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How to Assess the Quality of Supercomputer Resource Usage

Vadim V. Voevodin1 , Denis I. Shaikhislamov1 , Dmitry A. Nikitenko1
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Supercomputer is an exceptionally valuable computational resource and it must be used as
efficiently as possible. However, in practice, the efficiency of its usage leaves much to be desired.
There are various reasons for this. One of the main ones is the low performance of user applications,
but users themselves are often not aware of the presence of performance issues in their programs.
Therefore, it is necessary for administrators of a supercomputer to be able to constantly monitor
the performance and behavior of all running jobs. However, the problem is that the commonly used
metrics for assessing the quality of resource consumption (such as CPU or GPU load, the amount
of bytes transferred over the MPI network, etc.) are often far from being convenient and accurate.
This paper describes the implementation and evaluation of the previously proposed assessment
system, which, in our opinion, makes it possible to significantly ease the task of properly evaluating
the quality of the supercomputer resource usage. We also touch upon another topic related to the
assessment of the quality of using HPC resources — organization of HPC resource provisioning.

Keywords: supercomputing, high-performance computing, performance analysis, monitoring,
workload analysis, resource utilization, resource provisioning.

Introduction

Many modern supercomputers are inefficient. If we study, in detail, the use of the computa-
tional resources of a supercomputer, it often turns out that a significant part of these resources
is either idle, or poorly utilized, or wasted (for example, in the case of an incorrect program
launch). Over time, the situation does not get better: the constant complication of supercom-
puter architecture leads to an increase in its overall performance, but efficiency often drops as it
becomes more and more difficult to properly utilize all the available hardware capabilities.

This is exacerbated by the fact that many supercomputer users initially come from not HPC-
related areas (chemistry, physics, medicine, etc.) and therefore do not have sufficient theoretical
knowledge and practical skills in writing highly efficient parallel applications [7]. Moreover, HPC
area is growing quite fast [2], so more and more new specialists for various scientific fields start
using supercomputers. With that, if a user does not pay for the consumed supercomputer node-
hours, then s/he is not always motivated to care much about the performance of the applications.
For example, if a user runs a job at night, from his/her point of view it may not make much
difference whether it will run for 4 or 6 hours.

In such a situation, it is important for supercomputer administrators to control the efficiency
of the operation themselves. And for this, it is necessary to constantly monitor and analyze the
quality of its functioning, including the entire flow of running applications. And, at this moment,
in practice, an unpleasant situation often arises: administrators are usually able to collect and
store a wide variety of data on the behavior and performance of supercomputing applications,
but it is not clear what to do with this data and how to extract useful information from it? In
particular, how to understand which jobs have performance issues? Common metrics usually
used for that (like CPU load, load average, frequency of LLC cache misses, or amount of bytes
sent over MPI network) in many cases are not so insightful and do not help much in promptly
detecting performance issues.
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For these purposes, we are developing an assessment system that is designed to quickly
and accurately analyze the quality of the supercomputer resources usage. These assessments are
needed for the initial analysis, which allows understanding, in general, which jobs have low effi-
ciency and therefore need to be paid attention to. It is assumed that subsequent detailed analysis
of the selected application, needed to determine the root causes of performance degradation and
ways to eliminate them, should be performed using existing analysis tools, such as profilers,
debuggers, etc.

We also draw attention to the problems of efficient HPC resource provisioning as a necessary
part of the whole computing workflow. We have interviewed five large HPC centers in Russia and
a few European ones to investigate the most concerning questions of HPC centers management
and resource provisioning. In this paper, we give a short summary of these surveys regarding the
observed problem.

The main contribution of this paper is the description of the methods for implementing
previously proposed assessments in practice, as well as the demonstration of the applicability of
these assessments using real-life collected statistics and interesting examples. Another contribu-
tion is a ranked list of the most important questions regarding HPC resource provisioning, built
according to the survey of the largest HPC centers in Russia and a few European ones.

The rest of the paper is organized as follows. Section 1 describes our background, briefly
presenting our previously proposed assessment system. Section 2 is devoted to the implementation
of methods for collecting needed data and computing assessments. In Section 3, the analysis
of some real-life statistics and specific examples collected on Lomonosov-2 supercomputer is
performed. Section 4 describes machine learning techniques planned to be used for expanding
the applicability of the proposed solution. Section 5 is aimed at questions of efficient resource
provisioning and its assessment. Conclusions are described in the last section.

1. Previously Proposed Assessment System

In the previous paper [17], a description of the proposed assessments is given. It was decided
that for each supercomputer job assessments should evaluate how “inefficiently” or “poorly” this
job is using the given computational resource. In our case, we decided to assess how much working
with the selected type of resource interferes with useful computations (which can be performed
by CPU or GPU). If such interference is high, this means that a processor is far from being fully
utilized, waiting for the execution of operations with the specified resource.

