a fast scratch file system on which data may reside only for a week, a slower

work file system, and a local file system. Most current workflows utilise work and scratch

systems. When a task is set to run, the corresponding dataset would be moved from work to

scratch, processed, and the resulting dataset would be transferred back to work. If the scratch

file system reaches its capacity, the dataset would be moved back to work, and the task would

continue running until it is finished, which might be inefficient. In this situation, there are many

straightforward opportunities to utilise data migration to optimise performance, and also other

criteria (e.g., costs). However, with a multitude of file systems that differ at each data centre,

such optimisations would be difficult to achieve manually by users. Policy-driven systems and

burst buffers perform such optimisations automatically to some extent. However, as they lack

information about the workflow, they cannot optimise workflows altogether.

3https://www.dkrz.de/up/systems/mistral

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 39

https://www.dkrz.de/up/systems/mistral

2. State-of-the-Art

Related work to the proposed approach can be categorised into: 1) Technology that exploits

heterogeneous storage environments and supports user-directed policies and 2) Solutions for

workflow processing.

Technology. Manual tiering requires the user or application to control data placement, i.e.,

storing data typically in the form of files on a particular storage system and, usually, moving

data between storage by scripts. One limitation of such an approach is that decisions about how

data are mapped and packaged into files are made by the producing application, and cannot be

changed without manual intervention by a downstream application.

Burst buffer solutions provide a tiered storage system that aims to exploit a storage hierar-

chy. They can be integrated into hardware capabilities such as DDN’s Infinite Memory Engine

(IME) [2] or simple software solutions. A policy system, e.g., deployed on a burst buffer [22],

aims to simplify data movement for the user, but typically migrates objects in the coarse gran-

ularity of files. File systems and data management software such as IBM Spectrum Scale [23],

HPSS [26], BeeGFS [5], and Lustre [3] (e.g., using the progressive file layouts feature) provide

hierarchical storage management allowing to store data on different storage technology accord-

ing to administrator-provided policies. However, the semantic information that can be used by

this type of system to make decisions is limited, e.g., data location, file extension, file age, etc.

The storage community had also adjusted various higher-level software to support storage

tiering on top of several storage systems. For instance, ADIOS provides in-memory staging that

had been exploited by a variety of applications [24]. Hermes [12] introduces a multi-tiered I/O

buffering system with pre-fetcher that provides several data placement policies. iRODS [21] is a

rule-oriented data system that allows scientists to organise data into shareable collections and

provides several patterns for workflows considering data locality and data migration/replication.

Finally, there have also been extensions to batch schedulers to perform data staging for utilising

node-local storage, for example, NORNS [18] as an extension to Slurm.

Workflows. A good overview of the flavours of Scientific Workflow Management Systems

(SWfMS) and their application to data-intensive workflows is given in [15]. The article states that

SWfMS should enable the parallel execution of data-intensive scientific workflows and exploit

vast amounts of distributed resources. Existing solutions recognise challenges in data variety

(formats of the input data), opportunities to optimise the schedule by moving code to data,

specification of the data dependencies for tasks, and they even may consider the capacity of the

available data storage. The execution engine Dryad [9], for example, allows transferring data

between tasks via files or directly using TCP connections and attempts to schedule tasks on the

same nodes or racks. In [16], an approach was presented to monitor and analyse I/O behaviour of

HPC workflows. Swift/T [27], a scripting language for describing dataflow processing enabling

the execution of ensembles of applications, is now openly used as a prototype platform [20].

Recent improvements aim to migrate data to a local cache allowing to exploit locality. For

instance, in [6], information about locality is proposed to be stored in extended attributes.

Several early research in grid workflows and, lately, cloud workflows, use cases of interest

to maximise data locality. Economic factors (including storage costs) for workflow execution

are discussed in [1]. In [7], the authors discuss the role of Machine Learning (ML) for workflow

execution and elaborate a general potential for resource provisionings such as optimisation of

Potential of I/O Aware Workflows in Climate and Weather

40 Supercomputing Frontiers and Innovations

runtime parameters, data movements, and hierarchical storage. In [25], an ML model that stages

data for in-situ analysis by exploiting the access patterns is introduced.

Workflow systems can also be specifically utilised to reproduce scientific results, i.e., recom-

pute the results. Those scalable workflow solutions typically utilise a container solution to allow

execution in an arbitrary software environment. Popper [11], Snakemake [13], and Nextflow [8]

provide a language to specify workflows and to execute them. Snakemake is interesting as it

supports definition and inference of input and output filenames.

While various aspects of our vision have been addressed individually by related work for

different domains, the high level of abstraction that we aim for and the potential it unleashes

goes beyond the capabilities of existing approaches.

3. Vision for I/O-Aware Workflows

Nowadays, in order to run a job in an HPC environment efficiently, researchers have to de-

velop profound knowledge, not only about their workflow, which is expected, but also about deci-

sions regarding storage, communication, computing, and considerations regarding cost-efficiency

of those operations. However, applied scientists should not spend much time understanding hard-

ware characteristics and operational knowledge of running a data centre, but using their expertise

to develop their work and just collect and analyse the results of their experiments.

We aim for achieving an automatic and dynamic mapping of I/O resources to workflows.

Once we have an automated decision about where the job will run and how the storage will be

managed, scientists can then reuse their workflow specification on any system without further

modification and even without previous knowledge about the system architecture.

There are several approaches to implement the technology for the vision proposed in this

work, and changes are needed in the software components to realise it. In Section 4, we will

discuss a specific design for our transitional roadmap considering climate and weather workflows

and tools scientists from this field already use in their routine research.

Our vision for I/O-aware workflows requires two additional pieces of information. Firstly,

the user must augment the workflow description with information about I/O specifications and

explicitly annotate dependencies to datasets. Secondly, details about the storage architecture

must be available.

3.1. System Information

While many optimisations are possible once an abstraction is in place, the improvements

we discuss here are related to the life cycle and placement of datasets into specific storage

according to system performance characteristics and workflow specification. To achieve that,

the system information shall comprise of all available storage systems, the system topology, and

details of each available component. Simplified and complex models of the components can be

included to approximate expected performance for specific I/O patterns. It is expected that the

data centre (or expert user) can create such a configuration file, e.g., by using vendor-provided

information or by executing benchmarks. With this information, a scheduler can make the initial

data placement, transformation, and migration decisions for individual datasets during their life

cycle. This separation of concerns allows us to abstract from the workflow what is essential and

what a system should optimise to ensure smart usage of the available resources.

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 41

3.2. Extended Workflow Description

In general, climate and weather workflows allow specifying tasks and dependencies among

them. We aim to enhance the current information with characteristics for input and output, i.e.,

the datasets. An example workflow with N cycles containing input datasets and (intermediate)

products is illustrated in Fig. 4. Round nodes represent tasks, squared nodes represent data,

and arrows indicate dependencies. In the example, Task 1 needs two datasets to perform its

work, it produces Product 1, and directly communicates with Task 2. For each new cycle, the

checkpoint from the previous cycle (Product 1) is used as input to starting the next cycle. Most

of the workflow can run automatically, except for the manual quality control of the products

and the final data usage of Product 3. This last step represents the typical uncertainty of data

reuse, i.e., it is unclear how Product 3 will be used further. In the approach proposed in this

work, each task is annotated with the required input datasets and the generated products must

include metadata such as data life cycle, the value of data, and how long it should be kept.

The idea here is to embrace the concept that tasks dependencies are really imposed by datasets

dependencies.

Task 1

Dataset 1 Dataset 2

Task 2

Product 2

Manual
QC check

Product 1

Task 3

[OK]

Product 3

Cycle 1

Manual
usage

Task 1

Dataset 1

Task 2

Product 2

Manual
QC check

Task 3

[OK]

Product 3

Cycle 2

Manual
usage

Task 1

Dataset 1

Task 2

Product 2

Manual
QC check

Task 3

[OK]

Product 3

Cycle N

Manual
usage

Checkpoint
Product 1
Checkpoint

Product 1
Checkpoint

. . .

Figure 4. Example of a high-level workflow with tasks and data dependencies

3.3. Smarter I/O Scheduling

The abstraction and automation of the I/O inside a workflow allow a runtime system to

improve data placement and apply data reduction on heterogeneous storage systems. Taking

into consideration the architecture and workflow information, a smarter schedule can now be

realised by exploiting the additional information. Value and priority can influence fault-tolerance

strategies and imply the quality of service for performance and availability. Aspects like data

reproducibility (can it be recomputed easily), type of the experiment (test, production), and

runtime constraints for the overall and potential workflow could allow reducing costs and, hence,

increase scientific output. Next, we outline two core strategies and the potential the proposed

vision can bring to the improvement of current workflows. In the design proposed in this work

(Section 4), we will focus on the data placement strategy.

Strategy: Data Placement Data placement encompasses all data movement-related activ-

ities such as transfer, staging, replication, space allocation and de-allocation, registering and

unregistering metadata, locating and retrieving data4. The general idea is to host a dataset on

the storage system that is most favourable in terms of performance, cost-effectiveness, and avail-

ability for the access pattern observed in the workflow. Here we are considering the optimisation

of data locality, where locality is twofold, spatial and temporal, on a variety of characteristics.

For optimising data placement, we introduce four approaches: data allocation, data migration,

data replication and direct-coupling.

4https://www.igi-global.com/dictionary/data-aware-distributed-batch-scheduling/6782

Potential of I/O Aware Workflows in Climate and Weather

42 Supercomputing Frontiers and Innovations

https://www.igi-global.com/dictionary/data-aware-distributed-batch-scheduling/6782

Data Allocation is the assignment of a specific area of an available storage system to partic-

ular data. In current workflows, the user usually has a script for each task defining the

filenames with a prefix that places datasets generated by the same task into a specific

storage5. Because there is one script responsible for generating the configuration, the de-

cision in which directory the dataset will be stored is somewhat fixed. Such configuration

is done manually and with restricted information about the system architecture. It would

be interesting to explore storage options for the datasets and, e.g., to have datasets from

different cycles placed at different storage systems. For instance, in Fig. 4, alternating the

storage location for Product 2 into two scratch file systems is something that would be

a simple job for an I/O-aware scheduler. However, currently, it implies providing scripts

for that task and all tasks depending on it with information about the different storage

placement.

Data Migration is the process of transferring data from one storage system to another. Typ-

ically, it involves to delete data, but this decision can be delayed to provide read access to

multiple storage systems. Data movement involves a significant overhead, both in terms of

latency and energy-efficient computing, as data must be read on one storage and written to

another. Hence, it needs to be considered carefully. Figure 5 introduces three possible life

cycles for a specific dataset and explains how migrations can be done to improve datasets

accessibility. In Fig. 5a, the dataset could be first stored on the local storage to avoid

congestion on the work file system, then it is migrated to work file system where subse-

quent tasks of the workflow may read it multiple times. In the end, this dataset may be

an intermediate product that can then be deleted. In Fig. 5b, the dataset is stored on the

scratch file system immediately and accessed there. However, the last read access must

happen before files on scratch are automatically removed. Alternatively, Fig. 5c presents

the case where the dataset is created on work and it is copied to a local node. This local

node allows reading accesses of subsequent tasks which might be beneficial for small ran-

dom accesses. For the last two scenarios, subsequent tasks would have to be placed on the

same node where previous data was stored.

Data Replication in computing involves sharing information to ensure consistency between

redundant resources, such as software or hardware components, to improve reliability,

fault-tolerance, or accessibility.

Data might be replicated by enabling the system to rerun parts of the workflow in case of

a data loss. In addition, the system may combine the replication of data by transforming

data into a different representation allowing to achieve better performance considering a

variety of access patterns.

Scratch

Work

Local
t

A

M R R R

D

D

(a) Local and work file systems

t

R R DRAScratch

Work

Local

(b) Scratch file system only

t

D

M R R D

A

Scratch

Work

Local R

(c) Local and work file systems

Figure 5. Alternative life cycles for mapping a dataset to storage and the operations: Allocation,

Migration, Reading, and Deleting

5Complicated scripts would have allowed changing the storage type depending on the cycle. Still, it is a significant

burden to the user.

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 43

Direct-Coupling replaces I/O by communicating data between subsequent steps of a workflow

directly without storing intermediate data products on persistent storage. As an example,

in Fig. 4, the outcome of Task 1 may be used directly by Task 2. Data may also be kept

in memory and cached to achieve a certain level of independence between producer and

consumer.

Strategy: Data Reduction Data reduction decreases the amount of data stored. We discuss

here two potential optimisations: data compression and data recomputation.

Data Compression is the process of encoding information using fewer bits than the original

representation. Knowing the characteristics of data production and usage allows scientists

to annotate the required precision of data in those workflows. The storage system can

exploit such information by reducing the precision of data and automatically picking an

appropriate compression algorithm.

Data Recomputation Climate/weather scientists are trading recomputation with space us-

age manually. By knowing how to rerun the workflow behind the data creation, a smarter

storage system can automatically trade data availability for potential recomputation op-

portunities to optimise the cost-efficiency of the system. Intermediate states could be rerun

by utilising virtualisation and container technologies. Consider Fig. 4 again and that, at

every K cycles of the workflow, the generated Product 3 (from Cycle 1 to Cycle K) are

used in a validation task, called here check. From the workflow, we know that P3C1
6 will

be used to construct P3C2 and then check. This dataset would probably be stored some-

where, and it will not be used until the workflow reaches the K-th cycle. One alternative

is to delete it after it was first used and then recompute it when time is right. The cost

of doing that is storing checkpoint and then use it to reconstruct P3C1. If, for instance,

P3C1 is a large dataset, checkpoint is small, and computing time is short, it is easy to see

that deleting and recomputing it may improve the costs of running the workflow. That is

just an example, and, currently, scientists perform those optimisations manually.

3.4. Benefit

The benefits of the proposed vision are:

Abstraction Providing the abstraction that enables a separation of concerns. Once the I/O

characteristics of a workflow are defined, the user does not have to know the architecture

of the target system on which the workflow will run. Thus, this level of abstraction can

remove the specialist from the decision-making process of individual workflows.

Optimisation The workflow will be optimised specifically for the available system infrastruc-

ture and information about data. In particular, by exposing the heterogeneous architecture,

potential runtime characteristics can be considered. By using information about the value

of data, policies for data management (storage resilience, recomputation, replication, etc.)

can be decided.

Performance-portability With both abstraction and optimisation, the user can specify the

I/O requirements only once for the tasks of a specific workflow, and the I/O-aware workflow

6The PiCj notation represents the Product i generated in the Cycle j.

Potential of I/O Aware Workflows in Climate and Weather

44 Supercomputing Frontiers and Innovations

can now run with optimised data storage on any system without user intervention. Even

more, if the system characteristics change, e.g., it gets upgraded, an additional storage

tier becomes available, or if storage degrades, the I/O-aware workflow could automatically

adapt and make use of this new environment.

4. Design

This section describes our first approach to incrementally extend workflows for climate and

weather that realises parts of our vision. While individual components such as ESDM and Cylc

exist, we have not implemented the described scheduler, yet. To automatically make scheduling

decisions, the software stack needs to:

1. deliver information about dataset life cycle together with the workflow, and

2. adapt the resulting workflow, individual scripts, and application executions to consider the

potential for data placement strategies.

4.1. System Information

The system information of the design is realized using already available capabilities in the

ESDM middleware. We assume ESDM is used as the I/O middleware in the parallel application

(with NetCDF or directly) and orchestrates the I/O according to a simplified ESDM configura-

tion file (esdm.conf). This file contains information about the available technology in the data

centre, its I/O characteristics, and will be used to make decisions about how to prioritise I/O

targets. In the example presented in Fig. 6, we have three storage targets: two global accessible

file systems (lustre01 and lustre02), and one local file system in /tmp that can be accessed via

the POSIX backend. Each of them comes with a lightweight performance model and the maxi-

mum size of data fragments. The metadata section (Line 24) utilises here a POSIX interface to

store the information about ESDM objects. Internally, ESDM creates so-called containers and

dataset objects to manage data fragments.

ESDM manages a pool of threads that should be created per compute node to achieve better

performance and delegates the assignment of optimal block sizes to the storage backend. Since

ESDM supports several (non-POSIX) storage backends, an application can utilise all available

storage systems without any modifications to the code. The configuration file is inquired by

the application utilising ESDM and steers the distribution of data during I/O. To elucidate the

system’s behaviour, ESDM distributes a single dataset across multiple storage devices depending

on their characteristics. While the current system information and performance model are based

on latency and throughput only, ESDM shows that automatic decision making can be made on

behalf of the user.

4.2. Extended Workflow Description

The user now has to provide information about the datasets required as input and the

generated output for each workflow task in a file called I/O-workflow configuration file (io.cylc).

An example of an io.cylc file is shown in Fig. 7. In this file, information about Task 1 is given as

an example, and we expect the extra information about all tasks in the same file. This file could

define a cycle flexibly to be a month or a year according to the file flow.cylc. The notation

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 45

1 "backends": [

2 {"type": "POSIX", "id": "work1", "target": "/work/lustre01/projectX/",

3 "performance-model" : {"latency" : 0.00001, "throughput" : 500000.0},

4 "max-threads-per-node" : 8,

5 "max-fragment-size" : 104857600,

6 "max-global-threads" : 200,

7 "accessibility" : "global"

8 },

9 {"type": "POSIX", "id": "work2", "target": "/work/lustre02/projectX/",

10 "performance-model" : {"latency" : 0.00001, "throughput" : 200000.0},

11 "max-threads-per-node" : 8,

12 "max-fragment-size" : 104857600,

13 "max-global-threads" : 200,

14 "accessibility" : "global"

15 },

16 {"type": "POSIX", "id": "tmp", "target": "/tmp/esdm/",

17 "performance-model" : {"latency" : 0.00001, "throughput" : 200.0},

18 "max-threads-per-node" : 0,

19 "max-fragment-size" : 10485760,

20 "max-global-threads" : 0,

21 "accessibility" : "local"

22 }

23],

24 "metadata": {"type": "POSIX",

25 "id" : "md",

26 "target" : "./metadata",

27 "accessibility" : "global"

28 }

Figure 6. Example of an ESDM configuration file (esdm.conf)

is similar to the specification of Cylc workflows using a nested INI format and, ultimately, files

io.cylc and flow.cylc can be merged.

For each task, inputs and outputs are defined. In the input section, each entry specifies the

virtual name that is used by ESDM as a filename inside NetCDF. Line 5, for example, it defines

that the filename topography is mapped to a specific input file and that this dataset does not

depend on any previous step of the workflow. The next line specifies that the input filename

checkpoint should be mapped to the output of Task 1 checkpoint dataset from the previous

cycle (e.g., the checkpoint generated after completing the last year’s production). For the initial

cycle, the checkpoint file will be empty, and the application will load init data. In the output

section, the datasets are annotated with their characteristics more precisely. For each variable,

a pattern defining how frequently data is output according to the workflow must be provided.

Most data is input and output in the periodicity of the cycle. Still, we can have variables with

different patterns, such as varA, which is output per day regardless of the cycle.

Next, we formally define the expected annotations in all the fields envisioned in the I/O-

workflow configuration file:

Name A primary name for the field/data generated. It is extended by a pattern defined in a

variable (Lines: 11, 19, 26).

Pattern The frequency of data output (Lines: 12, 20).

Lifetime How long data must be retained on storage (if at all) (Lines: 13, 21).

Type The class type of data, i.e., checkpoint, diagnostics, temporary (Lines: 14, 22, 27).

Datatype The data type of data (Lines: 15, 23, 28).

Size An estimate of data size7 (Lines: 16, 29).

7This field can be inferred if dimension and data type are provided.