Assessments were developed for 6 types of resources — CPU, memory, MPI network, I/O,
GPU and GPU memory, and specific formulas for their calculation were proposed (only general
ideas were proposed for two GPU-related assessments). These assessments are briefly presented
in Tab. 1. Hereinafter, assessment for a certain type of resources will be denoted as scoretype (for
example, scorecpu).

The “Assessment based on” column specifies what idea underlies the proposed method for
calculating each assessment. It can be seen that CPU and Memory assessments are based on
Top-down approach developed by Intel [4, 20] (however, we have not seen the application of
this approach not for one specific application but for the entire job flow, as done in our study).
scorempi aggregates information about all MPI-related performance issues automatically detected
by TASC [13]; the same is true for I/O assessment. Specific formulas for calculating these metrics
were given in [17]. No specific formulas have been previously given for GPU-related assessments,
but this has been done in this paper, see Section 2.
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Table 1. A brief description of previously proposed assessments

Resource type Assessment based on Description
CPU Top-down approach Estimates the fraction of the CPU time when it

was not fully utilized performing useful compu-
tations.

Memory Top-down approach Estimates the fraction of time that the processor
was somehow idle, waiting for data from mem-
ory to be read or written.

MPI network TASC Evaluates the number and criticality of MPI-
related issues causing a job to spend execution
time on data exchange and not computations.

I/O TASC The same as above, but for I/O network.
GPU — GPU analogue of CPU assessment.
GPU memory — GPU analogue of Memory assessment.

A review of related work is given in the previous paper. Here, we only briefly note that at
the moment no studies have been found in which analogues for the proposed assessments were
proposed. However, it should be noted that some of these assessments are based on existing
research, in particular, the aforementioned Top-down approach.

2. Implementation of Methods for Calculating Assessments

The formulas for calculating assessments scorecpu and scoremem given in the previous paper
have been slightly improved. So, a slightly more precise formula is now used to calculate scoremem,
and the formula for the scorecpu has been changed to comply with the general rule: each score
must take values from 0 to 100, where 0 is the best value and corresponds to no interference
with useful computations, while 100 is the worst value, meaning that usage of specified resource
degrade efficiency all the time. The new formulas are shown in (1) and (2). All specified names
in formulas are the processor sensors (in Linux perf notation).

scorecpu = 100− 100 ∗ uops_retired.retire_slots/(2 ∗ cpu_clk_unhalted.thread_any) (1)

scoremem = (min(cpu_clk_unhalted.thread, cycle_activity.stalls_ldm_pending) +

resource_stalls.sb) / cpu_clk_unhalted.thread
(2)

We tested this implementations on the Lomonosov-2 supercomputer installed at Lomonosov
Moscow State University. All the data needed to calculate these assessments on Lomonosov-2
has been collected using DIMMon monitoring system [14]. For these purposes, a new DiMMon
module was developed which collects data from the required performance monitoring counters
(PMC). It should be noted that at this stage we encountered unexpected technical challenges.
To obtain all the needed data, it was necessary to start using the multiplexing mode, since Intel
Xeon E5-2697 v3 and Intel Xeon Gold 6126 processors used at Lomonosov-2 (like many other
modern processors) allow simultaneously collecting data from only 4 sensors, and we needed a
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total of 8 sensors (5 for assessments, 3 for other purposes). And it turned out that the PAPI [15]
library, which we previously used to obtain data from processor counters, gives quite a noticeable
overhead working in the multiplexing mode, thereby slowing down user applications.

Starting to investigate this topic, it turned out that at the moment there was no detailed
study of the overhead caused by multiplexing, so we did this study ourselves [19]. It showed that
the least overhead is obtained when using the LIKWID [9] library, and this is the solution we
started using in practice on the Lomonosov-2 supercomputer. However, it should be noted that
even in this case, the overhead can still be noticeable: on average, application execution time
slows down by 2.78%, rarely reaching a maximum of more than 10%. With this in mind, it was
decided to collect an extended set of sensors (i.e. using multiplexing mode) for every third job,
so that the average slowdown of all user applications would be less than 1%. In order to obtain
scorecpu and scoremem for other jobs as well, we plan to use machine learning methods, which is
discussed in Section 4 of this paper.

The implementation of scorempi and scoreio has not changed: each score aggregates in-
formation on all MPI-related (or I/O-related) performance issues automatically detected using
primary analysis implemented in TASC [12]. The only change is a technical one: the assessments
are now collected automatically for all jobs using TASC workflow, which greatly simplifies their
calculation and analysis.