Potential of I/O Aware Workflows in Climate and Weather

46 Supercomputing Frontiers and Innovations

1 [Task 1]

2

3 [[inputs]]

4

5 topography = "/pool/input/app/config/topography.dat"

6 checkpoint = "[Task 1].checkpoint$(CYCLE - 1)"

7 init = "/pool/input/app/config/init.dat"

8

9 [[outputs]]

10

11 [[[varA]]] # This is the name of the variable

12 pattern = 1 day

13 lifetime = 5 years

14 type = product

15 datatype = float

16 size = 100 GB

17 precision.absolute_tolerance = 0.1

18

19 [[[checkpoint]]]

20 pattern = $(CYCLE)
21 lifetime = 7 days

22 type = checkpoint

23 datatype = float

24 dimension = (100,100,100,50)

25

26 [[[log]]]

27 type = logfile

28 datatype = text

29 size = small

Figure 7. External Cylc I/O-workflow configuration file (io.cylc)

Dimension The data dimension (Line: 24).

Accuracy Characteristics quantifying the required level of data precision (Line: 17).

Note that the user may not be able to provide all required information which can be handled

by assuming a default safe behaviour. For instance, in the case of missing data precision, data

should be retained in the original form. Knowing the dimension or size a priori might be difficult

for scientists, e.g., the log file size is unclear. In this case, the user may insert relevant information

like small or big, indicating that any information is better than no information at all. In future,

we will explore ways to infer the output volume from the input automatically. For instance,

by running the workflow without I/O specification and monitoring I/O accesses for one cycle,

we can propose an I/O description to the user to simplify the specification and generate an

experimental I/O configuration file.

4.3. Smarter I/O Scheduling

From the list of opportunities, we realise data placement and migration in a heterogeneous

(multi-storage) environment. These goals will be achieved via the proposed I/O-aware sched-

uler, called here EIOS (ESDM I/O Scheduler). EIOS will make the schedule considering Cylc

workflow and ESDM provided system characteristics. We are working together with Cylc Team

in developing how EIOS interfaces with Cylc. While Cylc schedules the workflow, EIOS can

provide hints about colocating tasks which generate the opportunity for keeping data in local

storage. Our design imposes only minor changes to Cylc as normal functionalities cover the core

requirements:

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 47

The ability to dynamically set the job (Slurm) directives for a task

This will be achieved by calling an external command (run on the Cylc scheduler host)

which adds additional directives to be used by the job. This command, provided by

EIOS, will determine attributes of previous tasks through simple SQL queries to the Cylc

database. We plan on using the Cylc broadcast functionality to change the instructions

used by a task by running an external program before any task where we may want to

alter the directives.

The ability to dynamically set storage locations

This will be achieved by defining environment variables in the job script which are set

to the output of another external command (run on the job host). This command, also

provided by EIOS, will have access to all the standard Cylc environment variables with

details about the current task.

We plan on utilising DDN’s IME API to pin data in IME and trigger migrations between IME

and a storage backend explicitly. Decisions about data locality will not be made for a whole (and

potentially big) workflow. Instead, the system will make decisions by looking ahead to several

steps of the workflow, allowing reacting to the observed dynamics of the execution. Ultimately,

when a user-script runs, the information about the intended I/O schedule is communicated

from EIOS through a modified filename, which is then used by the ESDM-aware application to

determine the data placement.

4.4. Modified Workflow Execution

The steps to execute a workflow enriched with I/O information and perform smarter schedul-

ing are depicted in Fig. 8. Components of EIOS are involved in different steps of the workflow

and the I/O path. The suggested alterations can be seen in boxes pointed by red arrows, and

the remaining components are the current state-of-the-art for workflows in climate and weather

from Fig. 2. In the following, we describe the modifications we propose in this vision paper for

each component involved in the software stack.

JobCylc Slurm

ApplicationWorkflow Script

Define

Start

EIOS
ESDM via

 E
SDM

Config File
I/O

Config File

Config File

Figure 8. Software stack and stages of execution with the I/O-aware scheduler (EIOS). The red

arrows and boxes indicate additions to the workflow compared to Fig. 2

1. Scientist The user now has to provide an additional file that covers the I/O information

for each task and slight changes have to be made to the current scripts.

2. Cylc EIOS is invoked by Cylc to identify potential optimisations in the schedule before

generating the Slurm script.

Potential of I/O Aware Workflows in Climate and Weather

48 Supercomputing Frontiers and Innovations

3. EIOS The ESDM I/O Scheduler reads the information about the workflow (flow.cylc and

io.cylc configuration files) and acts depending on the stage of the execution. EIOS consists

of several subcomponents:

• The high-level scheduler that interfaces with Cylc.

• A tool to generate pseudo filenames used by the ESDM-aware applications.

• A data management service (not shown in the figure) that migrate and purge data at

the end of the life cycle.

EIOS components use knowledge about the system by parsing the esdm.conf file. EIOS

may decide that subsequent jobs shall be placed on the same node, reorder the execution of

some jobs, and provide information for conducting data migration.

4. Slurm Cylc may now have added an optimisation identified by EIOS which is promptly

handled by a modified Slurm. Also, if migrations have to be performed, Slurm will administer

them according to the specification in the job script.

5. Job A job might run on the same node as a previous job to utilise local storage.

6. Script Filenames are now generated by a replacement command that calls EIOS to create

a pseudo filename. This filename will encode additional information for ESDM about how

to prioritise data placement according to data access.

7. Application The application may either use XIOS, NetCDF with ESDM support or ESDM

directly to access datasets. ESDM loads the file esdm.conf that contains the information

about the available storage backends and their characteristics. ESDM extracts the long-

term schedule information from the generated pseudo filenames and employs them during

the I/O scheduling to optimise the storage considering data locality among tasks. Basically,

ESDM can now change the priorities for data placement in the different storage locations

that would typically be encoded in Cylc’s configuration file.

5. Potential Benefit

In this section, we discuss the potential performance benefit that our vision for I/O-aware

workflows may have considering DKRZ Mistral supercomputer, ESDM current version and a

hypothetical workload related to the workflow in Fig. 1. In our scenario, we compare the usage

of the node-local file system8 with a globally shared Lustre file system to store intermediate

data. We focus on the model execution and subsequent verification and postprocessing steps.

Firstly, checkpoints of a long model execution chain could be stored locally and restart from

there. When the subsequent jobs require the whole data to generate a product, they can be run

on the same nodes.

Figure 9 shows the read/write performance when using ESDM to store a time series of

10 steps of a variable with 200 k × 200 k dimension (about 1 km global resolution of the model,

equivalent to 3 TB of data in total). Note that, while we only consider the volume data for one

variable with one level and ten timesteps, this value could be multiplied by a sensible number of

levels and timesteps of the model. Data is stored on either Lustre02 or both Lustre file systems –

ESDM splits data of a single variable internally and distributes them across the file systems.

While the mapping is not yet optimal, the figure shows that the write performance benefits

from this approach. In our observations, performance will not improve beyond 500 nodes, which

8We assume the availability and fault-tolerance of the nodes is non-uncritical for the particular workload – typically

nodes can be repaired and returned to the pool within days.

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 49

Figure 9. Lustre performance for 100, 200, and 500 nodes

might be due to the fact that each Lustre file system has 128 Object Storage Targets (256 in

total).

Another improvement can be achieved by using local storage. Each local SSD of Mistral

is a Micron M600 MTFD9 (256 GB), which has a nominal sequential read/write performance

slightly above 500 MB/s. Hence, with 500 nodes, we could achieve 250 GB/s, which surpasses

the Lustre performance observed in Fig. 9. Even more, our 3 TB of data would be about 6 GB

per node, which could be cached in memory and overlap with the computation phases. An

additional benefit of using local storage is that the interference with I/O activities of other

jobs would be minimised. Actually, for all reasonable sizes of the experimental data with 500+

nodes, the observed performance of node-local storage would be higher, and thus, improving the

workflow execution time. Since DKRZ has more than 3,000 nodes, using the local SSD would

sum up to 1.5 TB/s speeding up the IO phase by 7x. For model runs with 1 km resolution,

such configurations would be reasonable. It might also be suitable to couple the model with a

parallel analysis process directly using an in-memory file system such as tmpfs. In this case, the

performance per node can be assumed to be 3 GiB/s, making it a viable option for smaller runs.

Users can always use the node-local storage manually and create specific run-scripts to

reproduce similar behaviours utilising the local storage. However, this would be tedious and

error-prone. The purpose of our proposal is to establish an abstraction layer to allow for semi-

automatic decision making and reduce, or even remove manual intervention.

Conclusions

In the domain of climate and weather, organising data placement on storage tiers is per-

formed by the users or via policies, often leading to suboptimal decisions. Additionally, manual

optimisation and hard-coding of storage locations are non-portable and an error-prone task.

We believe users must be able to express their workflows abstractly. By increasing the abstrac-

tion level for scientists, not only tedious manual optimisation could be automatised, but also

strategies for data placement and data reduction can be harnessed. With knowledge about the

data pattern, the runtime system could generate optimised execution plans and monitor their

execution. In this work, we describe the overall vision and a specific design for the software

stack in the domain of climate and weather that we work on in the ESiWACE project. The

proposed changes increase the opportunity for smarter scheduling of storage in heterogeneous

storage environments by considering the characteristics of data and system architecture in the

workflow.

9https://www.anandtech.com/show/8528/micron-m600-128gb-256gb-1tb-ssd-review-nda-placeholder

Potential of I/O Aware Workflows in Climate and Weather

50 Supercomputing Frontiers and Innovations

https://www.anandtech.com/show/8528/micron-m600-128gb-256gb-1tb-ssd-review-nda-placeholder

Acknowledgements

This project is funded by the European Union’s Horizon 2020 research and innovation programme

under grant agreement No. 823988. We thank our collaborators Bryan Lawrence, Glenn Greed, David

Matthews, and Hua Huang for their input to this paper, and the NGI initiative for contributions to the

vision.

This paper is distributed under the terms of the Creative Commons Attribution-Non Commercial

3.0 License which permits non-commercial use, reproduction and distribution of the work without further

permission provided the original work is properly cited.

References

1. Alkhanak, E.N., Lee, S.P., Rezaei, R., Parizi, R.M.: Cost optimization approaches for scientific

workflow scheduling in cloud and grid computing: a review, classifications, and open issues. Journal

of Systems and Software 113, 1–26 (2016), DOI: 10.1016/j.jss.2015.11.023

2. Betke, E., Kunkel, J.: Benefit of DDN’s IME-Fuse and IME-Lustre file systems for I/O intensive HPC

applications. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) High Performance Computing:

ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, 28 June, 2018,

Revised Selected Papers. Lecture Notes in Computer Science, vol. 11203, pp. 131–144. ISC Team,

Springer (2019), DOI: 10.1007/978-3-030-02465-9 9

3. Braam, P.: The Lustre storage architecture. CoRR abs/1903.01955 (2019), http://arxiv.org/abs/

1903.01955

4. Center, U.P.: Network Common Data Form (NetCDF), DOI: 10.5065/D6H70CW6

5. Chowdhury, F., Zhu, Y., Heer, T., Paredes, S., Moody, A.T., Goldstone, R., Mohror, K.M., Yu, W.:

The parallel I/O architecture of the high-performance storage system (HPSS). In: Proceedings of the

48th International Conference on Parallel Processing, August 2019, Kyoto, Japan. pp. 1–10 (2019),

DOI: 10.1145/3337821.3337902

6. Dai, D., Ross, R., Khaldi, D., Yan, Y., Dorier, M., Tavakoli, N., Chen, Y.: A cross-layer solution

in scientific workflow system for tackling data movement challenge. CoRR abs/1805.061675 (2018),

https://arxiv.org/abs/1805.06167

7. Deelman, E., Mandal, A., Jiang, M., Sakellariou, R.: The role of machine learning in scientific

workflows. The International Journal of High Performance Computing Applications 33(6), 1128–1139

(2019), DOI: 10.1177/1094342019852127

8. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P., Palumbo, E., Notredame, C.:

Nextflow enables reproducible computational workflows. Nature Biotechnology 35, 316–319 (2017),

DOI: 10.1038/nbt.3820

9. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel programs from

sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference

on Computer Systems 2007, March 2007, Lisbon, Portugal. p. 59–72. Association for Computing

Machinery, New York, NY, USA (2007), DOI: 10.1145/1272996.1273005

10. Jette, M.A., Yoo, A.B., Grondona, M.: SLURM: Simple Linux Utility for Resource Management.

In: Proceedings of Job Scheduling Strategies for Parallel Processing, 24 June, Seattle, WA, USA.

Lecture Notes in Computer Science, vol. 2862, pp. 44–60. Springer, Berlin, Heidelberg (2002),

DOI: 10.1007/10968987 3

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 51

http://dx.doi.org/10.1016/j.jss.2015.11.023
http://dx.doi.org/10.1007/978-3-030-02465-9_9
http://arxiv.org/abs/1903.01955
http://arxiv.org/abs/1903.01955
http://dx.doi.org/10.5065/D6H70CW6
http://dx.doi.org/10.1145/3337821.3337902
https://arxiv.org/abs/1805.06167
http://dx.doi.org/10.1177/1094342019852127
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1007/10968987_3

11. Jimenez, I., Sevilla, M., Watkins, N., Maltzahn, C., Lofstead, J., Mohror, K., Arpaci-Dusseau, A.,

Arpaci-Dusseau, R.: The popper convention: making reproducible systems evaluation practical. In:

2017 IEEE International Parallel and Distributed Processing Symposium Workshops, 29 May-2 June

2017, Lake Buena Vista, FL, USA. pp. 1561–1570. IEEE (2017), DOI: 10.1109/IPDPSW.2017.157

12. Kougkas, A., Devarajan, H., Sun, X.H.: I/O acceleration via multi-tiered data buffering and prefetch-

ing. Journal of Computer Science and Technology 35(1), 92–120 (2020), DOI: 10.1007/s11390-020-

9781-1

13. Köster, J., Rahmann, S.: Snakemake: a scalable bioinformatics workflow engine. Bioinformatics

28(19), 2520–2522 (2012), DOI: 10.1093/bioinformatics/bts480

14. Lawrence, B.N., Kunkel, J.M., Churchill, J., Massey, N., Kershaw, P., Pritchard, M.: Beating data

bottlenecks in weather and climate science. In: Extreme Data Workshop – Forschungszentrum Jülich,

Proceedings, IAS series. vol. 40, pp. 31–36 (2018)

15. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow man-

agement. Journal of Grid Computing 13(4), 457–493 (2015), DOI: 10.1007/s10723-015-9329-8

16. Lüttgau, J., Snyder, S., Carns, P., Wozniak, J.M., Kunkel, J., Ludwig, T.: Toward understanding I/O

behavior in HPC workflows. In: IEEE/ACM 3rd International Workshop on Parallel Data Storage &

Data Intensive Scalable Computing Systems, 12 Nov. 2018, Dallas, Texas. pp. 64–75. IEEE Computer

Society, Washington, DC, USA (2019), DOI: 10.1109/PDSW-DISCS.2018.00012

17. Meurdesoif, Y., Caubel, A., Lacroix, R., D’erouillat, J., Nguyen, M.H.: XIOS Tutorial (2016), http:

//forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-tutorial.pdf

18. Miranda, A., Jackson, A., Tocci, T., Panourgias, I., Nou, R.: NORNS: extending Slurm to sup-

port data-driven workflows through asynchronous data staging. In: 2019 IEEE International Con-

ference on Cluster Computing, 23-26 Sept. 2019, Albuquerque, NM, USA. pp. 1–12. IEEE (2019),

DOI: 10.1109/CLUSTER.2019.8891014

19. Oliver, H., Shin, M., Matthews, D., Sanders, O., Bartholomew, S., Clark, A., Fitzpatrick, B., van

Haren, R., Hut, R., Drost, N.: Workflow automation for cycling systems: the Cylc workflow engine.

Computing in Science Engineering 21(4), 7–21 (2019), DOI: 10.1109/MCSE.2019.2906593

20. Ozik, J., Collier, N.T., Wozniak, J.M., Spagnuolo, C.: From desktop to large-scale model exploration

with Swift/T. In: 2016 Winter Simulation Conference, 11-14 Dec. 2016, Washington, DC, USA. pp.

206–220. IEEE (2016), DOI: 10.1109/WSC.2016.7822090

21. Rajasekar, A., Moore, R., Hou, C.y., Lee, C.A., et al.: iRODS primer: integrated rule-oriented data

system. Synthesis Lectures on Information Concepts, Retrieval, and Services 2(1), 1–143 (2010),

DOI: 10.2200/S00233ED1V01Y200912ICR012

22. Romanus, M., Ross, R.B., Parashar, M.: Challenges and considerations for utilizing burst buffers in

high-performance computing. CoRR abs/1509.05492 (2015), http://arxiv.org/abs/1509.05492

23. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In: Proceed-

ings of the 1st USENIX Conference on File and Storage Technologies, Monterey, CA. pp. 231–244.

USENIX Association, USA (2002), DOI: 10.5555/1083323.1083349

24. Slawinska, M., Clark, M., Wolf, M., Bode, T., Zou, H., Laguna, P., Logan, J., Kinsey, M., Klasky,

S.: A Maya use case: adaptable scientific workflows with ADIOS for general relativistic astrophysics.

In: Proceedings of the Conference on Extreme Science and Engineering Discovery Environment:

Gateway to Discovery, July 2013, San Diego, California, USA. pp. 1–8. Association for Computing

Machinery, New York, NY, USA (2013), DOI: 10.1145/2484762.2484795

Potential of I/O Aware Workflows in Climate and Weather

52 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/IPDPSW.2017.157
http://dx.doi.org/10.1007/s11390-020-9781-1
http://dx.doi.org/10.1007/s11390-020-9781-1
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1007/s10723-015-9329-8
http://dx.doi.org/10.1109/PDSW-DISCS.2018.00012
http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-tutorial.pdf
http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-tutorial.pdf
http://dx.doi.org/10.1109/CLUSTER.2019.8891014
http://dx.doi.org/10.1109/MCSE.2019.2906593
http://dx.doi.org/10.1109/WSC.2016.7822090
http://dx.doi.org/10.2200/S00233ED1V01Y200912ICR012
http://arxiv.org/abs/1509.05492
http://dx.doi.org/10.5555/1083323.1083349
http://dx.doi.org/10.1145/2484762.2484795

25. Subedi, P., Davis, P.E., Parashar, M.: Leveraging machine learning for anticipatory data delivery in

extreme scale in-situ workflows. In: 2019 IEEE International Conference on Cluster Computing, 23-26

Sept. 2019, Albuquerque, NM, USA. pp. 1–11. IEEE (2019), DOI: 10.1109/CLUSTER.2019.8891003

26. Watson, R.W., Coyne, R.A.: The parallel I/O architecture of the high-performance storage system,

11-14 Sept. 1995, Monterey, CA, USA. In: Proceedings of IEEE 14th Symposium on Mass Storage

Systems. pp. 27–44. IEEE (1995), DOI: 10.1109/MASS.1995.528214

27. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.: Swift/T: Large-Scale

Application Composition via Distributed-Memory Dataflow Processing. In: 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing, 13-16 May 2013, Delft, Nether-

lands. pp. 95–102. IEEE (2013), DOI: 10.1109/CCGrid.2013.99

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 53

http://dx.doi.org/10.1109/CLUSTER.2019.8891003
http://dx.doi.org/10.1109/MASS.1995.528214
http://dx.doi.org/10.1109/CCGrid.2013.99

Bridging the Architecture Gap: Abstracting

Performance-Relevant Properties of Modern Server Processors

Johannes Hofmann1, Christie L. Alappat2, Georg Hager2, Dietmar Fey1,

Gerhard Wellein2

c© The Authors 2020. This paper is published with open access at SuperFri.org

We propose several improvements to the execution-cache-memory (ECM) model, an analytic

performance model for predicting single- and multicore runtime of steady-state loops on server

processors. The model is made more general by strictly differentiating between application and

machine models: an application model comprises the loop code, problem sizes, and other runtime

parameters, while a machine model is an abstraction of all performance-relevant properties of

a processor. Moreover, new first principles underlying the model’s estimates are derived from

common microarchitectural features implemented by today’s server processors to make the model

more architecture independent, thereby extending its applicability beyond Intel processors.

We introduce a generic method for determining machine models, and present results for

relevant server-processor architectures by Intel, AMD, IBM, and Marvell/Cavium. Considering

this wide range of architectures, the set of features required for adequate performance modeling

is surprisingly small.

To validate our approach, we compare performance predictions to empirical data for an

OpenMP-parallel preconditioned CG algorithm, which includes compute- and memory-bound ker-

nels. Both single- and multicore analysis shows that the model exhibits average and maximum

relative errors of 5 % and 10 %. Deviations from the model and insights gained are discussed in

detail.

Keywords: microarchitecture comparison, Intel, AMD, ARM, IBM, performance evaluation,

performance modeling, analytic modeling, execution-cache-memory model.

Introduction

The architectural differences among processor models of different vendors (and even among

models of a single vendor) lead to a diverse server-processor landscape in the high-performance

computing market. On the other hand, several analytic performance models, such as the Roofline

model [10, 25] and the execution-cache-memory (ECM) model [6, 13], show that many relevant

performance features can be described using a few key assumptions and a small set of numbers

such as bandwidths and peak execution rates. In this work we introduce a structured method of

establishing and describing those assumptions and parameters that best summarize the features

of a multicore server processor. It has satisfactory predictive power in terms of performance

modeling of (sequences of) steady-state loops with regular access patterns but is still simple

enough to be carried out with pen and paper. The overarching goal is to allow comparisons among

microarchitectures not based on benchmarks alone, which have narrow limits of generality, but

based on abstract, parameterized performance models that can be used to attribute performance

differences to one or a few parameters or features. As a consequence, reasoning about code

performance from an architectural point of view becomes rooted in a scientific process.

Main contributions

We describe an abstract workflow for predicting the runtime and performance of sequential

and parallel steady-state loops (or sequences thereof) with regular access patterns on multicore

1Friedrich-Alexander-University Erlangen-Nuremberg, Germany
2Erlangen Regional Computing Center, Germany

DOI: 10.14529/jsfi200204

54 Supercomputing Frontiers and Innovations

server CPUs. The core of the method is an abstract formulation of the ECM model, which is

currently the only analytic model capable of giving accurate single- and multicore estimates.

We show that a separation between the machine model, which contains hardware features

alone, and the application model, which comprises loop code and execution parameters, is pos-

sible with some minor exceptions.

We describe a formalized way to establish a machine model for a processor architecture and

present results for Intel Skylake SP and, for the first time, for AMD Epyc, IBM Power9, and

Marvell/Cavium ThunderX2 CPUs. The degree of data-transfer overlap in the memory hierarchy

is identified as a key parameter for the single-core in-memory performance of data-bound code.

The feasibility of the approach is demonstrated by predicting runtime and performance of a

preconditioned conjugate-gradient (PCG) solver and comparing estimates to empirical data for

all investigated processors. ECM predictions for the AMD, Cavium, and IBM CPUs have not

been published before.

Outline

This paper is structured as follows. In Section 1 we detail our testbed and methodology. Sec-

tion 2 describes, in general terms, our modeling approach including application model, machine

model, and the modeling workflow. Section 3 shows how machine models can be constructed

by analyzing data from carefully chosen microbenchmarks and gives results for the four CPU

architectures under consideration. In Section 4 we validate the model by giving runtime and

performance predictions for a PCG solver and comparing them to measurements. Finally, Sec-

tion 5 puts our work in the context of existing research and Section 5 summarizes and concludes

the paper.

1. Methodology and Testbed

In this section we point out some relevant high-level properties, while details will be discussed

later. Note that we generally take care to run the optimal instruction mix for all benchmark

kernels (i.e., using the most recent instruction sets available on the hardware at hand, with

appropriate unrolling in place to enable optimal instruction-level parallelism). Compiler pecu-

liarities are commented on where necessary. To minimize interference from the operating system,

NUMA balancing was disabled. Transparent huge pages were used by default. Measurements

were carried out on repeated loop traversals so timer resolution was not an issue. Run-to-run

variations were small (generally below 2 %) and will thus not be reported.

An overview of the investigated processors is provided in Tab. 1. The AMD Epyc 7451

(EPYC) has a hierarchical design comprising four ccNUMA nodes per socket and six cores per

domain. L3 cache segments of 8 MiB each are shared among the three cores of a core complex

(CCX). The Uncore of the processor (i.e., the L3 cache, memory interface, and other I/O

circuitry) is clocked at a fixed 2.66 GHz. Although the cores support the AVX2 instruction set,

32-byte (B) wide SIMD instructions are executed in two chunks of 16 B by only 16-B wide

hardware, so that an effective SIMD width of 16 B applies.

Although the Intel Xeon Skylake Gold 6148 (SKL) has a base core frequency of 2.4 GHz

and a wide range of Turbo settings, we fix the clock speed to 2.2 GHz in all our experiments

in order to avoid the automatic clock-speed reduction when running AVX-512 code [16]. The

AVX-512 SIMD extensions were introduced with the SKL architecture and provide 64-B wide

vector registers and execution units. The Uncore frequency is set to its nominal value of 2.4 GHz.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 55

Table 1. Key specifications of testbed machines

Microarchitecture Zen (EPYC) Skylake-SP (SKL) Vulcan (TX2) Power9 (PWR9)

Chip Model Epyc 7451 Gold 6148 ThunderX2 CN9980 8335 GTX EP0S

Supported core freqs 1.2–3.2 GHz 1.2–3.7 GHz 2.2–2.5 GHz 2.8–3.8 GHz

De-facto freq. 2.3 GHz 2.2 GHz 2.2 GHz 3.1 GHz

Supported Uncore freqs 2.66 GHz 1.2–2.4 GHz 1.1 GHz N/A

Cores/Threads 24/48 20/40 32/256 22/88

SIMD extensions AVX2 AVX-512 NEON VSX-3

L1 cache capacity 24×32 KiB 20×32 KiB 32×32 KiB 22×32 KiB

L2 cache capacity 24×512 KiB 20×1 MiB 32×256 KiB 11×512 KiB

L3 cache capacity 8×8 MiB 27.5 MiB 32 MiB 110 MiB

Memory Configuration 8 ch. DDR4-2666 6 ch. DDR4-2666 8 ch. DDR4-2400 8 ch. DDR4-2666

Theor. Mem. Bandwidth 170.6 GB/s 128.0 GB/s 153.6 GB/s 170.6 GB/s

These choices are not a limitation of generality since all procedures described in this work can

be carried out for any clock-speed setting. SKL also features a boot-time configuration option

of sub-NUMA clustering (SNC), which splits the 20-core chip into two ccNUMA nodes, each

comprising ten cores (while the full L3 is still available to all cores). This improves memory-

access characteristics and is thus a recommended operating mode for HPC in our opinion. The

last-level cache (LLC) prefetcher was turned on for the same reason.

The Cavium/Marvell ThunderX2 CN9980 (TX2) implements the ARMv8.1 ISA with 128-

bit NEON SIMD extensions that support double-precision floating-point arithmetic for a peak

performance of two 16-B wide FMA instructions per cycle and core. The 32-core chip runs at a

fixed 2.2 GHz clock speed, while the L3 cache runs at half the core speed. The victim L3 cache

is organized in 2 MiB slices but shared among all cores of the chip.

The Power9 processor used for our investigations is part of an IBM 8336 GTX data

analytics/AI node. Being an implementation of the Power ISA v3.0, the core supports VSX-

3 SIMD instructions, corresponding to 16-B wide vector registers. A 512 KiB L2 cache is shared

between each pair of cores. The victim L3 cache is segmented, with eleven slices of 10 MiB each,

and each slice can act as a victim cache for others [20].

High-level language code for both the Intel and AMD processors was compiled with the

Intel C compiler (version 19.0 update 2). On the Marvell and IBM processors the ARM clang

(version 19) and the IBM XL C (version 16.1.0) compilers were used, respectively. To get the

compiler generate an appropriate instruction mix, the -O3, -xHost, -mavx2, and -mavx com-

piler flags are required for the AMD Epyc processor. For the Intel Skylake processor, the -O3,

-xCORE-AVX512, and -qopt-zmm-usage=high flags were used. For the Marvell TX2 processor,

the -Ofast and -mtune=native flag were employed. Finally, for the IBM Power9 processor,

the -O5, -qarch=pwr9, and -qsimd=auto flags were used.

Note that the particular choice of compilers was to some extent arbitrary, because it is

not our intention to provide a comprehensive compiler comparison. It must be understood that

compilers may fail to produce “optimal” code for a loop, but modeling procedures like the one

we show here can be used to pinpoint such deficiencies.

The likwid suite [5] version 4.3.3 was used in several contexts: likwid-pin for thread-core

affinity, likwid-perfctr for counting hardware performance events, and likwid-bench for low-

level loop benchmarking (with customized kernels for TX2 and PWR9). Instruction latency and

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

56 Supercomputing Frontiers and Innovations

throughput were measured using the ibench tool [11]. Where compiled code was required, we

used the compiler versions and flags indicated in Tab. 1.

2. Modeling Approach

Just like the Roofline model, the ECM model is an analytic performance model for streaming

loop kernels with regular data-access patterns and a uniform amount of work per loop iteration.

Unlike Roofline, however, ECM favors an analytic approach. As a result, the model can give

single- and multicore estimates with high accuracy without relying on a large number of mea-

surements. Moreover, the analytic nature enables the evaluation of different hypotheses with

respect to a processor’s performance behavior by investigating which of them lead to a model

that best describes empirical performance, thereby enabling deeper insights than measurement-

based approaches such as Roofline. See Section 5 for a more thorough comparison of the models

and their predictive powers.

Two major shortcomings of the ECM model concern its loose formulation and the resulting

lack of portability: in its current form, the model mixes general first principles and Intel-specific

microarchitectural behavior into a set of rules that make it difficult to apply it to other processors.

In the following, we untangle the original model: First, several truly general (i.e., microarchitec-

ture-independent) first principles and their rationales are laid out. Next, application and machine

models that address code- and microarchitecture-specific properties are covered (in addition, we

provide general instructions on how to determine machine models for new microarchitectures in

Section 3). Finally, the workflow of the new model is demonstrated.

2.1. Model Assumptions

The model assumes that the single-core runtime is composed of different runtime compo-

nents. These include the time required to execute instructions in the core (Tcore) and the runtime

contributions that result from carrying out the necessary data transfers in the memory hierarchy

(e.g., TRegL1 the time to transfer data between the register file and the L1 cache, TL1L2 for L1-

L2 transfers, and so on). Depending on the architecture, some or all of these components may

overlap. The single-core runtime estimate is therefore derived from the runtime components by

putting them together according to the architecture’s overlap capabilities.

If no shared resources are involved, single-core performance is assumed to scale linearly with

the number of active cores for the multicore estimate. In practice, however, at least one shared

resource (the memory interface) will be involved. The model takes conflicts on shared resources

into account by modeling contention and the resulting waiting times in an analytical way. In

the following, some particularities of modern server processors that simplify runtime modeling

are discussed.

Today’s server processors typically feature superscalar, out-of-order cores that support spec-

ulative execution and implement pipelined execution units. Figure 1 shows the execution of

instructions corresponding to a simple vector sum (C[i]=A[i]+B[i]) for a data set in the L1

cache on a hypothetical core. The core has a two-cycle latency for add and load instructions.

When the loop begins execution, each of the two load units can execute a load instruction.

Since there is a two-cycle load latency, inputs for the add instruction will only be available

after two cycles. However, due to speculative execution, the core can continue to execute two

load instructions from the next loop iterations in each cycle. Once input data is available, the

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 57

LOAD

UNIT

1

2

t [cy]

0

LOAD

UNIT

A[0]+B[0]
3

4

5

6

L1 load

latency

ADD

UNIT

STORE

UNIT

A[0] B[0]

A[1] B[1]

A[2] B[2]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

A[1]+B[1]

A[2]+B[2]

A[3]+B[3]

A[4]+B[4]

A[0]+B[0]

add

latency

A[1]+B[1]

A[2]+B[2]

Figure 1. Loop execution on a hypothetical core with load and add latencies of two cycles each

core can begin executing an add instruction in each cycle. Eventually, after another two-cycle

latency (that of the add instruction), the core can begin executing a store instruction in each

cycle. Once this latency-induced wind-up phase of four cycles is complete, instruction latency no

longer impacts runtime; instead, the runtime is determined by the throughput of instructions.

Although latencies might be higher on real processors, the wind-up phase can be neglected even

for short loops with only hundreds of iterations. This leads to one of the key assumptions of the

ECM model: in the absence of loop-carried dependencies and data-access delays from beyond

the L1 data cache, the runtime of a single loop iteration can be approximated by the time that

is required to retire the instructions of a loop iteration. With loop-carried dependencies in place,

the inter-iteration critical path is a good estimate of the runtime. Due to speculative execution,

load/store instructions are decoupled from the arithmetic instructions of a particular loop iter-

ation. This leads to the further assumption that the time to retire arithmetic instructions and

the time to retire load/store instructions can overlap.

(a) (b)

Figure 2. (a) Inter-cache data transfers for a design with more than two buffers to track out-

standing cache-line (CL) transfers; (b) design with only two buffers

The next set of assumptions concerns data transfers in the memory hierarchy. The rela-

tionship between latency and bandwidth is well understood, so most designs typically provide a

sufficient number of buffers to track outstanding cache-line transfers to allow for the saturation

of the data-transfer link between adjacent cache levels. Figure 2a shows such a design with more

than two buffers to track outstanding transfers to hide a two-cycle latency. Sometimes, however,

the number of buffers is insufficient, leading to a deterioration of bandwidth. Figure 2b shows a

variant with only two buffers: after two cycles, no more transfer-tracking buffers are available,

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

58 Supercomputing Frontiers and Innovations

which prevents the initiation of new transfers. Only after a previous transfer completes and the

buffer tracking this transfer is freed can a new transfer request be initiated. As a result, the

data link is idle for one cycle, reducing the attainable bandwidth in practice to two-thirds of the

theoretical value. On some of the investigated processors this problem can be observed for trans-

fers between the LLC and main memory. This can be attributed to significant latencies caused

by the increasingly complex on-chip networks required to accommodate the growing number of

cores of modern CPUs.

The model assumes that data links can typically be fully saturated because a sufficient

amount of buffers are available and adequate prefetching (be it hardware, software, or both)

results in full utilization of these buffers. As a result, runtime contributions of data transfers

can typically be calculated by dividing data volumes by the theoretical bandwidths of the cor-

responding links; the model does, however, include an optional latency penalty to cover edge

cases such as the one shown in Fig. 2b. Therefore, the runtime contribution of data transfers

between memory hierarchy levels i and j is the sum of the actual data transfer time and an

optional latency penalty: Tij = T data
ij + T p

ij .

2.2. Application Model

An application model condenses all of the code-related information required to give runtime

estimates for a particular loop.

It comprises all operations carried out during one loop iteration as well as parameters that

influence data transfers in the memory hierarchy. Most prominently, the latter includes the data-

set size(s), which determine in which level of the memory hierarchy data resides, yet it may also

cover information about blocking size(s) and the scheduling strategy.

2.3. Machine Model

Machine models comprise selected key information about processors. Despite being limited

to few architectural properties, the data included in machine models is sufficient to give mean-

ingful performance estimates. With respect to scope, the contents of machine models can be

separated into two parts: the execution capabilities of cores, and details about the memory

hierarchy. In the following, each of the two components is discussed in detail.

The part concerning in-core execution capabilities deals with the cores’ properties that deter-

mine the runtime contribution of instruction execution. As discussed in Section 2.1, throughput

is a key determinant for single-core runtime, so throughput limits (in operations per cycle) of

relevant operations are included. To address loop-carried dependencies, latencies for the cor-

responding instructions must be included. Moreover, the machine model includes information

about potential bottlenecks that limit operation throughput: On most architectures, different

functional units share the same execution port, which implies that operations associated with

units served by the same port cannot cannot begin execution in the same cycle. Finally, most

modern core designs have some architectural deficiency that prevents them from fully utilizing

the core’s load/store units3.

3Most modern cores feature one store and two load units but only have two address-generation units (AGUs),

which means that in each cycle only two of the three load/store units can be supplied with memory addresses if

complex addressing modes (e.g., base plus scaled offset) are used. In addition to the two-AGU shortcoming, the

EPYC’s cores have only two data paths between the register file and the L1 cache.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 59

loop instructions

application model

instruction-execution

capabilities

memory hierarchy

bandwidth and latency

single-core prediction

 estimates for di!erent

data-set sizes

 P
ECM

, P
ECM

, P
ECM

,…
 core

runtime contributions

instruction-execution

estimates T
comp

 and T
RegL1

data-transfer-time

estimates T
L1L2

, T
L2L3

, …tra"c estimates for

adjacent cache levels

v
L1L2

, v
L2L3

, …

 L2 L3

inputs intermediate predictions final predictions

multi-core prediction

estimates for di!erent

data-set sizes and

core counts P
ECM

(n),…
 Mem

1

2

3

4

machine model

overlap properties

memory hierarchy org.

problem size, etc.

Figure 3. Overview of the performance prediction workflow, including application model, ma-

chine model, and runtime contributions

The second part of the machine model covers information about the cache hierarchy. This

entails everything needed to calculate the volume of data transfers for a loop: the number

of cache levels, their effective4 sizes, write-through vs. write-back policy, victim/exclusive vs.

inclusive, etc. For example, a victim cache typically implies additional traffic since it receives

both modified and unmodified cache lines (CLs) from the overlying cache, whereas a non-victim

cache only receives modified CLs. In order to get from data volumes to runtime contributions

of individual data paths, the machine model also requires data about the available bandwidth

between adjacent caches, and whether transfers take place over a single bi-directional link or

over two uni-directional links. Moreover, if an architecture provides an inadequate number of

buffers to track outstanding transfers, the corresponding latency penalties must be included.

Finally, the second part of the machine model contains a description of which transfers in the

memory hierarchy can occur simultaneously5.

2.4. Performance Prediction Workflow

An overview of the performance-prediction workflow is provided in Fig. 3. As indicated

in the figure, the process can be divided into four steps: first, the runtime contribution of

performing operations in the core (with all data coming from L1) is determined. Next, the

runtime contributions of data transfers in the memory hierarchy are calculated (to this end,

data transfer volumes in the memory hierarchy need to be determined). In a third step, the

previously determined runtime contributions are put together to arrive at a single-core runtime

estimate. Finally, based on the single-core estimate from the previous step, multicore predictions

can be given. In the following, each of the steps is discussed in detail.

4For several reasons (imperfect cache replacement strategies, prefetchers preempting data that could have other-

wise been reused, etc.) the effective capacity of a cache is lower than its nominal size. In practice, the heuristic of

halving the theoretical cache size delivers good estimates for the effective size.
5As will be demonstrated later, we find that in practice, this rarely discussed architectural feature turns out to be

much more important for single-core in-memory performance than other more prominent features such as SIMD

width or cache bandwidths.

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

60 Supercomputing Frontiers and Innovations

2.4.1. Contributions of instruction execution in the core

The fact that some architectures cannot overlap data transfers between the register file and

the L1 cache on one hand and the L1 and L2 caches on the other makes it necessary to separate

the runtime contribution of operations into two components: Tcomp, which are cycles in which

no data transfers between registers and L1 cache occur, and TRegL1, which are cycles in which at

least one load or store operation retires. Unless otherwise indicated, all arithmetic and load-store

operations handle double-precision floating-point operands.