These scores are not so precise as scorecpu and scoremem, since they build on only those issues
that can be detected using TASC, and automatic detection in TASC is quite limited due to the
general constraints of constant performance monitoring and analysis. But, unlike mentioned
scores, they are collected for all the jobs running on the supercomputer. We are conducting a
study of possible approaches to obtain more accurate assessment for MPI, for example, based on
the metrics proposed in the PoP project [3]. We have implemented a software prototype using the
PnMPI [10], a lightweight tool for automatically collecting information about MPI calls for all
running HPC jobs. However, this prototype, although making it possible to obtain a noticeably
more accurate assessment, shows too high overheads, therefore does not currently allow applying
it in practice. We are working on further improvement of it, trying to reduce the overhead.

In case of GPU, we want to develop assessments similar to scorecpu and scoremem, i.e. Top-
down-related ones. There are studies suggesting Top-down metrics for GPU (for example, [21]),
but we need to calculate assessments for all jobs and therefore can not collect a lot of data (as
not to increase the overhead), so it was necessary to strike a balance between accuracy and the
amount of data collected. The current proposed formulas for scoregpu and scoregpumem are shown
in (3) and (4).

scoregpu = 100 − 100 ∗ Eligible_Warps / Theoretical_Occupancy (3)

scoregpumem = 100 ∗ (Memory_Dependency + Memory_Throttle) / Active_Warps (4)

We intended to collect this data using a module of the DiMMon monitoring system, with
the use of CUPTI [1] supported in PAPI. However, it turned out that apparently in our case
it is technically impossible: most of our GPUs do not support external PMC data collection
(capability >= 7.5 is required). There are other ways to collect the required data, such as using
NVIDIA Nsight, but these solutions are likely to lead to significant overheads. At the moment,
we are investigating ways for solving this technical problem.

Vad.V. Voevodin, D.I. Shaikhislamov, D.A. Nikitenko

2022, Vol. 9, No. 3 7



3. Analyzing Real-life Statistics and Examples

In this section, we will show how suggested assessments can be used in practice to obtain
useful and interesting insights. For this purpose, we analyzed all jobs that were executed on the
Lomonosov-2 supercomputer during September 2022.

During this period, user run 14920 jobs in total. scorecpu and scoremem were calculated for
9.5% of them. As mentioned before, data for these assessments is collected for every third job,
but some other factors should be taken into account: there are many very short jobs — less
than 1 minute — for which no monitoring data could been collected (usually, test or incorrect
launches) due to data collection granularity; also, sometimes, monitoring system fails to collect
all needed data. This explains why data was collected for only ∼10% of jobs. scorempi and scoreio
can be potentially collected for any job, but they also rely on the presence of monitoring data.
Moreover, there are many cases when an application does not use communication network at
all or use it efficient enough (thus no MPI-related issues are detected), so the value of scorempi

is non-zero for 17.15% of jobs (where at least MPI-related issue was detected), while scoreio is
non-zero in 0.34% cases. Such a situation with scoreio indicates that we probably should revise
I/O issue detection in TASC, since it is unlikely that any kind of such issues occur so rarely.

Figure 1 shows distribution of scorecpu and scoremem for all jobs during September 2022.
Each dot corresponds to a specific job, axis X is scorecpu for a job, axis Y is scoremem. The
general trend is noticeable — scorecpu grows together with scoremem, which is generally logical,
since the more memory interferes, the less the processor is able to perform useful computations.
Also, it can be seen that “good” scorecpu values, i.e. values that are close to zero, are not common.
This is also not surprising, since the actual performance when using modern processors is very
rarely close to peak performance. On the contrary, values of scoremem stay in the low range of 10-
40%. This means that memory usage on average does not interfere much with useful calculations.
However, we can see jobs with scoremem of almost 100%, meaning that usage of memory degrades
application performance constantly during job execution. We can also notice, for example, that
there is a job showing scorecpu of ∼95%, but scoremem is very low in this case with less than 10%
(right bottom dot). This means that this program definitely has serious performance issues, but
these issues are not related to memory usage.

Such a representation allows getting a general idea about the quality of usage of the selected
resources in general and, in some cases, to identify anomalies.

Let us look at the available statistics from a different angle. Figure 2 shows top 25 jobs during
the selected time period (September 2022) with the highest assessments overall (ranked by the
sum of all assessments). With this we want to look at jobs with the most noticeable performance
issues. Jobs are shown along the X axis, indicating the name of the user who ran them. Axis Y
shows the value of three assessments — scorecpu, scoremem and scorempi + scoreio (last two are
combined for convenience, all the more so as the second assessment is almost always zero, and
both assessments are calculated in a similar way and therefore can be summed).

We can see that values of all these estimates range from 40% to 80%, and there seems to be
a certain trend: the farther — the lower the scoremem is, while it is not observed for two other
assessments.

The most interesting fact in this figure is that 19 out of 25 jobs belong to one user (user1),
as it can be seen in the X-axis label. This clearly indicates that performance issues have occurred
repeatedly in the jobs of this user, and judging by the number of such jobs, this does not look
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Figure 1. Distribution of scorecpu and scoremem for all jobs during September 2022

like single random cases, but the presence of constant issues. Further analysis showed that these
jobs in fact did show very low performance, and this was due to the fact that the user ran a series
of test runs with intensive use of collective MPI-operations, which led to such bad assessments.
In this case, the nature of the tests being run does not allow improving the use of computational
resources, however, given that these tests are short and consume few node-hours, this is not a
noticeable problem at the level of the entire supercomputer.

Figure 2. Top25 jobs with the highest sum of assessments
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Considering the above, system administrators should pay attention to job #15 launched by
user3: this job is much more computationally expensive than all the others presented in the
Fig. 2. At the moment, this user has had only few launches, but they all consume noticeable
amount of node-hours and all show bad assessment values, so it is worth paying attention to
them: if their number increases, it is worth contacting the user and trying to find out what is
the reason for this behavior. Moreover, all such jobs have a high scorempi + scoreio score and
they occupy quite a lot of compute nodes, which means that the task of optimizing MPI usage
should be of the priority.

Now let us move on from considering individual jobs to studying aggregated infor-
mation on individual users. In Fig. 3, top 50 users based on their weighted scorecpu av-
erage during September 2022 are shown. Blue line shows weighted scorecpu average for
specific users. Here, weights are node-hours, i.e., value for each user is calculated as
sum(score_i*nodehour_i)/sum(nodehour_i), where score_i is scorecpu for i-th job of selected
user, and nodehour_i is the amount of node-hours i-th job has consumed. Orange dots corre-
spond to total node-hours consumed by each user during the selected time period (note that
these values are shown on the secondary Y axis).

Figure 3. Top user ranking based on weighted scorecpu average

Such information can be useful in different ways. For example, we noticed that users #1,
#4, #5 and #11 are from the same project. Moreover, they all actively use LAMMPS software
package [16], which suggests that these users are highly inefficient at using this package (because
many other LAMMPS users have noticeably better scorecpu values). Further analysis has shown
that many of job launches under discussion seems to be incorrect: they have ended with FAILED
finish state, e.g. one third of user #1 jobs has this state. This most likely means that users of
this project have problems with the correct and efficient usage of the LAMMPS package, and
system administrators should pay attention to this. It is interesting to note that the common
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metrics for evaluating the processor load, CPU user load or load average, for all the considered
jobs show almost optimal values, that is, it would be impossible to detect this situation using
the standard approach.

These are just a few examples of how the proposed assessments can be applied in practice.
The proposed solution is currently fully operational and available on the Lomonosov-2 super-
computer; in the future, we plan to integrate their use within the standard operating procedure
for system administrators.

4. Using Machine Learning to Predict Assessment Values

It has been mentioned earlier that scorecpu and scoremem are collected not for all jobs. But
it would definitely be great to evaluate these assessments for as much jobs as possible. In order
to achieve that, it is planned to apply machine learning methods. Previously, two methods for
detecting similar supercomputer applications have been developed at the Research Computing
Center of Lomonosov Moscow State University [11]. The first method is based on the use of
the Doc2Vec neural network [6] to analyze static information on function and variable names
obtained from binary and object files. The second method for detecting similar applications is
based on applying the DTW algorithm [5] to multivariate time series, which are formed from
the performance characteristic values obtained from the monitoring system during application
execution. Such characteristics include, for example, CPU user load, L1 cache miss rate, the
amount of data transferred over the MPI network per second, etc.

These methods have already shown high accuracy in practice, and therefore it has been
decided to adapt these methods to solve a related problem: determining the values of proposed
assessments based on historical data for jobs with no assessments obtained using the standard
way described above. The solution should be mainly based on the dynamic method, as it is more
suitable for fine-grain similarity detection. But, it is possible to combine both methods: first, we
perform a primary filtering of jobs which can potentially be similar using a static method, and
then apply a dynamic method to the remaining jobs. As the first results showed, this not only
makes it possible to speed up the analysis process (since the dynamic method is much slower
than the static one), but also to increase the accuracy. Thus, we propose the following general
working algorithm:
• We collect a knowledge base, which accumulates historical information about assessment

values for real-life Lomonosov-2 jobs (for which the standard method described above has
worked).
• When a new job is found, and standard method failed to assess it, we do the following:

– We find all jobs in the knowledge base that are similar to the new one using static
analysis.

– If we find statically similar jobs, we search for similar jobs among them using dynamic
method with coarse threshold (step A).

– If we do not find statically similar jobs, we select similar jobs in the whole knowledge
base by dynamic method using a lot finer threshold (step B).

The idea is that if we find statically similar jobs the probability that dynamic analysis will
falsely find similar job is low, so we can use coarse threshold to get more jobs of comparison.