To estimate TRegL1, first the numbers of load and store operations (nld and nst) are de-

termined by counting their occurrences in the loop body; the numbers are then divided by the

respective throughputs, τld and τst, taking additional constraints specified in the machine model

into account (e.g., a limited throughput for the overall number of load/store operations per cy-

cle, τld/st, caused by a limited number of AGUs). The corresponding runtime contribution is

the maximum of all components:

TRegL1 = max

(
nld
τld

,
nst
τst

,
nld + nst
τld/st

)
. (1)

The number of cycles in which no load/store operations are carried out is determined in a

similar way: operation counts are found in the loop body. Each count is then divided by the

operation’s throughput documented in the machine model. As before, additional constraints

have to be considered: For example, execution-port conflicts (cf. Section 2.3) can be addressed

by summing up the contributions of functional units that share the same execution port (this is

demonstrated in the equation below, where mul and div units are assumed to be assigned to

the same execution port). The fact that cores have an upper limit to the number of instructions

they can retire per cycle can be modeled by dividing the total number of operations by a cor-

responding instruction-throughput limit τtotal. Finally, loop-carried dependencies are accounted

for by including the contribution of the longest cross-iteration dependency chain, Tdep, when

determining the overall runtime by applying the maximum to all individual contributions:

Tcomp = max

(
nadd
τadd

,
nmul
τmul

+
ndiv
τdiv

, . . . ,

∑
i ni

τtotal
, Tdep

)
. (2)

2.4.2. Contributions of data transfers in the memory hierarchy

Before the runtime contributions of data transfers can be determined, the data volumes

transferred over the various data paths in the memory hierarchy need to be established. To

this end, the location of the data set(s) in the memory hierarchy is derived from the data-set

size(s) specified in the application model. Then, the load/store operations documented in the

application model are revisited: for each operation, the corresponding data set is identified, and

the transfers required to get the data from its current location in the memory hierarchy to the L1

cache are recorded. Along with the required transfers, the data volume is determined (e.g., four

bytes per single- or eight bytes per double-precision floating-point number). Note that full CL

transfers need to be taken into account even when CLs are only partially read or written (e.g.,

for strided but regular access). In case of truly random access patterns, latency contributions

will dominate. This case is not part of the ECM model yet, although it is possible to incorporate

it in a phenomenological way [2]. Extending the analytic model towards random accesses is part

of future work.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 61

Note that determining data-transfer volumes requires keeping track of previous data accesses

to detect possible data reuse. While this can be done manually for kernels with simple data-access

patterns, analysis of complex patterns is best left to cache simulators (e.g., pycachesim [8]). To

this end, per-loop traffic estimates from cache simulators can be used as inputs in Eq. 3. If

necessary, the resulting numbers can be validated by measuring the actual data volumes using

hardware performance events (e.g., with papi [23] or likwid [5]).

Once the data volumes have been established, the runtime contribution Tij of data transfers

between levels i and j of the memory hierarchy can be calculated:

Tij = max/sum

(
vi→j
bi→j

,
vi←j
bi←j

)
+ T p

ij = T data
ij + T p

ij . (3)

The process works by first calculating the time the data link(s) connecting levels i and j are

actually busy transferring data. To calculate this data-link busy time, T data
ij , the data volumes,

v, transferred in each direction are divided by the bandwidth, b, of the link over which the data

is transferred. The two directional components Ti→j and Ti←j are then combined according to

the information provided in the machine model. If there is a single bi-directional link over which

transfers in both directions take place, the combined data-link busy time is the sum of both

contributions. If there are two dedicated uni-directional links over which the transfers can take

place, the overall data-link busy time is the maximum of both contributions. The overall data-

transfer time, Tij , is given by the sum of the previously determined data-link busy time and (if

applicable) the corresponding latency penalty specified in the machine model.

2.4.3. Combination of runtime contributions for single-core estimate

To arrive at a single-core runtime prediction, the previously determined components are

put together according to the overlap capabilities specified in the machine model. To this end,

first, all non-overlapping components are added up. The result is then included in the set of

overlapping components, and the total runtime estimate is the maximum of the resulting set:

T = max

(overlapping︷ ︸︸ ︷
T..., · · · , T...,

non-overlapping︷ ︸︸ ︷
T... + · · ·+ T...

)
. (4)

The following example will clarify the process: when discussing the model assumptions in

Section 2.1, it was established that Tcomp and TRegL1 overlap on all processors. Let us further

assume that the architecture under consideration has a multi-ported L1 cache, which enables

the cache to simultaneously communicate with the register file and the L2 cache. Assuming no

overlap of other transfers, the runtime estimate for an in-memory data set on this processor

would be T = max(Tcomp, TRegL1, TL1L2, TL2L3 + TL3Mem).

The runtime estimate T can be converted into a performance estimate P by dividing the

amount of work W carried out in one loop iteration by the runtime estimate for the same, and

multiplying the result with the core frequency: P = fcore ·W/T .

For our investigations fcore was fixed, so converting from runtime to performance estimates

is trivial. In practice, however, fcore is often set dynamically on the authority of the operating

system, the processor, or even the user. However, fcore is virtually constant during the execution

of a particular steady-state loop. This is because the metric used by the underlying mechanism

(e.g., DVFS) to select fcore does not change while the processor is in a steady state. For a

particular kernel, fcore can thus be measured via hardware performance events. For each kernel of

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

62 Supercomputing Frontiers and Innovations

a multi-loop application, fcore value must be determined individually. See [13] for an investigation

of the model’s ability to deal with different core and Uncore frequencies.

2.4.4. Multicore prediction based on single-core estimate

Multicore estimates require as inputs the single-core runtime estimate T , and the time the

memory interface is busy transferring data T data
Mem, which is the sum of all data-link busy times

that involve the main memory (e.g., in a memory hierarchy with a victim L3 cache, where

memory sends data to L2 and receives modified CLs from L3, T data
Mem = T data

L2Mem + T data
L3Mem).

In the absence of shared resources (e.g., if the entire data set fits into core-private or scalable6

shared caches), single-core performance P is expected to scale linearly with the number of active

cores n, so the multicore estimate for n active cores is just P (n) = nP . If shared resources, such

as the main memory interface, are involved, resource conflicts and the resulting waiting times

must be considered. Here we employ a statistical model that is motivated by first principles:

the utilization of the memory bus u is the probability of another core encountering a busy bus.

For a single core, the utilization is given by the ratio of the time the memory interface is busy

transferring data and the overall runtime estimate: u(1) = T data
Mem/T . If multiple cores are active,

the utilization is expressed recursively:

u(n) = min

(
1,

nTMem

max(Tcomp, . . . , TMem + u(n− 1)(n− 1)p0)︸ ︷︷ ︸
Tconf

)
. (5)

In the numerator, the memory-bus busy time is multiplied with the number of active cores,

n, since multiple cores are using the memory interface. The denominator is the expanded ex-

pression for the runtime estimate, T , where a conflict time has been added to the data-transfer

time involving the memory interface. This conflict time represents the average time that a core

encountering a busy memory bus has to wait for the bus to become available to it. The conflict

time encountered in a scenario with n active cores is given by multiplying the probability of a

core hitting a busy memory bus, which corresponds to the memory utilization of the remaining

cores, u(n − 1), with the time the other n − 1 cores are using the interface. This results in

Tconf = u(n− 1)(n− 1)p0, with p0 being an empirical fit parameter7.

For performance estimates, the memory-bus utilization is multiplied with the performance

to be expected with fully saturated bandwidth: P (n) = u(n)P Sat. The memory-saturation

performance, P Sat, corresponds to the bandwidth limitation of the Roofline model and is deter-

mined by dividing the amount of work per loop iteration by the memory-bus busy time, and

multiplying the result with the core frequency: P Sat = W/TMem · fcore.

3. Machine Model Construction

3.1. Method to Determine Machine Models

In the ideal case, all of the data required for a machine model would be available in ven-

dor data sheets. In practice, however, this is rarely the case because important information is

6Scalable means a parallel efficiency close to one for all relevant degrees of parallelization (i.e., up the maximum

number of cores sharing the cache).
7Although p0 can also be modeled analytically employing the data used to derive TMem, we find that the level of

detail required to reliably estimate the parameter outweighs the benefits of using an analytical approach.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 63

deemed irrelevant or, more likely, intellectual property and therefore omitted from specifications.

Moreover, the interaction of different parts of the processor might lead to situations in which

vendor-specified numbers are not attainable (see, e.g., the discussion on load/store throughput

in Section 2.3). In the following, a method is presented that allows to establish machine models

in cases where relevant information is missing, or the documented specifications turn out to be

impractical for some reason.

3.1.1. Instruction throughput and latency

At fixed core clock speed fcore, the time t it takes the core to execute a large number n

of independent8 instructions of type i is measured. The throughput of the instruction is then

ωi = n/(tfcore). Since we will usually use a work unit of one (high-level) loop iteration in the

modeling procedure, the instruction throughput is multiplied by the appropriate SIMD width

wsimd to get the operation throughput :

τi = wsimd × ωi = wsimd × n/(tfcore). (6)

To measure latency, an artificial data-dependency chain is introduced by making each in-

struction use the output of the previous instruction as its input. This forces each new instructions

to be held at a reservation station until the previous instruction has completed. The holding

time, Λ = n/(tfcore), corresponds to the instruction’s latency. The measured instruction latency

is divided by the appropriate SIMD width to get the operation latency :

λi = Λi/wsimd = n/(tfcorewsimd). (7)

While implementing these two strategies sounds simple in theory, deriving a suitable in-

struction mix from a high-level language implementation can be difficult in practice because

compiler optimizations get in the way. We solve this problem by side-stepping the compiler and

hand-crafting the necessary code in assembly language. To automate the process of determining

latencies and throughputs, the ibench tool [11] was developed, which comprises a measurement

framework and a number of assembly-code files for the most widespread instructions of AMD,

IBM, ARM, and Intel processors.

3.1.2. Topology and data flow in the memory hierarchy

Information about the topology of the memory hierarchy, such as the number of caches,

their sizes and properties (write-back vs. -through, victim vs. non-victim) are often well doc-

umented in vendor data sheets. Even if this is not the case, the data is easy to obtain, for

most processors provide access to it over a well-defined interface. In case of x86, for instance,

the cpuid instruction can be used to extract detailed information about the memory hierarchy,

including the capacity, associativity, number of sets, inclusiveness, cache-line size, and more for

each level in the hierarchy. Other processors offer similar mechanisms, and the Linux sysfs file

system provides an architecture-independent interface to obtain the necessary data.

Information about data flow (i.e., the path data takes from a particular level in the memory

hierarchy to reach a core’s L1 cache) can be derived from the topology information. In most cases,

only stores require special attention to determine whether store-misses trigger a write-allocate

8Independent means that there are no data dependencies between the different instances of the instruction.

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

64 Supercomputing Frontiers and Innovations

for the missed CL or if some optimization (as the one implemented in Marvell’s ThunderX2)

detects whether a full CL is written to avoid the write-allocate. Such details can be derived

with the help of hardware performance events, which can be used to record the data volumes

exchanged between different levels of the memory hierarchy.

3.1.3. Bandwidth, latency, and overlap in the memory hierarchy

Typically, cache bandwidths are well-documented by vendors. In some cases, however, ven-

dors only specify bandwidths for selected caches. In these instances, cache bandwidths can be

determined by selecting a set of reasonable bandwidth candidates (e.g., 16, 32, and 64 B/cy),

and examining which of the corresponding estimates best agrees with empirical data. To the

best of our knowledge, no vendor publishes data on the overlap properties of their processors’

memory hierarchies, so this data needs to be determined in a similar way.

The process of comparing estimates to empirical data is iterative: once the bandwidth and

overlap properties for a particular memory level have been established, the numbers can be

used as input for different bandwidth and overlap assumptions in the next memory level. In

the following, the process is demonstrated on the SKL processor for the well-known stream

triad [17].

(a) L1 (b) L2

(c) L3 (d) Main memory

Figure 4. Comparison of model estimates to empirical data for the stream triad on SKL for

data sets in (a) L1, (b) L2, and (c) L3 caches, and (d) main memory

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 65

On the SKL processor, one loop iteration of the stream triad (A[i]=B[i]+s*C[i]) com-

prises two loads (one from each of the input arrays B and C), one fused multiply-add (FMA) (to

calculate the result), and one store (to write the result to the output array A). Using ibench,

the following operation throughputs were established: τfma = 16/cy, τld = 16/cy, τst = 8/cy,

and τld/st = 16/cy. According to Equations (1), (2), and (4), for a data set in the L1 cache this

leads to a single-iteration runtime estimate of

TL1 = max

(
Tcomp︷ ︸︸ ︷

1 fma/it

16 fma/cy
,

TRegL1︷ ︸︸ ︷
2 ld/it

16 ld/cy
,

1 st/it

8 st/cy
,

3 ld/st/it

16 ld/st/cy

)

≈ 0.19 cy/it.

In Fig. 4a we compare this prediction to measurements. Note that the estimate corresponds

to the lower limit of runtime, which is actually attained by the running code if the loop is long

enough.

If the data set resides in the L2 cache, a total of 32 B are transferred between the L1 and

L2 caches per iteration: 8 B for each of the double-precision floating-point numbers from the

input arrays B and C, 8 B for the write-allocate to A, and 8 B for evicting the updated element

of A to the L2 cache. Bandwidth assumptions of 16, 32, and 64 B/cy yield estimates for TL1L2 of

two, one, and one-half cycle, respectively. Figure 4b compares the estimates to empirical data.

The assumptions of no overlap and a bandwidth of 64 B/cy match the measurements strikingly

well; incidentally, the L1-L2 cache bandwidth as advertised by Intel is also 64 B/cy. With L1-L2

cache bandwidth and overlap properties established, we can move on to the L3 cache. The data

exchanged between the L2 and L3 caches is 48 B because each of the three eight-byte reads

from L3 (two from the input arrays B and C, one write-allocate from the target array A) triggers

the eviction of data replaced in the L2 cache to the victim L3. L2-L3 bandwidth assumptions

of 16, 32, and 64 B/cy yield estimates for TL2L3 of 3, 1.5, and 0.75 cy, respectively. Figure 4c

compares estimates derived from the different bandwidth and overlap assumptions to empirical

data for a data set in the L3 cache. In this case we find that that assumptions of no overlap

and a bandwidth of 32 B/cy agree very well with the measurement. Finally, for in-memory data

sets, only different overlap assumptions must be made, since the sustained memory bandwidth

is determined by measurement (55 GB/s for one SNC domain, which for fcore = 2.2 GHz is

25 B/cy). Figure 4d compares the resulting estimates to empirical data (black line) and we find

that in memory, too, no overlap of data transfers occurs.

In addition to runtime measurements obtained with SNC mode and the LLC prefetcher (PF)

enabled, Fig. 4d also shows data where these features were disabled. This is to demonstrate that

in some settings, bandwidth and overlap are not sufficient to describe the empirical behavior

in a satisfying manner. Then, a latency penalty must be added to data transfer times (see

Section 2.1).

3.2. Results for Investigated Processors

Table 2 shows the machine models that result from applying the previously introduced

method to the processors from the testbed.

The upper part of the table lists relevant operation throughput (τ) and instruction latency

(λ) values. The center part lists bandwidths and latency penalties (if applicable) in the memory

hierarchy. Note that in cases where two numbers are provided (e.g., 64+16 B/cy for PWR9’s L1-

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

66 Supercomputing Frontiers and Innovations

Table 2. Machine models determined for the investigated processors

Microarchitecture Skylake-SP (SKL) Zen (EPYC) Vulcan (TX2) Power9 (PWR9)

τadd, τmul, τfma [/cy] 16, 16, 16 4, 4, 4 4, 4, 4 4, 4, 4

τld, τst, τld/st [/cy] 16, 8, 16 4, 2, 4 4, 2, 4 4, 4, 4

λadd, λmul, λfma 0.5, 0.5, 0.5 1.5, 2, 2.5 3, 3, 3 3, 3, 3

bL1↔L2 64 B/cy 32+32 B/cy 64 B/cy 64+16 B/cy

bL2↔L3 32 B/cy 32 B/cy 32 B/cy 32 B/cy

b∗↔Mem 25–28 B/cy 13–16 B/cy 47–56 B/cy 41–45 B/cy

Data-transfer penalties — — — T p
Mem = 0.04 cy/B

Non-overlapping all L2-L3, all (if Mem L2-Mem,

transfers L2-Mem, involved) L3-Mem

L3-Mem

Write-through/ Victim L3 Victim L3 Victim L3 Write-through L1,

victim caches Victim L3

L2 bandwidth), two uni-directional data paths exist between the caches. In such instances, the

first number corresponds to the bandwidth of sending data from the underlying to the overlying

cache, and second number to the bandwidth in the opposite direction. Note that listed memory

bandwidth corresponds to that of a single NUMA node (SNC node on SKL, Zeppelin on EPYC,

full-chip on TX2 and PWR9). Memory bandwidths are specified as ranges, since different data-

access patterns exhibit slightly varying sustained memory bandwidths. The last part of the table

contains overlap capabilities and additional information on cache types.

4. Case Study: PCG

We use a matrix-free PCG solver to demonstrate the viability of our approach in real-world

scenarios. The solver is preconditioned using the well-known symmetric Gauss-Seidel iteration

and relies on the second-order finite-difference method for discretization. We use it to solve the

steady-state heat equation in 2D. The sparse matrix entries are not stored explicitly but hard-

coded into a 2D five-point stencil representation. Hence, the solver is similar to the well-known

HPCG but shows a more interesting phenomenology: as opposed to HPCG, where all loops are

limited by data transfers due to explicit matrix storage, our preconditioner is bound by in-core

pipeline hazards. All computations and data storage are in double precision.

Algorithm 1 shows the entire PCG method. It is composed of a matrix-free sparse-matrix-

vector multiplication (SpMVM) which we refer to as stencil, a symmetric Gauss-Seidel pre-

conditioner (gs), and three BLAS-1 routines: dot product, vector norm, and daxpby. The

code is implemented in C++ and parallelized with OpenMP. The Gauss-Seidel kernels, which

have loop-carried dependencies, are parallelized using a well-known wavefront technique that

preserves the numerical behavior of the serial code [7]. The preconditioner can be vectorized by,

e.g., coloring methods, but this would alter the convergence and render the loops data bound,

which is not the scenario we want to showcase (see above).

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 67

Algorithm 1 PCG algorithm: solve for x : Ax = b

1: r = b−Ax
2: rnorm = 〈r, r〉
3: p = z = Pr

4: α0 = 〈r, z〉
5: i = 0

6: while (i < niter) && (rnorm > ε2) do

7: v = Ap stencil operation (SpMVM)

8: λ = α0

〈v,p〉 dot

9: x = x+ λp daxpby

10: r = r − λv daxpby

11: rnorm = 〈r, r〉 norm

12: z = Pr gs preconditioner

13: α1 = 〈r, z〉 dot

14: p = z + α1

α0
p daxpby

15: α0 = α1

16: i = i+ 1

Algorithm 2 High-level representation of stencil

1: for j = 1 : nj − 1 do

2: for i = 1 : ni − 1 do

3: vj,i = wcpj,i + wy(pj−1,i + pj+1,i) + wx(pj,i−1 + pj,i+1)

4.1. Application Models

The total problem size (ni × nj) was chosen to be ni = 25000 (inner, leading dimension)

and nj = 2000 (outer dimension), so that all arrays reside in main memory. In the following,

application models for all of the PCG components are presented.