After the analysis, we have a set of jobs that are similar to the target. For each similar job
assessment values are known (they are stored in the knowledge base), so the question arise: how

Vad.V. Voevodin, D.I. Shaikhislamov, D.A. Nikitenko

2022, Vol. 9, No. 3 11



should we predict the target’s assessment value based on them? We considered three methods:
median, average and softmax weighted average. Softmax weighted average is computed as:

softmax weighted average =

∑
i e

−distancei ∗ scorei∑
i e

−distancei
.

There is also a question of how to evaluate the accuracy of our prediction. Because the task of
predicting assessment values is the regression task, we can use the regression evaluation metrics.
The most common are Mean Absolute Error (MAE) and Mean Squared Error (MSE). In terms
of the values, both MSE and MAE are positive numbers, and lesser the value — the better. MAE
shows average error of the regression model, and higher the value — higher the error on average.
This metric is very important in showing whether the predictions are close or not, but it has a big
drawback — if there is a small percentage of predictions with very high error then the MAE will
not be affected that much, because huge amount of accurate predictions will average the score
out. That is why analyzing MSE is also important: it squares the error, and only then average
is computed. This ensures that predictions with high error have greater effect on the score, thus,
if the MSE is higher than the percentage of predictions with higher error will be higher too.

To test whether our proposed algorithm will work, we collected data on ∼1500 jobs with
execution time over 30 minutes. In this case, we can consider only quite long jobs because
if execution time is small there is very little useful information about job behavior. Each job
has assessments of the scorecpu and scoremem that we can use for further comparison with the
predicted value.

During testing, we changed 2 parameters of the specified algorithm: aggregation function
(median, average or softmax weighted average) and selected approach. We decided to test three
different approaches:
• Combined approach #1 — the default approach proposed earlier, using both steps A and

B in the working algorithm.
• Combined approach #2 — the default approach, but with step A only, no step B, since

step B allows analyzing more jobs but tend to decrease the accuracy.
• Dynamic analysis only — using dynamic analysis only, with no static analysis involved.
Tables 2 and 3 show the evaluation results for scorecpu and scoremem correspondingly.

Table 2. Accuracy of predicting scorecpu

Selected configuration % of jobs pre-
dicted

MAE MSE % of jobs with
AE >10

Combined approach #1, softmax 56.62 1.39 7.42 0.65
Combined approach #2, softmax 33.06 1.66 8.12 0.47
Dynamic analysis only, softmax 80.53 3.71 37.97 8.01
Combined approach #1, median 56.62 1.35 7.88 0.95
Combined approach #2, median 33.06 1.68 9.09 0.71
Dynamic analysis only, median 80.53 3.89 50.96 8.90
Combined approach #1, average 56.62 1.48 8.06 0.65
Combined approach #2, average 33.06 1.77 8.79 0.47
Dynamic analysis only, average 80.53 4.12 43.81 9.61
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Table 3. Accuracy of predicting scoremem

Selected configuration % of jobs pre-
dicted

MAE MSE % of jobs with
AE >10

Combined approach #1, softmax 56.60 1.39 7.42 0.65
Combined approach #2, softmax 33.19 1.64 13.02 0.54
Dynamic analysis only, softmax 80.81 3.11 34.97 5.54
Combined approach #1, median 56.85 1.32 9.98 0.77
Combined approach #2, median 33.19 1.67 14.14 0.72
Dynamic analysis only, median 80.81 3.23 40.33 6.67
Combined approach #1, average 56.85 1.41 9.91 0.60
Combined approach #2, average 33.19 1.79 13.77 0.54
Dynamic analysis only, average 80.81 3.42 37.89 6.56

According to the provided results, dynamic only analysis is a clear winner in terms of the
percentage of jobs predicted, as it covers >80% of jobs. But the quality of such prediction is
quite low: more than 8% of jobs have the absolute error (AE) greater than 10, which is very
high for a score ranging from 0 to 100. Combined approach #2 has the least percent of detected
jobs with MAE and MSE slightly higher than if we use combined approach #1, but the percent
of jobs with AE greater than 10 is the least among all configurations. Therefore, the combined
approach #1 can be considered as the best option. It is in the middle ground between the other
two variants in terms of percentage of detected jobs, has the best MSE and MAE, and also has a
lot less percentage of jobs with high AE than dynamic analysis only. The benefits can also been
seen in Fig. 4. Graphs show the distribution histogram, where each bar corresponds to a specifiс
difference interval between true and predicted scores, and its height represents how many jobs
show the specified difference interval. Two combined approaches are very similar in “tails” (where
error is quite high), but approach #1 has a higher amount of accurate predictions (bars around
zero value), almost by a factor of 2.