Features important for the considered example include the number of loads and stores,

floating-point operations, and loop structures. For simple streaming loops, all of these details

can be derived from high-level code. The daxpby kernel (y[i]=a*x[i]+b*y[i]) entails two

loads, one FMA, one multiplication, and one store. The dot product (d+=x[i]*y[i]) and norm

(n+=x[i]*x[i]) have two and one load(s), respectively, along with an FMA. These kernels can

be fully and effectively vectorized by all compilers.

For kernels with cache reuse such as stencil and gs, reuse-distance analysis (best done using

the layer condition [3, 22]), blocking factors, parallelization strategies, and scheduling techniques

have to be taken into account. The stencil kernel is shown in Algorithm 2, with w∗ representing

different weights obtained from the matrix A. The kernel requires two FMAs, two additions,

one multiplication, one store, and five load operations. SIMD vectorization is straightforward,

but in contrast to the BLAS kernels, different loads can hit different memory hierarchy levels

depending on the reuse distance. For the considered inner dimension of ni = 25000 and outer

(j) loop parallelization employed in our code, the layer condition would require 4ni elements

per thread to fit in a cache. The lowest (i.e., outermost) cache that satisfies this criterion will

only have a miss for one of the four elements on the right-hand side, while the cache levels

above it will have three. On all processors under investigation, the layer condition is satisfied

in the last-level cache (LLC). Changing the inner problem dimension would certainly change

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

68 Supercomputing Frontiers and Innovations

Algorithm 3 High-level representation of gs forward sweep

1: for j = 1 : nj − 1 do

2: for i = 1 : ni − 1 do

3: zj,i = wc(rj,i + wyzj−1,i + wxzj,i−1)

LOAD rj,i

wy

LOAD zj−1,i

FMA

FMA

wx

zj,i−1

MUL

wc

STORE zj,i

Figure 5. Dependency chain of the gs forward kernel when using the Intel compiler. Critical

path shown in gray

the prediction; the ECM model has been demonstrated to yield accurate results in all these

cases [14, 22], so we restrict ourselves to a single size only here. Storing to v implies a write-

allocate through the whole memory hierarchy on all processors, and, at some point, the writing

back of the newly-computed data to memory.

The gs kernel is a symmetric operator comprising a forward and a backward sweep. The

forward sweep (gsf) is shown in Algorithm 3, and requires two FMAs, one multiplication, one

store, and three load operations. The kernel is similar to stencil, but it reads from zj,i−1 and

writes to zj,i, causing a loop-carried dependency. A wavefront technique can be used to parallelize

the kernel [7], and the corresponding layer-condition criterion requires 3ni elements to fit in a

cache. The outermost cache that satisfies this condition will have only two load misses on the

right-hand side, while the others would have three. The gs backward sweep (not shown here for

brevity) is similar, but loops are traversed in reverse direction and wcrj,i in gsf is replaced with

zj,i. The analysis of the kernel follows the same approach, but there is one less load miss.

Both gs loops have loop-carried dependencies, preventing SIMD vectorization. As a result,

a critical path analysis is required. In gsf the element zj,i written in a particular iteration is

read in the next as zj,i−1. The actual delay caused by this dependency can vary depending on

the code generated by the compiler. Figure 5 shows the result when using the Intel compiler and

the critical path of the generated instruction mix includes one FMA and one multiplication. The

ARM clang compiler produces code that does not keep zj,i in a register across loop iterations,

leading to an extra delay caused by storing and loading the element. Due to its particular

unrolling strategy, IBM’s xlc compiler generates a combination of the two previous variants.

4.2. Runtime Predictions

In the following, the proposed model is validated by comparing the model estimates to

empirical performance for the dot product, daxpby and gsf kernels, as well as the full PCG

algorithm. The dot kernel is also used to exemplify how the simultaneous multi-threading (SMT)

feature of modern processors can be incorporated in the model. Note that estimates correspond

to the runtime of a single high-level (i.e., scalar) loop iteration.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 69

4.2.1. Simultaneous multi-threading on SKL

As discussed in Section 4.1, one loop iteration of the dot product entails two loads and one

FMA. According to the machine model documented in Tab. 2, the SKL processor can perform

16 loads and 16 FMAs per cycle for AVX-512 code. Combining application and machine models

according to Eq. (1) yields a contribution of TRegL1 = nld/τld = 2/16 cy = 0.125 cy for data

transfers between the register file and the L1 cache. With respect to computational cycles, it is

worth pointing out that the kernel contains a loop-carried dependency. Each FMA uses as one

of its inputs the result of the previous FMA. Without modulo-variable expansion (MVE) and

SMT, the impact of the dependency corresponds to the FMA latency, so Tdep = λfma = 0.5 cy.

According to Eq. (2), computational cycles therefore amount to Tcomp = max(nfma/τfma, Tdep) =

max(1/16 cy, 0.5 cy) = 0.5 cy. Since both contributions can overlap, the runtime estimate for a

data set in the L1 cache according to Eq. (4) is T = max(TRegL1, Tcomp) = 0.5 cy.

Using either two-way unrolling with MVE or 2-SMT, the impact of the dependency is cut

in half, so Tdep = 0.25 cy. The overall runtime estimate in this case becomes T = 0.25 cy.

The combination of two-way unrolling with MVE and 2-SMT again halves the impact of

the dependency, so Tdep = 0.125 cy, and the overall runtime becomes T = 0.125 cy. Note that

at this point, the contribution of the loop-carried dependency is identical to TRegL1 = 0.125 cy.

This means that additional unrolling will no longer effect a reduction in runtime since runtime

is now limited by data transfers between the register file and the L1 cache. Note as well that

reducing Tdep to 0.125 cy can also be achieved without SMT by applying four-way unrolling

with MVE to the code. In fact, it is possible to run most loop-based streaming codes at the

lower runtime limit without SMT if the executed instruction mix is optimized appropriately and

sufficient physical registers are available.

Table 3. Comparison of model estimates to empirical data (in cycles per loop

iteration) for the dot product on the SKL CPU for data-set sizes of 25 kB

(L1), 127 kB (L2), 9772 kB (L3), and 1022 MB (Mem) as function on the

degree of simultaneous multi-threading (SMT) and unrolling with

modulo-variable expansion (MVE)

Degree of Model estimate for Measurement for

SMT MVE L1 L2 L3 Mem L1 L2 L3 Mem

1 1 0.500 0.500 1.375 1.975 0.501 0.500 1.411 2.096

1 2 0.250 0.375 1.375 1.975 0.250 0.379 1.411 2.085

2 1 0.250 0.375 1.375 1.975 0.250 0.359 1.411 2.028

2 2 0.125 0.375 1.375 1.975 0.136 0.360 1.411 2.030

1 4 0.125 0.375 1.375 1.975 0.136 0.376 1.413 2.090

2 4 0.125 0.375 1.375 1.975 0.136 0.364 1.411 2.029

Table 3 summarizes the estimates discussed above, as well as estimates for the remaining

levels of the SKL processor’s memory hierarchy. As predicted, no unrolling and SMT results in a

runtime of 0.5 cy per loop iteration for a data set in the L1. Moreover, either two-way unrolling

or SMT results in a halving of the runtime to 0.25 cy. Combining both optimizations further

reduces the runtime by a factor of two to 0.125 cy. The data shows that the same result can

be achieved without SMT when applying four-way unrolling. Furthermore, the data in the last

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

70 Supercomputing Frontiers and Innovations

row supports the model prediction that additional unrolling (or SMT, if the core supported it)

would not lead to further reductions in runtime since at this point TRegL1 dominate.

When the data set resides in the L2 cache, 16 bytes (8 bytes for each of the double-precision

floating-point numbers from the two input arrays) must be transferred between the L1 and L2

caches per loop iteration. The machine model (see Tab. 2) lists a L1-L2 bandwidth of 64 B/cy

for the SKL processor, so the data-transfer time is TL1L2 = 0.25 cy. All data transfers are non-

overlapping, so the runtime estimate according to Eq. (4) becomes T = max(Tcomp, TRegL1 +

TL1L2) with an aggregated transfer time of TRegL1+TL1L2 = 0.125 cy+0.25 cy = 0.375 cy. For the

version without unrolling and SMT, Tcomp = 0.5 cy is higher than the combined contribution

of the runtime, resulting in an overall runtime of T = max(0.5 cy, 0.375 cy) = 0.5 cy. For all

other versions, the overall runtime is dominated by the combined data-transfer time, so T =

max(Tcomp, 0.375 cy) = 0.375 cy.

With data in the L3 cache, 16 bytes are to sent from the L3 to the L2 cache in each loop

iteration. At the same time, 16 bytes are preempted from the L2 cache into the victim L3

cache. The total amount of data transferred is therefore 32 bytes, which takes 1 cy according

to the documented bandwidth of 32 B/cy (cf. Tab. 2). Considering that data transfers are non-

overlapping, the overall runtime estimate becomes T = max(Tcomp, TRegL1 + TL1L2 + TL2L3).

According to the model, the runtime of all variants is dominated by the contribution of data

transfers of TRegL1 + TL1L2 + TL2L3 = 0.125 cy + 0.25 cy + 1 cy = 1.375 cy. Consequently, the

runtime estimate for all variants is T = max(Tcomp, 1.375 cy) = 1.375 cy.

Finally, in the case of input data residing in main memory, 16 bytes have to be sent from

memory to the L3 cache. The bandwidth of about 26.5 B/cy documented in the machine model

(cf., again, Tab. 2) implies a contribution of TL3Mem ≈ 0.6 cy. As before, the non-overlapping

data-transfer contributions dominate the overall runtime for all versions, resulting in an estimate

of T = max(Tcomp, 0.125 cy + 0.25 cy + 1 cy + 0.6 cy) = 1.975 cy.

4.2.2. Single-core

On the SKL processor, retiring the daxpby kernel’s multiplication and FMA operations

takes Tcomp ≈ 0.0625 cy. The one store and two load operations take TRegL1 ≈ 0.1875 cy. Per-

iteration data-transfer volumes are 24 B between the L1 and L2 caches (one load each from x

and y, one write to y), 32 B between the L2 and L3 caches (one load each from x and y, and two

corresponding evicts since the L3 is a victim cache), and 24 B between L3 and main memory

(see L1-L2 transfers). Using the bandwidths documented in the machine model, this results

in contributions of TL1L2 = 0.375 cy, and TL2L3 = 1 cy. For the measured memory bandwidth

of 60 GB/s, which for fcore = 2.2 GHz corresponds to a bandwidth of 27.3 B/cy, TL3Mem is

0.88 cy. Since all data transfers are non-overlapping, the runtime estimates are TL1 = 0.1875 cy,

TL2 = 0.5625 cy, TL3 = 1.5625 cy, and TMem = 2.4425 cy.

Intermediate and final single-core estimates for daxpy on SKL, and all other processors,

are given in Tab. 4. Cases where data volumes change in the victim L3 cache (depending on

whether the input data resides in the L3 or main memory) are indicated by listing two numbers

in the table, the former corresponding to the data-transfer time estimate for data in the L3, the

latter for data in memory.

These single-core estimates are compared to empirical data in Fig. 6. The data indicates

that the model manages to describe empirical performance on all investigated processors with

high accuracy.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 71

Table 4. Single-core estimates for daxpy on all

investigated processors

CPU SKL EPYC TX2 PWR9

Tcomp [cy/it] 0.0625 0.25 0.25 0.25

TRegL1[cy/it] 0.1875 0.75 0.75 0.75

TL1L2 [cy/it] 0.375 0.5 0.375 0.5

TL2L3 [cy/it] 1 0.75 | 0.25 1 | 0.5 1 | 0.5

TL2Mem[cy/it] — 1.23 0.29 0.36

TL3Mem[cy/it] 0.88 0.62 0.14 0.18

TL1 [cy/it] 0.1875 0.75 0.75 1.25

TL2 [cy/it] 0.5625 0.75 1.125 1.25

TL3 [cy/it] 1.5625 0.75 1.125 1.25

TMem [cy/it] 2.4425 2.1 2.06 2.1

(a) Intel Skylake-SP (b) AMD Epyc

(c) Cavium ThunderX2 (d) IBM Power9

Figure 6. Comparison of model estimates to empirical data for daxpy on (a) SKL, (b) EPYC,

(c) TX2, and (d) PWR9

4.2.3. Multicore

The daxpby and gsf kernels were selected to investigate the model’s capability to accu-

rately describe multicore performance. Being a data-bound streaming kernel, daxpby proves

particularly suitable to investigate the memory subsystem of the investigated processors and

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

72 Supercomputing Frontiers and Innovations

(a) Intel Skylake-SP (b) AMD Epyc

(c) Cavium ThunderX2 (d) IBM Power9

Figure 7. Comparison of performance models to empirical data for intra-socket scaling of

daxpby on (a) SKL, (b) EPYC, (c) TX2, and (d) PWR9. Performance is given in 106 iter-

ations per second (MIT/s)

their scaling behavior. gsf, on the other hand, is core bound for all architectures when executed

on a single core. However, when increasing the number of cores, NUMA properties turn out to

have a significant impact on performance.

Figure 7 shows the multicore scaling of daxpby on all architectures up to a full socket using

“close” thread affinity (i.e., filling cores consecutively through ccNUMA domains). For SKL we

observe the typical saturation behavior (at ≈ 2.2 GIT/s = 53 GB/s) of bandwidth-bound code

within a single SNC domain. Using the second SNC domain doubles the bandwidth and hence

performance by a factor of two as predicted by the model. The scaling behavior of EPYC exposes

its main hardware features: within a single CCX (three cores) the shared L3 bandwidth does

not scale across the cores and hits a maximum of 32 B/cy. The best bandwidth attained on a

single CCX is 30 GB/s compared to 33 GB/s for the entire ccNUMA domain (a “Zeppelin” die);

we speculate that this is a faint echo of non-scalable L3 cache. Scaling across the Zeppelin dies

is linear, as expected. On the TX2, we initially observed a significant deviation: The compiler-

generated code (black line) fell short of the model by as much as 40 % for a single core and 10 %

after saturation. The prompted investigation revealed that the TX2’s hardware prefetchers have

some deficiency: data was not prefetched in time, so runtime is subject to additional latency.

The issue could be resolved by manually adding software prefetch instructions to the compiler-

generated code to work around the flawed hardware prefetchers (blue line). This demonstrates

how the model can be used to identify bottlenecks or other shortcomings that limit performance

(in this case, the compiler). Note that the optimization is not part of our PCG code; we use the

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 73

compiler versions for all further comparisons. On PWR9, the scaling within a core pair is similar

to that observed within a CCX of EPYC. This is due to the shared and non-scalable L2 and L3

cache segments per core. The multicore model accommodates this behavior by keeping the L2

and L3 data-transfer rates constant for the two cores sharing the resources. Scaling across core

pairs (i.e., running with 2, 4, 6, etc. cores) is only limited by bandwidth saturation as can be

observed by the measurements and respective model prediction.

The gsf kernel is latency bound due to the loop-carried dependency discussed in Section 4.1.

There are two peculiarities that make predictions of the parallel gsf kernel challenging: first, the

wavefront parallelization requires a barrier synchronization after each inner loop traversal. For

the chosen problem size, the corresponding OpenMP-barrier was found to cause non-negligible

overhead. We addressed this by benchmarking the OpenMP barrier for all relevant compiler-

hardware combinations and included the barrier time as additional overhead. Secondly, although

parallel first-touch page placement works fine for all other loops, the parallel-wavefront algorithm

accesses data in parallel across the inner dimension. Since data placement is done with static

OpenMP scheduling across the outer dimension, this leads to all threads accessing the same

ccNUMA domain most of the time during the gs sweeps. It turns out that this effect can be

incorporated into the model as well. To this end, the sustained memory bandwidth is measured

across all ccNUMA domains with data residing in only one domain. This data can then be used

as a bandwidth limit when using multiple ccNUMA domains on SKL and EPYC. Figure 8a

compares performance estimates to measurements for gsf across the cores of a socket on all

architectures. The deviation from the model is generally smaller than 10 % when using multiple

NUMA domains, and below 5 % when looking at a single ccNUMA domain. The results indicate

that the model with enhancements described above (barrier overhead, ccNUMA contention)

delivers a good qualitative and quantitative description of the performance behavior.

(a) GS forward kernel (b) The full PCG algorithm

Figure 8. Comparison of estimates to empirical data for (a) GS forward kernel and (b) the full

PCG algorithm

4.2.4. Composition

With estimates for individual kernels in place we can now present multicore-scaling data for

the full PCG algorithm. Composing the model from single-loop predictions is simple due to the

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

74 Supercomputing Frontiers and Innovations

time-based formulation of the ECM model [21]. In the case of PCG we have three invocations

of daxpby, two of dot, one gs forward- and backward-sweep each, as well as one of stencil.

Figure 8b shows the comparison of the model with measurements for all four architectures.

Again, the general model error is below 10 %, and less than 5 % when looking at single ccNUMA

domains. The slightly larger deviation beyond 12 cores on TX2 can be attributed to the fact

that we use compiler-generated code instead of hand-crafted assembly for the CG solver on

this machine. The lack of prefetching causes a 10–15 % performance breakdown of data-bound

loops beyond the saturation point (see Fig. 7c), which we ignore in the model. On EPYC and

SKL we observe very low performance for OpenMP reductions across ccNUMA domains (much

larger than the considered OpenMP barrier) with the Intel compiler, causing the slight deviation

beyond one domain.

5. Related Work

There are two capable analytic (in the sense of “first principles”) performance models for

steady-state loop code on multicore CPUs: the Roofline model [10, 25] and the ECM model [6,

13, 22]. Both have been subject to intense study, refinements, and validation, and their areas

of applicability are well understood. However, while there is ample data available for Roofline

on a wide variety of architectures [15, 18], one drawback of previous applications of the ECM

model [2, 4, 12, 21, 22, 24, 26] is that they were mostly restricted to Intel processors. We provide

the first thorough cross-architecture study of the model.

The Roofline model has the attractive property that it can be easily separated into a machine

part (memory and cache bandwidths, peak performance) and an application part (computational

intensity). There is no previous work that has done the same with the ECM model. A comparison

between Roofline and ECM for several stencil algorithms can be found in [22]. A drawback of the

Roofline model is that it requires a large amount of phenomenological input such as measured

bandwidths for all core counts and all memory hierarchy levels [15], while the ECM model only

needs the saturated memory bandwidth and the machine model (i.e., overlap assumptions).

Advanced curve-fitting and machine-learning techniques combined with hardware perfor-

mance monitoring data have been used in the past to model the performance of code [1, 19].

Although these approaches are useful in practical settings, e.g., for predicting program run-

times with a goal of optimized resource scheduling, the deepest insights are gained through

first-principles models such as Roofline or ECM.

Conclusion

We have shown that it is possible to set up a well-defined workflow for modeling the serial

and parallel runtime of steady-state (sequences of) loops with regular data access patterns using

the analytic ECM performance model. One can, with minor exceptions, cleanly separate machine

properties from application properties. Four multicore server processors were investigated, and

we could demonstrate that despite their obvious differences the main properties needed to set

up a useful machine model can be summarized in a few parameters. The performance, including

scalability across cores and ccNUMA domains, of an OpenMP-parallel preconditioned CG solver

with wavefront-parallel Gauss-Seidel sweeps could be described with a modeling error of 5 %

or less in most cases. We have to emphasize that no other first-principles model is capable of

delivering such predictions with comparable accuracy and generality.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 75

We found the overlapping property of transfers across data paths in the cache hierarchy to be

the pivotal architectural feature governing single-core performance for data-bound loops. A de-

sign with very strong in-core performance (e.g., via wide SIMD execution) but a non-overlapping

memory hierarchy may well be inferior to a weak core with strong overlap, as our comparison

of Skylake SP and AMD Epyc shows. The architecture with the lowest in-core computational

performance, Power9, came out first in serial and parallel memory-bound performance. The

Cavium ThunderX2 processor can compensate its rather low in-core performance with good

memory bandwidth and a large core count.