In terms of aggregation methods, there is no clear winner. Median shows that it has the
least MAE, but highest MSE and percentage of jobs with high AE. This means that most of
the time predictions are very accurate, but the cases of wrong predictions are way off the true
values. Average has the least percentage of jobs with high AE, but has almost the same MSE as
median. This means that there are many cases when the prediction is not so close to the ground
truth, but the AE is still less than 10. Softmax weighted average is in the middle of the previous
two: it has the average MAE and percentage of jobs with high AE, but a lot better MSE. This
means that the predictions are very close to the median yet excluding some cases with high
AE. But, overall, all aggregation variants are similar. This can clearly been seen in distribution
histogram in Fig. 5, where all the graphs are practically the same. It tells us that in this case
the aggregation function almost does not matter, and the defining factor whether the regression
model will be accurate or not is determined by the selected approach. It is worth investigating
on how to increase the percentage of found jobs in combined approach #1 while still retaining
the quality of the predictions.
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Figure 4. The distribution histogram for different approaches, softmax weighted average

Figure 5. The distribution histogram for different aggregation methods, combined approach #1

5. Assessing the Quality of HPC Resource Provisioning

The assessment of the quality of using HPC resources would be incomplete if we do not
take into account the issues of organizing the provision of these resources and the level of user
interaction with the supercomputing center. In other words, it is expedient to jointly consider
and assess the quality of computing resources provisioning. There are two main stages to be
distinguished here:
• getting access to HPC resources;
• computing and user support.
Getting access for the first time can be a relatively complex process, mostly when getting ac-

cess to the centers of collective use on a gratuitous basis, within the framework of collaborations,
etc. Here, requests for confirmation of membership in a particular project, guarantees for the
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use of resources for certain purposes and only for them, confirmation of the amount of resources
provided, etc. are quite likely. All these questions are individual for each HPC facility, but, at
the same time, they have much in common, which means that they can be formalized and auto-
mated in many ways. In particular, the Octoshell supercomputer center management system [8]
provides such intuitive entities as “application”, “surety”, “access”, which can be omitted in the
system, or brought to the required form with relative ease.

At the same time, even when obtaining access on a reimbursable basis, one still needs to
declare the work aims and prove allocated resources needed, even at a high level of abstraction.
Indeed, for large centers, the correct use of computing power is not only a matter of profit, but
also of reputation. So, in many domestic and foreign HPC centers, both for calculations and for
other services, for example, application optimization, reviewing has been introduced, and it will
not be possible to receive even paid services without passing it. However, given that obtaining
access is a one-time task for a research project, the significance of the degree of development
of solving this issue is strictly proportional to the number of projects and their activity. At the
same time, an inefficient solution to this issue adds difficulties and issues to the system holder
to a much greater extent than to users.

The situation is quite different with the support phase of the calculations. It is obvious
that at this stage there is a number of chains of interaction between the user and the system
holder. Let us consider the main ones in descending order of importance based on a survey of
representatives of the largest HPC centers in Russia and some of the leading European centers.

The first group with the highest priority includes the following two areas.
1. Availability of up-to-date user documentation
It includes frequently asked questions sections, documentation on the software and hardware

stack, a detailed description of typical work scenarios and use cases (registration, expertise,
correct project workflow, links to resources, related publications, etc.).

The phase requires little but constant attention from the system holder, and up-to-date in-
formation is extremely important for users. Unfortunately, the general practice is that, despite
being in demand, users prefer to report bugs and inability to conduct computing or research
before carefully studying the documentation. However, this is precisely the task of the system
owner: to keep the documentation section in such a clear and up-to-date form that users intu-
itively access the information they are looking for on their own, thereby reducing the unnecessary
burden on administrators.

2. User support, solving user problems
Helpdesk is usually implemented as a ticket system. The fundamental importance of full-

fledged user support is to minimize the time for solving emerging problems of a different nature.
This is not possible without a substantial staff of administrators, effective rubrics/templates for
user requests, a detailed history for each issue, the ability to reassign and engage participants
to solve the problem at hand. Absolutely all surveyed HPC centers put this functionality in first
place immediately after ensuring the availability of all necessary up-to-date documentation.

The next area with a moderate priority is almost unanimously recognized as improving the
efficiency of user tasks.

3. Improving the efficiency of user applications
Indeed, the return of the entire HPC center consists of all the results obtained within all

ongoing projects, that is, they depend on the effectiveness of each launch. There is a clear division
into the commercial use of resources and gratuitous use (including paid by a third-party source).
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In commercial exploitation, the user’s interest in this issue is higher, despite the fact that all
users are interested in minimizing the time to obtain the final result.

It would seem that it is not so important for the owner of a computing system how quickly
the applied tasks will be solved if the resources spent are paid in proportion to the time and
scale of the tasks. However, almost all centers are interested in demonstrating their efficiency
and productivity, both for maintaining the image/reputation and to substantiate directions for
further own development, as well as to attract new users and just to help users solve their tasks
faster.