All modeling procedures carried out in this paper were done by hand. Some components,

e.g., the construction of a runtime prediction from code and a (given) machine model, can be

supported by tools [9]; others, such as the derivation of overlapping properties, would be very

hard to automate. However, the purpose of performance modeling is not just prediction but also

insight, and manual analysis sharpens the view on the relevant details.

Acknowledgements

We thank Thomas Gruber for helping to port the likwid tool suite to IBM’s Power9

architecture.

We also thank the Center for Information Services and High Performance Computing (ZIH)

at TU Dresden for providing access to their Power9 cluster.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Alam, S.R., Bhatia, N., Vetter, J.S.: An exploration of performance attributes for sym-

bolic modeling of emerging processing devices. In: Perrott, R., Chapman, B.M., Subhlok,

J., de Mello, R.F., Yang, L.T. (eds.) High Performance Computing and Communications.

Lecture Notes in Computer Science, vol. 4782, pp. 683–694. Springer, Berlin, Heidelberg

(2007), DOI: 10.1007/978-3-540-75444-2 64

2. Cremonesi, F., Hager, G., Wellein, G., Schrmann, F.: Analytic performance modeling and

analysis of detailed neuron simulations. The International Journal of High Performance

Computing Applications 34(4), 428–449 (2020), DOI: 10.1177/1094342020912528

3. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization and

performance modeling of stencil computations on modern microprocessors. SIAM Review

51(1), 129–159 (2009), DOI: 10.1137/070693199

4. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalabil-

ity of hierarchical hybrid multigrid solvers for Stokes systems. SIAM Journal on Scientific

Computing 37(2), C143–C168 (2015), DOI: 10.1137/130941353

5. Gruber, T., et al.: LIKWID performance tools (2019), http://tiny.cc/LIKWID

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

76 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1007/978-3-540-75444-2_64
http://dx.doi.org/10.1177/1094342020912528
http://dx.doi.org/10.1137/070693199
http://dx.doi.org/10.1137/130941353
http://tiny.cc/LIKWID

6. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power properties

of modern multicore chips via simple machine models. Concurrency Computat.: Pract.

Exper. 28(2), 189–210 (2013), DOI: 10.1002/cpe.3180

7. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and

Engineers. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (2010)

8. Hammer, J.: pycachesim – Python Cache Hierarchy Simulator (2019), https://github.

com/RRZE-HPC/pycachesim

9. Hammer, J., Eitzinger, J., Hager, G., Wellein, G.: Kerncraft: A tool for analytic perfor-

mance modeling of loop kernels. In: Niethammer, C., Gracia, J., Hilbrich, T., Knüpfer, A.,

Resch, M.M., Nagel, W.E. (eds.) Tools for High Performance Computing 2016: Proceedings

of the 10th International Workshop on Parallel Tools for High Performance Computing, Oc-

tober 2016, Stuttgart, Germany. pp. 1–22. Springer International Publishing, Cham (2017),

DOI: 10.1007/978-3-319-56702-0 1

10. Hockney, R.W., Curington, I.J.: f1/2: A parameter to characterize memory and com-

munication bottlenecks. Parallel Computing 10(3), 277–286 (1989), DOI: 10.1016/0167-

8191(89)90100-2

11. Hofmann, J.: ibench – measure instruction latency and throughput (2019), https://

github.com/hofm/ibench

12. Hofmann, J., Fey, D.: An ECM-based energy-efficiency optimization approach for

bandwidth-limited streaming kernels on recent Intel Xeon processors. In: Proceed-

ings of the 4th International Workshop on Energy Efficient Supercomputing, 14 Nov.

2016, Salt Lake City, UT, USA. pp. 31–38. IEEE Press, Piscataway, NJ, USA (2016),

DOI: 10.1109/E2SC.2016.010

13. Hofmann, J., Hager, G., Fey, D.: On the accuracy and usefulness of analytic energy models

for contemporary multicore processors. In: Yokota, R., Weiland, M., Keyes, D., Trinitis, C.

(eds.) High Performance Computing. pp. 22–43. Springer International Publishing, Cham

(2018), DOI: 10.1007/978-3-319-92040-5 2

14. Hornich, J., Hammer, J., Hager, G., Gruber, T., Wellein, G.: Collecting and presenting

reproducible intranode stencil performance: INSPECT. Supercomputing Frontiers and In-

novations 6(3), 4–25 (2019), DOI: 10.14529/jsfi190301

15. Ilic, A., Pratas, F., Sousa, L.: Cache-aware roofline model: Upgrading the loft. IEEE

Comput. Archit. Lett. 13(1), 21–24 (2014), DOI: 10.1109/L-CA.2013.6

16. Intel Corporation: Intel Xeon Processor Scalable Family (2019), http://tiny.cc/IntelSP

17. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance com-

puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Newsletter pp. 19–25 (1995)

18. Ofenbeck, G., Steinmann, R., Cabezas, V.C., Spampinato, D.G., Püschel, M.: Applying the

roofline model. In: IEEE International Symposium on Performance Analysis of Systems and

Software, 23-25 March 2014, Monterey, CA, USA. pp. 76–85. IEEE (2014), DOI: 10.1109/IS-

PASS.2014.6844463

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 77

http://dx.doi.org/10.1002/cpe.3180
https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim
http://dx.doi.org/10.1007/978-3-319-56702-0_1
http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://dx.doi.org/10.1016/0167-8191(89)90100-2
https://github.com/hofm/ibench
https://github.com/hofm/ibench
http://dx.doi.org/10.1109/E2SC.2016.010
http://dx.doi.org/10.1007/978-3-319-92040-5_2
http://dx.doi.org/10.14529/jsfi190301
http://dx.doi.org/10.1109/L-CA.2013.6
http://tiny.cc/IntelSP
http://dx.doi.org/10.1109/ISPASS.2014.6844463
http://dx.doi.org/10.1109/ISPASS.2014.6844463

19. Peraza, J., Tiwari, A., Laurenzano, M., Carrington, L., Ward, W.A., Campbell, R.: Un-

derstanding the performance of stencil computations on Intel’s Xeon Phi. In: 2013 IEEE

International Conference on Cluster Computing, 23-27 Sept. 2013, Indianapolis, IN, USA.

pp. 1–5. IEEE (2013), DOI: 10.1109/CLUSTER.2013.6702651

20. Sadasivam, S.K., Thompto, B.W., Kalla, R., Starke, W.J.: IBM Power9 processor architec-

ture. IEEE Micro 37(2), 40–51 (2017), DOI: 10.1109/MM.2017.40

21. Seiferth, J., Alappat, C., Korch, M., Rauber, T.: Applicability of the ECM performance

model to explicit ODE methods on current multi-core processors. In: Yokota, R., Weiland,

M., Keyes, D., Trinitis, C. (eds.) High Performance Computing, 24-28 June 2018, Frankfurt,

Germany. Lecture Notes in Computer Science, vol. 10876, pp. 163–183. Springer Interna-

tional Publishing, Cham (2018), DOI: 10.1007/978-3-319-92040-5 9

22. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottlenecks of

stencil computations using the Execution-Cache-Memory model. In: Proceedings of the

29th ACM International Conference on Supercomputing, June 2015, Newport Beach, CA,

USA. ACM, New York, NY, USA (2015), DOI: 10.1145/2751205.2751240

23. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with PAPI-

C. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High Perfor-

mance Computing 2009. pp. 157–173. Springer Berlin Heidelberg, Berlin, Heidelberg (2010),

DOI: 10.1007/978-3-642-11261-4 11

24. Wichmann, K.R., Kronbichler, M., Löhner, R., Wall, W.A.: Practical applicability of op-

timizations and performance models to complex stencil based loop kernels in CFD. In-

ternational Journal of High Performance Computing Applications 33(4), 602–618 (2018),

DOI: 10.1177/1094342018774126

25. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual per-

formance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009),

DOI: 10.1145/1498765.1498785

26. Wittmann, M., Hager, G., Zeiser, T., Treibig, J., Wellein, G.: Chip-level and multi-node

analysis of energy-optimized lattice Boltzmann CFD simulations. Concurrency and Compu-

tation: Practice and Experience 28(7), 2295–2315 (2016), DOI: 10.1002/cpe.3489

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

78 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/CLUSTER.2013.6702651
http://dx.doi.org/10.1109/MM.2017.40
http://dx.doi.org/10.1007/978-3-319-92040-5_9
http://dx.doi.org/10.1145/2751205.2751240
http://dx.doi.org/10.1007/978-3-642-11261-4_11
http://dx.doi.org/10.1177/1094342018774126
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1002/cpe.3489

Dawn: a High Level Domain-Specific Language Compiler

Toolchain for Weather and Climate Applications

Carlos Osuna1, Tobias Wicky1, Fabian Thuering1,2, Torsten Hoefler3,

Oliver Fuhrer1

c© The Authors 2020. This paper is published with open access at SuperFri.org

High-level programming languages that allow to express numerical methods and generate

efficient parallel implementations are of key importance for the productivity of domain-scientists.

The diversity and complexity of hardware architectures is imposing a huge challenge for large and

complex models that must be ported and maintained for multiple architectures combining various

parallel programming models. Several domain-specific languages (DSLs) have been developed to

address the portability problem, but they usually impose a parallel model for specific numeri-

cal methods and support optimizations for limited scope operators. Dawn provides a high-level

concise language for expressing numerical finite difference/volume methods using a sequential and

descriptive language. The sequential statements are transformed into an efficient target-dependent

parallel implementation by the Dawn compiler toolchain. We demonstrate our approach on the

dynamical solver of the COSMO model, achieving performance improvements and code size re-

duction of up to 2x and 5x, respectively.

Keywords: GPGPU computing, DSL, weather and climate, code optimization, compiler, per-

formance portability.

Introduction

High resolution weather and climate simulations are subject of an unprecedented scien-

tific interest due to the urgent need to reduce uncertainties of climate projections. Despite the

progress achieved in the last years, the uncertainties have remained large, and improvements in

the projections are crucial for designing and adopting efficient mitigation measures.

There is clear evidence in the literature that increasing resolution is one of the key factors

to reduce the uncertainty. The horizontal resolution of current state-of-the-art climate model

projects range between 50 km and 100 km. At these resolutions, several physical processes of key

importance, e.g. the formation and evolution of deep convection must be parametrized. However,

these processes can be explicitly resolved on the computational grid at horizontal resolutions

around one kilometer. Unfortunately, when employing explicit numerical solvers that need to

respect the Courant-Friedrichs-Lewy (CFL) condition, an increase of 2x in horizontal resolution

implies a factor 8x in computational cost. Since the resolution of climate models is constantly

improving [24], they will quickly become a major workload on supercomputers which requires

increased attention to their performance [25].

Although some of the most powerful supercomputers provide an extraordinary computa-

tional power, weather and climate models cannot take full advantage of these leadership class

systems. The end of Dennard’s scaling [7] has led to the adoption of many-core accelerators, hy-

bridization and diversity of supercomputers. Weather and climate models are complex numerical

codes that contain from hundred thousands to millions lines of codes, and the community is strug-

gling to migrate and maintain the models for multiple computing architectures. Due to the lack

of standard parallel programming models that can be used by compilers to parallelize models

1Federal Institute of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
2NVIDIA, Berlin, Germany
3Department of Computer Science, ETH Zurich, Zurich, Switzerland

DOI: 10.14529/jsfi200205

2020, Vol. 7, No. 2 79

implemented with sequential programming languages like Fortran on any architecture, domain

scientists are forced to combine multiple pragma based models like OpenMP and OpenACC, in

addition to usage of distributed memory parallelization with MPI. The result is a mixture of

multiple compiler directives with redundant semantic and numerical algorithms, often combined

with attempts to customize data layouts for different architectures using preprocessor condi-

tionals. In an attempt to tackle the portability problem, numerous domain-specific languages

(DSLs) are being developed and used to port parts of weather and climate models. However, they

still require to specify parallel programming model semantics that is crucial to generate correct

parallel implementations and instruct the DSL compiler with necessary information to apply

key optimizations. This generates a significant amount of boilerplate and code redundancy and

impacts the scientific productivity of the model developer. The result are error-prone implemen-

tations where the user must be careful to avoid data races when new computations are inserted

into pre-existing templates. Even if the use of these DSLs is an important step towards providing

a solution that allows to retain a single source code, they have not significantly improved the

ease of use, safety in parallel programming and programmer productivity for domain scientists.

Additionally, the scope of computations covered by existing DSLs is very limited, since they

cannot deal with the analysis and optimizations of large numerical discretization algorithms

with complex data dependencies. We present Dawn, a DSL compiler toolchain that offers a de-

scriptive, high-level language for the domain of partial differential equation solvers using finite

difference or volume discretizations. The Dawn DSL language provides a parallel programming

language for weather applications with sequential semantics where the user does not have to con-

sider data dependencies. The highly descriptive language where optimization and parallelization

are abstracted significantly reduces the amount of necessary code to express the numerical al-

gorithms in a parallel architecture and consequently improves maintainability and productivity

of the domain scientist. In contrast to other high-level frameworks (e.g., PETSc or MATLAB),

the domain scientist retains full control over the discretizations and solvers employed.

The Dawn DSL compiler aims at porting full components, within the scope of the language.

This allows the toolchain to apply data locality optimizations across all the components of a

model. The authors are not aware of any other DSL or programming model that enables global

model optimizations with all the functionality required by the weather and climate domain.

We demonstrate the Dawn DSL compiler on the full dynamical core of the COSMO weather

and climate model [4]. The dynamical core of a weather and climate model solves the Navier-

Stokes equations of motion of the atmosphere and its discretization generates the most complex

computational patterns of a model. Our results show that it is feasible to port entire dynamical

cores to a high-level descriptive DSL obtaining more efficient implementations and maintainable

codes.

The contributions of this paper are as follows:

• We introduce Dawn, an open-source DSL compiler toolchain including front-end language

and a comprehensive set of optimizers and code generators.

• We propose a high-level intermediate representation to interoperate tools and DSL front

ends.

• We demonstrate the usability and performance of the Dawn DSL compiler on the dynam-

ical core of COSMO, a representative weather and climate code.

The document is organized as follows: Section 2 describes the language and main features

supported by the DSL for weather and climate models. Section 3 provides a comprehensive

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

80 Supercomputing Frontiers and Innovations

description of the dawn compiler and the algorithms of the different DSL compiler passes. Finally

Section 4 shows performance results for the dynamical core of COSMO and comparisons with

the operational model running on GPUs.

1. Related Work

Numerous DSLs for stencil computations have been developed and proposed in the last

decade in order to solve the performance portability problem. In the image processing field,

Halide [22] provides a language and an autotuning framework to find an optimized set of param-

eters and strategies. PolyMage [18] provides instead a performance model heuristic. However,

they lack in general functionality required for the specific domain of weather and climate, like 3D

domains and a special treatment of the vertical dimension. Kokkos [5] provides a performance

portable model for many core devices which has been demonstrated on the E3SM model [1]. The

programming model contains useful parallel loop constructs and data layout abstractions. The

CLAW DSL [3] is a Fortran based DSL for column based applications. It can apply a large set of

transformations and generate OpenACC or OpenMP codes. However, it is limited to single col-

umn type of computations, like physical parametrizations, and not suitable for dynamical cores.

STELLA [10] (and its successor GridTools) has been the first DSL running operationally for a

weather model in a GPU-based supercomputer. The DSL supports finite differences methods on

structured grids and is embedded in C++ using template metaprogramming. PSyclone [21] is

a Fortran based DSL for finite elements/volumes dynamical cores being demonstrated for the

NEMO ocean model and the LFric weather model. It relies on metadata provided together with

the main stencil operators, in order to apply transformations and optimizations like loop fusion.

Various tools and approaches such as Patus [2], Modesto [11], or Absinthe [12] tune low-level

stencil implementations and could be combined with a stencil DSL. However, all of the exist-

ing approaches known to the authors provide a language where the user has the responsibility

to declare the data dependencies via metadata, boilerplate of the language or need to resolve

explicitly the data dependencies by choosing the computations that are fused into the same

parallel component.

2. Abstractions for Weather and Climate

2.1. The Weather and Climate Domain

The domain we target are computational patterns of weather and climate models on struc-

tured grids where each grid cell can be addressed by an index triplet (i, j, k). We focus on

algorithmic motifs with direct addressing where a series of operators are applied to update grid

point values. Further, no explicit dependency of the operator on the horizontal positional indices

(i, j) is assumed (with the exception of boundary conditions). This domain contains discretiza-

tions of partial differential equations using finite difference or volume methods as well as physical

parametrizations. The main computational patterns resulting from these numerical discretiza-

tions are compact horizontal stencils in the horizontal plane and implicit solvers like tridiagonal

solve in the vertical dimension.

In the following sections we introduce the Dawn DSL frontend (GTClang) and an interme-

diate representation (IR) designed as a minimal set of orthogonal concepts that can be used to

represent these computational patterns with a high-level of abstraction.

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 81

2.2. GTClang Frontend

GTClang [20] is a DSL frontend that provides a high-level descriptive language for express-

ing finite difference/volume methods on structured grids. GTClang takes the view of a series of

computations at a single horizontal location (i, j). Unlike other approaches such as the STELLA

DSL [10], the language assumes a sequential model where all the data dependencies and data

hazards will be resolved by the toolchain when constructing a parallel implementation from

the sequential specification. The frontend language is embedded in C++ using the Clang com-

piler [15] to parse and analyze the C++ abstract syntax tree (AST). It provides a high level of

interoperability, allowing to escape the DSL language within the same translation unit.

Figure 1 shows the main language elements of the DSL for an horizontal stencil example,

while Fig. 2 shows how to execute the generated backend specific implementation from a C++

driver program.

1 globals {
2 double eddlat , eddlon ;
3 double r e a r t h = 6371.229 e3 ;
4 }
5 stencil function avg {
6 storage data ;
7 d i r e c t i o n d ;
8 Do {
9 r e turn (data [d+1] − data [d−1]) ∗ 0 . 5 ;

10 }
11 }
12 stencil function de l t a {
13 storage data ;
14 o f f s e t o f f ;
15 Do {
16 r e turn (data [o f f] − data) ;
17 }
18 }
19 stencil function l a p l a c i a n {
20 storage data ;
21 Do{
22 r e turn data [i +1] + data [i −1] +
23 data [j +1] + data [j −1] −
24 4 .0∗ data ;
25 }
26 }
27

28 stenci l hd smag {
29 // Input -Output fields

30 storage u , v ;
31

32 // Input fields

33 storage hdmaskvel ;
34 storage [j] c r l a t ;

35

36 // Temporaries

37 var T sqr s , S sqr uv ;
38

39 Do {
40 vertical region (k s t a r t , k end) {
41 var f r a c 1 dx = c r l a t ∗ eddlon ;
42 var f r a c 1 dy = edd lat / r e a r t h ;
43

44 var T s = de l t a (j −1, v) ∗ f r a c 1 dy −
45 de l t a (i −1, u) ∗ f r a c 1 dx ;
46 T sqr s = T s ∗ T s ;
47

48 var S uv = de l t a (j +1, u) ∗ f r a c 1 dy +
49 de l t a (i +1, v) ∗ f r a c 1 dx ;
50 S sqr uv = S uv ∗ S uv ;
51

52 var smag u = math : : s q r t ((avg (i +1,
T sqr s) +

53 avg (j −1, S sqr uv))) − hdmaskvel ;

54 smag u = math : : min (0 . 5 , math : : max(0 . 0 ,
smag u)) ;

55

56 var smag v = math : : s q r t ((avg (j +1,
T sqr s) +

57 avg (i −1, S sqr uv))) − hdmaskvel ;
58 smag v = math : : min (0 . 5 , math : : max(0 . 0 ,

smag v)) ;
59

60 u += smag u ∗ l a p l a c i a n (u) ;
61 v += smag v ∗ l a p l a c i a n (v) ;
62 }}}

Figure 1. Smagorinsky diffusion operator example implemented using the GTClang front-end

language. For simplicity some functions like delta, avg are omitted

The main language elements shown in the example are the following:

• stencil is the main computation concept that contains the declaration of all the input-

output (storage) and temporary (var) fields and the Do body with the sequence of stencil-

like computations.