In a number of foreign HPC centers, special departments have been allocated to analyze user
applications, mainly on a commercial basis. In addition, support staff from equipment vendors
is sometimes involved in resolving such issues, while users receive assistance, and the system
manufacturer receives feedback, which is extremely important when designing new systems.

There are not very many developments in this direction among local supercomputing facili-
ties: the shortage of staff of administrators and support groups is affecting, nevertheless, we can
clearly see the demand by a number of users [18]. Works at the HPC center of Moscow State
University stand out, namely the TASC system, aimed at assisting in the analysis of the efficiency
of user jobs. It is important that the system provides users with data and recommendations on
each run and with the possibility of feedback.

The areas with the lowest priority were identified by the system holders interviewed as
follows.

4. Organization of the user’s workspace
This includes user’s personal account, organization of notifications about significant events

in workflows, а “one-stop” service. Often, such solutions are bundled with the system provided
by the supplier, so only large centers with complex workflows face the need for improvements.

5. Promoting user results
This direction is image-building, largely based on bullet 3. The presentation of success stories,

vivid illustrations of the tasks being solved, announcements, publications: all this, of course, is
necessary and contributes to the formation of the correct image of the supercomputer center,
but it is relevant only when its productive functioning is already ensured.

Given that this distribution is built on the basis of the answers of large HPC systems holders,
the considered gradation can be used as a basis for assessing the quality of user service provision,
for example, as a basis for a scoring system with an appropriate distribution of weight coefficients
according to the priorities mentioned above.

Conclusions and Future Work

This paper describes the implementation and evaluation of the previously proposed assess-
ment system for analyzing the quality of HPC resource usage. For each supercomputer job,
assessments evaluate how “inefficiently” or “poorly” this job is using the given computational
resource.

The exact formulas for calculating all assessments are proposed, and their implementation
(except for GPU-related assessments) was carried out on the Lomonosov-2 supercomputer. The
collected real-life statistics and examples given in this paper show that proposed solution can
be useful in many ways for system administrators, providing different insights on the quality of
resource usage by particular jobs, users, projects, software packages, etc.
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The authors also outline that granting high quality of resource provisioning and interaction
with users is a necessary step when improving the efficiency of HPC resource usage. Five most
popular types of such interaction are given in the paper according to the survey of large HPC
centers in Russia and Europe.
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Partial differential equations (PDEs) are pervasive in vast domains of science and engineering.
Although there is huge legacy of numerical methods for solving direct and inverse PDE problems,
these methods are computationally expensive for many fundamental and real-life applications,
demanding supercomputer resources. Moreover, existing methods for PDEs identification assume
concrete functional forms for the coefficients to be found, significantly limiting the range of possible
solutions. The mentioned circumstances lead to increasing interest in AI-based methods for direct
solving and identification of PDEs. In this study, we propose a novel method based on artificial
neural networks (ANNs) for the identification of partial differential equations. The method does not
require any strong a priori assumptions regarding the family of the functions approximating PDE
coefficients. It allows one to approximate the coefficients of a PDE based on the observed evolution
of PDE direct solution. We demonstrate efficacy and high accuracy of ANN-based method in
case of diffusion equation and nonlinear diffusion-advection equation (Richards equation) applied
to the simulation of heat and moisture transfer in soil. We demonstrate that the novel method
implemented on Ascend platform using the mixed precision floating point operations overperforms
the classical gradient descent method in Barzilai–Borwein stabilized modification (BBstab, realized
on a conventional central processor), in terms of MAPE (mean absolute percentage error) and
RMSE (root mean square error) of approximated coefficients at least an order of magnitude.
We also found that ANN-method is much less sensitive to initial guess of parameters compared
to BBstab approach. Since the considered equations are of generic form, we anticipate that the
proposed ANN-based method can be successfully exploited in other applications. These potential
applications include hydrodynamic-type problems, e.g., optimization of turbulence closures, where
the assumed reference solutions of PDEs are usually obtained from high-resolution direct Navier-
Stokes simulations.

Keywords: partial differential equations, artificial neural networks, machine learning, inverse
problems, land surface model, Richards equation, Ascend platform.

Introduction

Partial differential equations (PDE) are pervasive in many domains of science and engineer-
ing. Over the past decades, multiple methods have been proposed which allow to solve PDEs
numerically, such as finite elements method (FEM), finite differences method (FDM), finite vol-
umes method (FVM), etc. Such methods allow to achieve good accuracy of the numerical solution,
but often are computationally expensive, which becomes an important limitation in applications
when one needs to perform thousands or even millions of simulations. Such scenarios are com-
mon in engineering, e.g., the problem of finding optimal configuration of design parameters may
require a large number of forward simulations for individual parameter sets. Another category
of problems where traditional numerical methods often require heavy computations are inverse
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or data assimilation problems where the governing PDEs need to be reconstructed based on
the measurement data or data of very-fine-scale simulations recognized as “truth” (e.g., direct
numerical simulations in turbulence [35]).