• vertical region allows to specialize computations for different regions of the vertical di-

mension. Atmospheric codes require to specialize equations at the boundaries or at custom

regions of the vertical dimension. Since weather models do not need to specialize compu-

tations for regions of the horizontal plane, the semantic of this keyword is restricted to the

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

82 Supercomputing Frontiers and Innovations

1

2 // define a runtime domain as a triplet of

3 // sizes and halos on each direction/dimension

4 domain dom(128 ,128 ,80 , ha lo s {3 , 3 , 3 , 3 , 0 , 0}) ;
5

6 // declare all storages

7 metadata s t o r a g e i n f o (128 , 128 , 80) ;
8 storage u(s t o r a g e i n f o , ”u”) , v (s t o r a g e i n f o , ”v”) ;
9 //...

10

11 hd smag (domain , u , v , hdmaskvel , c r l a t) ;
12 hd smag . run () ;

Figure 2. Execution in a C++ program of the smagorinsky computation declared in Fig. 1

vertical dimension. k_start/k_end are builtin identifiers marking the vertical levels of the

top/bottom of the atmosphere.

• var declares a variable for a temporary computation. The dimensionality and type of

memory where the temporary field will be stored is derived by specific analysis passes

(Section 3.2.2).

• stencil function, allows to define numerical functions that can be used within the

vertical_region to increase readability of the numerical algorithm. They can be

parametrized with fields (line 20), grid-point offsets (line 14) and dimensions (line 7).

• storage[dim], declares fields of certain dimensionality (default is a 3D storage). The grid

dimensionality of var declarations is deduced by an analysis pass of the toolchain, while it

is explicitly for input-output storage fields.

• i,j,k are builtin identifiers for each of the cartesian dimensions.

• Neighbor grid point field access operator [], like u[i+1] allows to access fields at neigh-

boring grid points of the center of the stencil operation.

• global defines global scalar parameters, like model configuration variables, with a global

scope. They can be defined at compile time or runtime.

The language assumes an array-like notation, where a loop over the entire domain is im-

plicit and indices on dimensions are only used when accessing neighbor grid points. A GTClang

statement:

b = a[i+1]

would be equivalent to the explicit array notation

b[h:end -h] = a[h+1:end -h+1],

where h is the halo size.

The main drawback of the array notation is that for a parallel compiler is not trivial to

determine in general which statements can be fused in the same parallel region due to data

dependencies. Indeed not all the statements of Fig. 1 can be inserted in the same (i, j) parallel

region due to dependencies, e.g., between lines 53 and 46. Other languages or DSLs like GridTools

or Kokkos delegate the responsibility for splitting the computations into parallel regions that

should not contain data dependencies to the user.

Since GTClang does not expose these parallel concepts in its language, the numerical meth-

ods can be implemented in a sequential manner without considering data hazards or having to

split computations into different parallel region components. This increases safety and produc-

tivity of the scientific development compared to other programming models that expose parallel

constructs in their language.

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 83

stencil.py Python frontend

stencil.f90 Fortran frontend GridTools

Naive Debug

stencil_gen.cpp

stencil.cpp

Dawn Field Versioning

Stage Splitting

Interval Partition

Stage Sync

Temporary Scopep
a
ra

lle
l
IR

 B
u
ild

e
rs

o
p

ti
m

iz
e
rs

CUDA

co
d

e
 g

e
n
e
ra

to
rs

Clang AST

Clang
Compiler

AST
Analyzer

GTClang Frontend

H
IR

p
a
ra

ll
e
l
IR

Inlining

MultiStage splitting

Temporary
Merging

Stage
Reordering

Stage
Merging

Figure 3. Architecture design of the dawn compiler

2.3. The High-Level Intermediate Representation

The high-level intermediate representation (HIR) is a representation that captures all (and

only) the concepts required to express a high level language for weather and climate applica-

tions like the GTClang language presented in Section 2.2. The aim of the HIR is to provide a

standard, programming language agnostic representation that enables sharing and reusing tools

and optimizers such as Dawn across multiple frontend languages. Other DSLs and code-to-code

translators like Fortran-based DSLs [3, 17] with the ability to parse and generate an IR will be

able to transform the parsed code into HIR and use the Dawn compiler toolchain. The Dawn

implementation uses Google protocol buffers to provide a specification of the HIR and thus

communicates in a language-neutral manner between the DSL frontend and the DSL toolchain.

A comprehensive description of the HIR specification can be found in [19].

3. Compiler Structure

In this section, we will present the dawn [20] compiler structure and a description of all the

components from the HIR to the code generation. The different layers of the compiler toolchain,

including the GTClang front end, the standard interface HIR and the Dawn compiler, are shown

in Fig. 3.

3.1. The Dawn Parallel IR

The HIR represents the user specification of computations in a sequential form. In order to

be able to generate efficient parallel implementations from the HIR, we need to define a parallel

model and map the HIR computations into that parallel model.

The Dawn compiler uses a parallel model that consist of a pipeline of computations (Stages)

that are executed in parallel for the horizontal plane (i, j). MultiStages contains a list of Stages

that are sequentially executed for each horizontal plane. Finally each MultiStages is executed

over a vertical range. The vertical data dependencies in the user-specified computations deter-

mine the execution strategy of the vertical looping: forward, backward, or parallel. Multiple

stages are then fused within the same parallel kernel connected by temporary computations

stored in on-chip memory. The horizontal plane is tiled in order to fit the temporary compu-

tations into limited-size caches. However, stencil computations accessing data from grid cells of

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

84 Supercomputing Frontiers and Innovations

neighboring tiles will create data races in the case of horizontal data dependencies, since parallel

tile computations can not be synchronized in general. We construct a parallel model based on

redundant computations [10], where all intermediate computations are computed privately by

each tile.

In order to code-generate implementations that follow this parallel model, Dawn defines a

parallel IR that enriches the HIR with additional concepts such as Stages and MultiStages of

the parallel model. Different optimizer-passes are responsible for creating a valid parallel IR

representation from the HIR. The main data structure of the parallel IR is defined as a tree,

shown in Fig. 4.

Figure 4. Parallel IR data model tree. The operator [] denotes an array of nodes

Figure 5 shows the parallel IR representation of the smagorinsky example. Since the ex-

ample does not contain vertical dependencies, the organization of the HIR computations into

MultiStages and interval computations information is trivially computed.

1

2 −Computation :
3 −MultiStage :
4 −vertical loop strategy : p a r a l l e l
5 −IntervalComputation : [k s t a r t , k end]
6 −Stage :
7 var f r a c 1 dx = c r l a t ∗ eddlon ;
8 var f r a c 1 dy = edd lat / r e a r t h ;
9

10 var T s = de l t a (j −1, v) ∗ f r a c 1 dy −
11 de l t a (i −1, u) ∗ f r a c 1 dx ;
12 T sqr s = T s ∗ T s ;
13 var S uv = de l t a (j +1, u) ∗ f r a c 1 dy +
14 de l t a (i +1, v) ∗ f r a c 1 dx ;
15 S sqr uv = S uv ∗ S uv ;
16 −Stage :
17 var smag u = math : : s q r t ((avg (i +1, T sqr s) +
18 avg (j −1, S sqr uv))) − hdmaskvel ;
19 smag u = math : : min (0 . 5 , math : : max(0 . 0 , smag u)) ;
20 −Stage :
21 var smag v = math : : s q r t ((avg (j +1, T sqr s) +
22 avg (i −1, S sqr uv))) − hdmaskvel ;
23 smag v = math : : min (0 . 5 , math : : max(0 . 0 , smag v)) ;
24

25 u += smag u ∗ l a p l a c i a n (u) ;
26 v += smag v ∗ l a p l a c i a n (v) ;
27 }}}

Figure 5. Parallel IR of the smagorinsky diffusion operator defined in Fig. 1

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 85

The parallel IR defines different types of data storages:

• User-declared fields: N dimensional fields that are owned by the user with a scope that

goes beyond the Computation. The GTClang front end declares them using the storage

keyword.

• Temporary fields: storage with a scope limited to any of the levels of the parallel IR.

The data allocation and dimensionality of the field will depend on the scope and will be

managed by the toolchain.

• global parameters: scalar basic types to describe non gridded data, like model configuration

switches.

In addition to the parallel IR tree, a program that assembles operators in a model requires

a control flow that can schedule the different computations. The control flow AST contains the

sequence of AST nodes to define a control flow (conditionals, loop iterations, etc.) and nodes

for calls to

• Computations defined in the parallel IR;

• boundary conditions;

• halo exchanges.

All the analyses and optimizations are performed across multiple Computation nodes with-

out control flow dependencies like conditionals or iterations. Therefore program dependence

graphs and control dependence analyses are not used by the toolchain. The control flow AST is

only stored as part of the parallel IR for code generation purposes.

3.2. Optimization Process

A comprehensive list of compiler passes are responsible for organizing the HIR statements

into a valid parallel IR and run optimization algorithms to prepare the IR for efficient code gen-

eration. The passes are organized in three different categories: parallel IR builders, optimization

passes and safety checkers. The safety checkers contain checks for detection of ill-formed numer-

ical codes like access to uninitialized temporaries or write-after-write (WAW) data hazards. The

following will describe the most relevant passes of the first two categories:

3.2.1. Parallel IR Builders

Field Versioning. Numerical discretizations often update a field reusing the same field

identifier for readability of the code and to minimize memory footprint. In the following PDE

example

δu

δt
= f(u) + g(u), (1)

that is discretized to

ut+1 = ut + ∆t(f(ut) + g(ut)) (2)

if f(ut) or g(ut) involves an access to neighbour grid points in the parallel dimension, the field

update can generate data races if the right-hand side (RHS) and the left-hand side (LHS) are

evaluated in the same parallel region. Often this is solved by using a double buffering technique

in the model implementation:

u out = u in+ dt ∗ (f(u in) + g(u in)). (3)

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

86 Supercomputing Frontiers and Innovations

T_s

v

<0,0,-1,0>

u

<-1,0,0,0>

frac_1_dyfrac_1_dx

T_sqr_s

smag_u

<0,1,0,0>

S_sqr_uv

<0,0,-1,0>

hdmaskvel0.50.0

Figure 6. Horizontal data dependency DAG of a subset of the smagorinsky diffusion operator

(Fig. 1)

b
a

c
d

Figure 7. Vertical data dependency DAG of the anti dependent pattern example (Fig. 8)

Since the high-level DSL abstracts away the details of parallelization, it is not possible to know

if RHS and LHS are evaluated within the same parallel region. Therefore GTClang allows to

update fields with stencil computations that generate write-after-read (WAR) data dependencies.

The field versioning pass will create versions of the field to ensure data hazards are resolved in

parallel regions. Read-after-write (RAW) are resolved by the stage splitting pass and write-after-

write (WAW) are legal but should be protected with a compiler warning, since the numerical

algorithm might be ill-formed.

The field versioning pass operates on the following DAG formulation: field accesses

are represented by nodes in the DAG where edges connect fields according to data de-

pendencies. Edges are annotated with the horizontal stencil extent with the notation

<iminus, iplus, jminus, jplus>.

There are two type of edges: solid lines edges for data dependencies with a (not null)

horizontal stencil extent and dashed lines for connecting data with null extents or literals (see

Fig. 6).

The algorithm identifies WAR hazards by finding strongly connected components (SCC) in

the DAG where at least one of the nodes is a non temporary field and contains at least a solid

edge. Temporary fields have a special allocation with redundant halos per block which allow

WAR, unless they are within a single statement.

Stage Splitting. The stage splitting pass will organize the original sequence of statements,

(stmtn), into stages of the parallel IR in order to resolve (RAW) data dependencies that would

introduce data races in the horizontal parallelization.

An example of such data races is observed in the horizontal diffusion smagorinsky example

in the following lines:

1 T sqr s = T s ∗ T s ;

2 var smag u = math : : s q r t ((avg (i +1, T sqr s) + avg (j −1, S sqr uv))) − hdmaskvel ;

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 87

Algorithm 1: Stage splitting algorithm

for stmt in J(stmtn) do

D′ ← D ;

insert stmt accesses in D’;

if ∃{i, j} such that Dij == 1 and ∃j′ such that Djj′ ! = 0 then

create new stage from D’;

D ← ∅ ;

insert stmt accesses in D ;

else
D ← D′

The stage splitting pass resolves this by placing statements with data dependencies in sep-

arate stages.

The algorithm finds a partition of the DAG (see Fig. 6) where any solid edge can only be

connected to leaves of the DAG. Let Dij be the adjacency matrix of the DAG, where elements

of the matrix can take two values for elements that are connected: 1 for a solid edge and 2 for

dashed edges. The algorithm (Algorithm 1) iterates over the statements in the reverse sequence

of statements, J(stmtn), where J is the backward identity matrix.

Multistage Splitting. It is common in weather and climate applications to find vertical

implicit solvers that introduce a loop-carried dependence (see Fig. 8).

Anti dependence patterns are also allowed for read-only fields or field accesses before a write.

vertical region (k s t a r t , k s t a r t) {
phi = 0 ;

}
vertical region (k s t a r t , k end) {

phi = phi [k−1] ;

}

vertical region (k s t a r t+1 , k end−1) {
b = (a [k + 1])∗0 . 5 ;

c = b [k−1] ;

d = c [k+1]∗a ;

}

Figure 8. Examples of (left) vertical solver and (right) vertical antidependence pattern

On the contrary, an anti dependence pattern on a field after a write statement would access

outdated or uninitialized data. The Multistage splitting identifies anti dependence patterns on

temporary accesses and fixes them by splitting and creating a new multistage with reverse

vertical loop ordering.

The algorithm is similar to stage splitting. It processes a graph where edges are colored

green for in loop data dependence and red for anti dependencies (see Fig. 7).

The algorithm traverses each edge of the graph. If a red edge is found, the loop order is

reversed to fix the anti dependence. If a red and a green edges are traversed, then the multistage

is split. Edges on leaves are ignored, since they connect to read-only data.

Interval Computation Partition. The user DSL code is provided as an ordered sequence

of (in general) overlapping vertical region computations. In order to be able to fuse computations

of the different interval regions into a single vertical loop, the interval computation partition

pass will reorganize the ordered set into a non overlapping ordered set of interval computations

of the parallel IR (Section 3.1). The sequence can be described as an interval graph where edges

connect interval nodes that are overlapping. From there, the interval partitioning algorithm

derives a set of non-overlapping interval computations as follows:

Let e(X,Y) be any edge that connects two nodes X and Y.

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

88 Supercomputing Frontiers and Innovations

for e(X,Y) : G do

G′ ← {G \ {X,Y }, (X ∩ Y), (X 	 Y)} ;

where the set operations on interval computations are defined as:

{Ix, (stmtxn)} ∩ {Iy, (stmtyn)} = {Ix ∩ Iy, (stmtxn, stmtyn)} (4)

{Ix, (stmtxn)} 	 {Iy, (stmtyn)} =

{
{Ix \ Iy, (stmtxn)}
{Iy \ Ix, (stmtyn)} (5)

assuming that ICx = {Ix, (stmtxn)} and ICx <= ICy in the ordered set of interval computations.

Transformations are iteratively applied until non of the nodes are connected.

Scope of temporaries. The toolchain will size the dimensionality of the temporary storages

according to the scope of the temporary usages in the parallel IR tree (Fig. 4). The scope of

temporaries pass will determine the lifetime and scope of each temporary, and optimize the

dimensionality required accordingly.

3.2.2. Optimization passes

The first instance of the parallel IR would generate legal parallel implementations but is

still non optimized and requires further transformations in order to produce efficient implemen-

tations. This is done with a set of optimizations presented in this section. All the optimizations

performed in the toolchain are domain specific based on analyses of the domain specific, high-

level information stored in the parallel IR.

Stage Reordering. The compiler passes discussed in Section 3.2.1 are necessary to map a

sequential description of the numerical algorithms into the parallel IR model from Section 3.1.

However, the splitting algorithms tend to generate a large number of Stages and MultiStages.

The stage reordering will reorder Stages according to data dependencies in order to group and

merge them together, increasing the data locality of the algorithms. The algorithm operates on

the stage dependency DAG, where a stage S1 depends on stage S2 if and only if:

• The vertical intervals where S1 and S2 are defined overlap.

• Both access at least one common field with the policies defined as in Tab. 1.

Table 1. IO policies to consider a data hazard between

stages

S2 policy

S1 policy

Input Output Input-Output

Input x x

Output x x

Input-Output x x x

Table 1 extends the definition of write-after-read (WAR), write-after-write (WAW) and

read-after-write (RAW) hazards [14] for a compiler framework without single static assignment,

where input-output accesses to a field are allowed for a single statement.

The algorithm iterates over all the stages in a reverse order and finds the leftmost position

in the tree where the stage can be moved, accordingly to the following criteria:

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 89

• If the Stage is moved into another MultiStage, the loop orders must be compatible. A for-

ward order Stage can be inserted into a parallel but not into a backward order MultiStage.

• A Stage S1 can be moved over S2 only if there is no path from S1 to S2 in the stage

dependency DAG.

• Placing a stage into a new MultiStage should not introduce any anti dependence in the

vertical dimension (see multistage splitting pass).

Stage Merging. As a result of the stage and multistage splitting pass, potentially many

fine grained stages might be generated. The stage reordering pass will naturally group stages

together that are connected via data dependencies, increasing data locality. Since every stage

requires synchronize, the stage merging pass will merge various stages into a single one. It

contains two modes:

• merge stages that are trivially mergeable since they specify the same level of redundant

computations [10];

• merge stages even if they specify different level of redundant computations.

Temporary Merging. As a result of the field versioning pass, or usage of many tempo-

raries, the parallel IR usually contains more temporary allocations than required. This increases

the memory footprint and the load on the scratchpad memory. The temporary merging pass will

reduce the number of temporaries to the minimum required. The pass operates on a reduced

version of the data dependency DAG (Fig. 6) where only temporary fields are represented as

nodes, and where two nodes are connected if there is a path that connects them in the original

DAG. A coloring algorithm of the DAG of temporaries will identify the required number of

temporary fields, where nodes with the same color will share the same temporary identifier.

Inlining. The stage splitting pass will generate a pipeline of stage computations that require

synchronization of the parallel computational units, since stages are connected via horizontal

data dependencies. The stage computations are executed in a tiled decomposition of the domain,

allowing to cache the data that connects the different stages in some type of fast on-chip memory.

stenci l h o r i d i f f {
storage dphi , phi , c ;

Do {
vertical region (k s t a r t , k end){
l ap = −4∗phi + c ∗(phi [i +1] +

phi [i −1] + phi [j +1] + phi [j −1);
dphi = −4∗ l ap + c ∗(lap [i +1] +

lap [i −1] + lap [j +1] + lap [j −1);
}}} ;

stenci l h o r i d i f f {
storage dphi , phi , c ;

Do {
vertical region (k s t a r t , k end){
dphi = (16+4∗ c∗c)∗ phi
−8∗c ∗(phi [i−1]+phi [i +1]+phi [j−1]+phi [j +1])+
c∗c ∗(phi [i +2]+phi [i−2]+phi [j+2]+phi [j −2] +
2∗ c∗c ∗(phi [i +1, j+1]+phi [i +1, j−1]+
phi [i −1, j+1]+phi [i −1, j −1])) ;

}}} ;

Figure 9. Fourth-order diffusion operator as a two stage Laplacian operator in DSL form (left)

and the dawn inlined version (right)

Alternatively, any intermediate computation that is not part of the input/output field dec-

laration of the computation can be inlined, avoiding the memory operations but generating a

larger stencil matrix computation. An example of a double Laplacian stage computation of a

fourth-order diffusion operator is inlined in Fig. 9.

The algorithm traverses the reverse sequence of statements of each interval computation

finding assignments on temporary fields that are only accessed in the parallel dimensions (i, j).

The right hand side of the assignment is stored as the definition of a function that computes the

temporary and the assignment stmt is removed. If the assignment statement depends on local

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

90 Supercomputing Frontiers and Innovations

variable declarations, they need to be promoted to temporary fields (with the right dimension-

ality) before recursively inlining all data dependencies of the RHS of the assignment.

A second iteration over the reverse sequence of statements will replace all field accesses to

the temporary by the function definition evaluated at the stencil offset of the temporary access.

The pre-computation and inlined algorithms exhibit completely different arithmetic inten-

sity. Performance of the different versions will depend on the computation (stencil shape, memory

accesses, ...) and the hardware architecture and its memory subsystem.

Vertical register caching detection. An important optimization for implicit vertical

solvers is to cache in registers a ring buffer of near k accesses reused through the vertical

iteration, as in the following example: The ring buffer keeps values of vertical levels that will

still be accessed from the vertical iteration of neighbour vertical levels, and it will synchronize

values with the field in main memory whenever required according to the input-output pattern

of the computation. Often the levels at the head of the ring buffer needs to be filled from the

main memory for input accesses while values of the tail of the ring buffer must be flushed into

main memory from the ring buffer. Additionally a pre-fill/post-flush operation of the ring buffer

before/after processing the Interval Computation might be needed to synchronize the required

sections of the ring buffer (Fig. 10).

1 v e r t i c a l r e g i o n (k s t a r t +3, k end−2) {
2 a = (a [k+2] + a [k+1] + a +
3 a [k−1] + a [k−2])∗0 . 2 ;
4 }

Figure 10. (Left) representation of the ring buffer and the different sections that will require

synchronization with main memory for the vertical average example operation (right)

3.3. Code Generation

The last step in the toolchain is the code generation. The optimizer passes have organized

the original HIR into a structured parallel IR that contains all the components required for

generating an efficient parallel implementation with stencil computations, halo exchanges and

boundary conditions. Dawn supports three code generators:

• a naive C++ sequential generator, used for debugging purposes;

• a GridTools DSL generator;

• a specialized CUDA generator.

All the existing generators make use of different GridTools components like the multidimen-

sional storage facility and the halo exchange library. In particular the use of the multidimensional

storage allows to escape the DSL language by using the storage objects that abstract away the

details of memory layouts of the fields.

4. Experimental Results

In this section we present performance results obtained for the most relevant dynamical

core operators of COSMO. They provide a diverse set of computational patterns of weather

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 91

and climate application in Cartesian grids. The performance baseline of the dynamical core of

COSMO has been analyzed in detail for NVIDIA GPUs [8].

The benchmarks are collected on the Piz Daint system at the Swiss National Supercomputing

Centre (CSCS). The nodes are equipped with a 12-core Intel Xeon CPU (E5-2690 v3 @ 2.60 GHz)

and an NVIDIA Tesla P100. Each node has 16 GB of HBM2 memory on the GPU. The nominal

peak memory bandwidth of the GPU is 732 GB/s. All executables were compiled using gcc 7.3

and the nvvc compiler shipped with CUDA 10.0. Timing information is collected using CUDA

events. All the experiments are verified by comparing the output of the optimized generated

code with the naive C++ code generation on input data artificially generated using smooth

mathematical functions.

4.1. COSMO Dynamical Core Results

Figure 11 shows the performance comparison between the production GPU code using the

STELLA DSL and Dawn CUDA generation, for the most relevant stencils of the dynamical

core of COSMO and a domain size of 128x128x80. Although Dawn does not support yet the

STELLA tracer functionality that performs the same computation on multiple tracer fields in the

same parallel kernel, two tracer operators (AdvPDBottX/Y) were added where the optimization

in STELLA has been disabled for the comparison purposes. The data shown in the plots are

showing the harmonic mean x̃(h) = n∑n
i=1(1/xi)

[6, 13]. Errors were removed from Fig. 11 since

they are not perceptible at the scale of the figure.

The performance of the Dawn CUDA backend obtained on P100 GPUs outperforms the

STELLA optimized GPU production code, with performance improvements that vary from

2.62x (for HoriAdvPPTP operator) to same performance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3−10×

time (s)

FWSCQCond

ConvTemp_T

VDiffDqvdt

Coriolis

FWExplDiv

FWVDivHelp

HoriAdvUV

AdvPDBottX

AdvPDBottY

VDiffW

HoriAdvWWcon

VDiffPrepStep

HoriDiffSmag

HoriDiffLimit

Satad

FWLHS

HoriAdvPPTP

FWUV

VertAdvPPTP

HoriDiff2

FWWPPTP

VertAdvUVW

FWRHS

FWPrepLHS

STELLA

Dawn (CUDA backend)

Figure 11. Performance of individual stencil objects of the COSMO dynamical core on P100

NVIDIA GPUs

In order to understand importance of the most relevant optimizers of Dawn, Tab. 2 evaluates

the impact of disabling them for some of the components of the dynamical core of COSMO.

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

92 Supercomputing Frontiers and Innovations

Table 2. Time (ms) for P100 GPU of some components of

the dynamical core of COSMO measured with some of the

Dawn optimizations disabled

Full Opt No stage reordering/stage merging

FastWaves 2.6 4.5

No vert register caching

VertUVW 0.57 0.86

No temporary merging

HoriDiffSmag 0.098 0.13

Table 3. Computational time (ms) of one time step of the

fast waves solver of the dynamical core of COSMO for a

P100 GPU

time (ms)

STELLA 3.08902

Dawn 2.680

4.2. Global Optimizations

The STELLA based dynamical core of COSMO [10] was implemented as a set of complex

stencil operators (see Fig. 11) that are glued together by a C++ driver code. The driver code

connects all stencil components, implements time iterations, manage data storages, and performs

other administrative functions. Contrary to Dawn, STELLA requires the user to organize the

code in components that do not contain data dependencies.

Therefore, there is a compromise in designing how many computations are fused within each

stencil component that will increase data locality but at the same time increases the complexity

of the data dependencies that need to be understood by the user to produce correct and efficient

code. Most of the stencils STELLA stencils of the dynamical core define no more than 4–5 Stages

and 2–3 MultiStages. This approach has the following drawbacks:

• It limits the data locality optimizations that can be performed by the DSL since only a

limited scope of computations are expressed within a DSL stencil object.

• It requires infrastructure that glues all the DSL stencil objects together increasing boiler-

plate required to composed a full dynamical core.

One of the advantages of GTClang/Dawn compared to other approaches is the possibility

to express entire models within the DSL language. We demonstrate this on the fast waves

component of the dynamical core of COSMO, that is composed by 11 STELLA stencil objects,

and a total size of approximately 4K lines of code.

The GTClang/Dawn implementation of the fast waves reduces the amount of lines of code

to approximately 800. The performance results are summarized in Tab. 3.

The main optimizer pass that allows to integrate large stencil computations is the stage

reordering pass. The same fast waves without the stage reordering pass takes 4.5 ms (Tab. 2).

As shown in Tab. 3, the CUDA implementation generated by Dawn outperforms the version

in production using the STELLA DSL. However, the stage reordering pass is an algorithm

that tends to fuse computations together as much as possible within the same kernel, which

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 93

in general will not lead to the most efficient implementation. An optimal solution should be

driven by a performance model that minimizes HBM2/DDR memory accesses and at the same

time minimizes on-chip resource consumption like shared memory or registers. The optimization

problem is NP-hard and not solved for the complexity of a full dynamical core, although there

are approaches that find solutions for a smaller problem sizes [11, 12, 23].

4.3. Maintainability and Model Development Productivity

One of the recurring parameters for maintainability across various models is lines of code

(LOC). In order to quantify the gain in maintainability, we measured this for the fast waves

of the dynamical core of COSMO, where the GTClang implementation (800 LOC) requires

a factor 5x less than the operational code (4200 LOC). With similar order of magnitude the

original Fortran implemention of the COSMO consortium requires 5000 LOC, as well as the

optimized CUDA generated code of Dawn.

Therefore, GTClang/Dawn considerably reduces the amount of code required to express

numerical algorithms which will increase the model development productivity and improve the

model maintainability. However, there are other metrics in addition to LOC that contribute to

significantly improve the maintainability:

Lack of Parallelism. Since the Dawn DSL does not expose parallelism to the user, a

significant amount of boilerplate code as well as code complexity is no longer present in the user

code. This does not only decrease the LOC but also increases safety, since parallel errors typical

of programming models like OpenMP/OpenACC cannot occur.

Lack of Optimization. Since all the optimizations are performed by the Dawn toolchain,

the GTClang language mostly expresses only the numerical algorithm. All optimizations and

hardware dependent code, such as tiling, register or scratch-pad software managed cache, loop

nesting, etc., hinder the scientific development. The use of a high-level language like GTClang

increases considerably the readability of the numerical algorithm and model development pro-

ductivity.

Reduction of Driver Code. As shown for the fast waves, the possibility to develop full

models within the DSL, removes the necessity of complex infrastructure to glue all the stencil

objects, data management and driver code that increases the overall maintenance of the model.

Conclusions

We have presented Dawn, a high-level DSL compiler toolchain that solves the performance

portability problem of weather and climate applications. The DSL compiler is designed as a mod-

ern modular compiler. We demonstrated the usage of Dawn on the dynamical core of COSMO

and presented performance results for the CUDA back end of Dawn on P100 GPUs. All the

stencil computations outperform the optimized production code using the STELLA DSL, ob-

taining speedup factors of up to 2x. This significantly reduces the amount of code required (up

to a factor of 5x). More importantly, the lack of explicit parallelism in the HIR and GTClang

language provides a safe (against parallel errors) and highly productive scientific development

environment.

The dynamical core is the most computationally expensive component of the model, ac-

counting for 60 % of the total simulation time. Furthermore, it is the most complex in terms of

computational patterns. Other components like the physical parametrizations contain column

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

94 Supercomputing Frontiers and Innovations

based only computations that are subset of the patterns supported by dawn for dynamical cores.

Therefore the DSL toolchain proposed is applicable to entire models. Although the version of

dawn presented here is demonstrated on the COSMO model, its applicability is not restricted

to regional models. Additional development projects are porting the advection operators of the

operational ocean model of NEMO [9]. Furthermore, the dawn collaboration is extending the

toolchain in order to support two new categories of global weather and climate models:

• Cube sphere grids (adding support for corner and edge specializations). Current develop-

ments are working on porting the dynamical core of the FV3 model to DSL using dawn [16].

• Global models on triangular grids. New language extensions will allow to port models

that can not be described with Cartesian operators. A version of the dynamical core of

ICON [26] model is being developed using the DSL based on dawn.

Dawn is the only high-level DSL compiler known to the authors that allows to express an

entire weather and climate model using a concise, simple and sequential language, and delivers

an optimized model implementation that outperforms operational models even on modern GPU

architectures.

Future developments will allow to apply this novel DSL language and compiler to a wider

range of global models, and demonstrate its applicability on two of the most renowned models

like FV3 and ICON.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Bertagna, L., Deakin, M., Guba, O., Sunderland, D., Bradley, A.M., Tezaur, I.K., Taylor,

M.A., Salinger, A.G.: Hommexx 1.0: A performance portable atmospheric dynamical core

for the energy exascale earth system model. Geoscientific Model Development Discussions

2018, 1–23 (2018), DOI: 10.5194/gmd-2018-218

2. Christen, M., Schenk, O., Burkhart, H.: Patus: A code generation and autotuning frame-

work for parallel iterative stencil computations on modern microarchitectures. In: 2011 IEEE

International Parallel Distributed Processing Symposium, 16-20 May 2011, Anchorage, AK,

USA. pp. 676–687. IEEE (2011), DOI: 10.1109/IPDPS.2011.70

3. Clement, V., Ferrachat, S., Fuhrer, O., Lapillonne, X., Osuna, C.E., Pincus, R.,

Rood, J., Sawyer, W.: The CLAW DSL: Abstractions for performance portable weather

and climate models. In: Proceedings of the Platform for Advanced Scientific Comput-

ing Conference, Basel, Switzerland. pp. 2:1–2:10. ACM, New York, NY, USA (2018),

DOI: 10.1145/3218176.3218226

4. Doms, G., Baldauf, M.: A Description of the Nonhydrostatic Regional COSMO-Model –

Part I: Dynamics and Numerics. COSMO – Consortium for Small-Scale Modelling (2015),

http://cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf

5. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore performance

portability through polymorphic memory access patterns. Journal of Parallel and Dis-

tributed Computing 74(12), 3202–3216 (2014), DOI: 10.1016/j.jpdc.2014.07.003

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 95

http://dx.doi.org/10.5194/gmd-2018-218
http://dx.doi.org/10.1109/IPDPS.2011.70
http://dx.doi.org/10.1145/3218176.3218226
http://cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

6. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to summarize

benchmark results. Communications of the ACM 29(3), 218–221 (1986)

7. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device

scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE

89(3), 259–288 (2001), DOI: 10.1109/5.915374

8. Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., et al.: Near-global climate simulation

at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0.

Geoscientific Model Development 11(4), 1665–1681 (2018), DOI: 10.5194/gmd-11-1665-2018

9. Gurvan, M., Bourdall-Badie, R., Bouttier, P.A., Bricaud, C., et al.: NEMO ocean engine

(2017), DOI: 10.5281/zenodo.3248739

10. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: a domain-specific

tool for structured grid methods in weather and climate models. In: Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis,

15-20 Nov. 2015, Austin, TX, USA. pp. 1–12. IEEE (2015), DOI: 10.1145/2807591.2807627

11. Gysi, T., Grosser, T., Hoefler, T.: MODESTO: Data-centric Analytic Optimization of Com-

plex Stencil Programs on Heterogeneous Architectures. In: Proceedings of the 29th Interna-

tional Conference on Supercomputing, Newport Beach, CA, USA. pp. 177–186. ACM, New

York, NY, USA (2015), DOI: 10.1145/2751205.2751223

12. Gysi, T., Grosser, T., Hoefler, T.: Absinthe: Learning an Analytical Performance Model

to Fuse and Tile Stencil Codes in One Shot. In: Proceedings of the 28th International

Conference on Parallel Architectures and Compilation Techniques, 23-26 Sept. 2019, Seattle,

WA, USA. pp. 370–382. IEEE (2019), DOI: 10.1109/PACT.2019.00036

13. Hoefler, T., Belli, R.: Scientific Benchmarking of Parallel Computing Systems. In: Pro-

ceedings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis, 15-20 Nov. 2015, Austin, TX, USA. pp. 1–12. ACM (2015),

DOI: 10.1145/2807591.2807644

14. Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B., Wolfe, M.: Dependence graphs and

compiler optimizations. In: Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, Williamsburg, Virginia. pp. 207–218. ACM, New

York, NY, USA (1981), DOI: 10.1145/567532.567555

15. Lattner, C.: LLVM and Clang: Next generation compiler technology. In: The BSD confer-

ence, May 2008, Ottawa, Canada. vol. 5 (2008)

16. Lin, S.J.: A “vertically Lagrangian” finite-volume dynamical core for global

models. Monthly Weather Review 132(10), 2293–2307 (2004), DOI: 10.1175/1520-

0493(2004)132¡2293:AVLFDC¿2.0.CO;2

17. Melvin, T., Mullerworth, S., Ford, R., Maynard, C., Hobson, M.: LFRic: Building a new

Unified Model. In: EGU General Assembly Conference Abstracts. EGU General Assembly

Conference Abstracts, vol. 19, p. 13021 (2017)

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

96 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/5.915374
http://dx.doi.org/10.5194/gmd-11-1665-2018
http://dx.doi.org/10.5281/zenodo.3248739
http://dx.doi.org/10.1145/2807591.2807627
http://dx.doi.org/10.1145/2751205.2751223
http://dx.doi.org/10.1109/PACT.2019.00036
http://dx.doi.org/10.1145/2807591.2807644
http://dx.doi.org/10.1145/567532.567555
http://dx.doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2

18. Mullapudi, R.T., Vasista, V., Bondhugula, U.: Polymage: Automatic optimization for

image processing pipelines. SIGARCH Comput. Archit. News 43(1), 429–443 (2015),

DOI: 10.1145/2786763.2694364

19. Osuna C., Clement V.: MeteoSwiss-APN/HIR 0.0.1 (2019), DOI: 10.5281/zenodo.2629314

20. Osuna C., Thuering F., Wicky T., Dahm J., et al.: MeteoSwiss-APN/dawn: 0.0.2 (2020),

DOI: 10.5281/zenodo.3870862

21. Porter, A.R., Appleyard, J., Ashworth, M., Ford, R.W., Holt, J., Liu, H., Riley, G.D.:

Portable multi- and many-core performance for finite-difference or finite-element codes –

application to the free-surface component of NEMO (NEMOLite2D 1.0). Geoscientific Model

Development 11(8), 3447–3464 (2018), DOI: 10.5194/gmd-11-3447-2018

22. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide: A

language and compiler for optimizing parallelism, locality, and recomputation in image pro-

cessing pipelines. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, Seattle, Washington, USA. pp. 519–530. ACM, New

York, NY, USA (2013), DOI: 10.1145/2491956.2462176

23. Rawat, P.S., Rastello, F., Sukumaran-Rajam, A., Pouchet, L.N., Rountev, A., Sadayappan,

P.: Register optimizations for stencils on GPUs. ACM SIGPLAN Notices 53(1), 168–182

(2018), DOI: 10.1145/3178487.3178500

24. Schär, C., Fuhrer, O., Arteaga, A., Ban, N., et al.: Kilometer-scale climate models:

Prospects and challenges. Bulletin of the American Meteorological Society 101(5), E567–

E587 (2020), DOI: 10.1175/BAMS-D-18-0167.1

25. Schulthess, T., Bauer, P., Fuhrer, O., Hoefler, T., Schaer, C., Wedi, N.: Reflecting on the

goal and baseline for exascale computing: a roadmap based on weather and climate simula-

tions. Computing in Science and Engineering (CiSE) 21(1), 30–41 (2019), DOI: 10.1109/M-

CSE.2018.2888788

26. Zangl, G., Reinert, D., Ripodas, P., Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic)

modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynami-

cal core. Quarterly Journal of the Royal Meteorological Society 141(687), 563–579 (2015),

DOI: 10.1002/qj.2378

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 97

http://dx.doi.org/10.1145/2786763.2694364
http://dx.doi.org/10.5281/zenodo.2629314
http://dx.doi.org/10.5281/zenodo.3870862
http://dx.doi.org/10.5194/gmd-11-3447-2018
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/3178487.3178500
http://dx.doi.org/10.1175/BAMS-D-18-0167.1
http://dx.doi.org/10.1109/MCSE.2018.2888788
http://dx.doi.org/10.1109/MCSE.2018.2888788
http://dx.doi.org/10.1002/qj.2378

	A.I. Dordopulo, I.I. Levin
	K. Niedzielewski, M. Semeniuk, J. Skomial, J. Proficz, P. Sumionka, B. Pliszka, M. Michalewicz
	J.M. Kunkel, L.R. Pedro
	J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein
	C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