The limitations of classical numerical methods resulted in the increasing interest in AI-
based methods for solving and/or identification of PDEs which hold a perspective of effectively
addressing the above mentioned issues. These AI-based methods can be split into two major cat-
egories: data-driven methods and physics-informed ones. The former category includes methods
which use only observation data to implicitly reproduce the physics of natural phenomena, with
Fourier neural operator (FNO) [29] and deep operator networks (DeepONet) [32] being some of
well-known examples. Physics-informed methods, in contrast, leverage known information about
governing physical laws. The most famous and likely most widely used method in this category
is physics-informed neural networks (and its flavours) [22, 38–40], developed by research group
of professor G. Karniadakis at Brown University.

The application of AI-based methods allowed to achieve notable results in areas like protein
structure prediction [4, 25], photonics [44], the solution to Schrödinger equation for fermions [37],
quantum transport [45], molecular dynamics [23], climate analytics [28], weather prediction [43],
computational fluid dynamics (CFD) [16, 30], solid mechanics [19], Earth radiation belt model-
ing [10] and others.

While the interest of scientific community in AI-based methods of solving PDEs does increase
quickly, most case studies presented so far leverage single precision arithmetic and thus focus
on commodity hardware such as CPU and general-purpose computing on graphics processing
units (GPGPU), even though specialized deep learning accelerators could be a perfect hardware
target for such technologies in theory, due to their higher computational performance. However,
the important question which needs to be addressed to evaluate the usefulness of AI accelerators
in the field of scientific computing is whether the half precision arithmetic typically supported by
those accelerators would allow to achieve acceptable accuracy in the problems of interest. This
motivates us to thoroughly consider the question of datatype precision in the current paper where
to the best of our knowledge we present the first case study of using specialized AI accelerator
for solving the PDE identification problem relevant to land surface modeling field via artificial
neural network (ANN) based algorithm.

The paper is organized as follows: in the Section 1, we present the context of the problem of
PDE identification and the specifics of the downstream tasks we consider in this study that are:
soil heat conductance and soil water content dynamics. We introduce the PDEs that describe
these physical processes. These PDEs are subjects to identify in our study. In Section 2, we
present the methods for the identification of PDEs we developed in our study. Both classical
method (Section 2.3) and the one based on artificial neural networks (ANNs) (Section 2.4) are
presented in this section in a unified manner in order to make it easy for a reader to compare the
approaches and find the key differences. In Section 2.4 we describe our method based on ANNs
in detail, including the physics-guided regularizations, our improved scalars and tensors scaling
scheme, and the scheme of random re-weighting of individual elements of loss sums. In Section 3,
we present the results we deliver in this study. We compare the accuracy and the performance
of classical identification method we reproduce in this study, with the accuracy and performance
of the method based on ANNs we propose in this study. In Conclusions section, we summarize
the paper and draw the conclusions based on our results.
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1. Problem Setup

1.1. General Remarks on the PDE Identification Problem

Let us assume we have a partial differential equation or a system of PDEs supplemented
with appropriate initial and boundary conditions:

Bf +A [λ(f)] f = g, (1)

where B and A are differential operators, λ(f) is a coefficient of the operator A which is a function
of solution f , g is a given right-hand side (r.h.s.) function of time and space. Below we confine
ourselves to operators A which are linear on λ. The inverse problem is formulated as follows:
the PDE solution f is given, B and A are known, λ(f) has to be found. For any test function
(coefficient) λ∗(f) = λ(f) + δλ(f), we get a residual of (1), defined as ε:

Bf +A [λ(f) + δλ(f)] f − g = ε, (2)

A [δλ(f)] f = ε. (3)

The residual ε is zero if δλ(f) = 0. The opposite is not true in general case, i.e., there might
be non-trivial solutions δλ(f) of equation (3) with ε. This means the solution of inverse problem
is not unique in general case. The practical consequence of this fact is that minimizing ε to
zero over a space of λ∗(f) functions does not necessarily provide δλ(f) → 0. In this study, we
impose additional constrains on λ∗(f), which ensure the correct solution of the inverse problem,
including the monotonicity and matching the known points of λ(f) (see Section 2.4.3).

Let us assume now, that we have a solution of (1), f , at a set of nodes in time and space
(say, data of fine-scale measurements or simulations with a priori correct but computationally
expensive mathematical model). Then, the equation (1) can be discretized as follows:

ε∗hτ
.
= Bhτ fhτ +Ahτ [λ(fhτ ) + δλ(fhτ )] fhτ − ghτ = εhτ +O(hn) +O(τm), (4)

where h and τ stand for spatial and temporal spacing of the mesh where the above mentioned
data is available, fhτ , ghτ , εhτ are the projections of f , g, ε onto the mesh, n and m are the
orders of approximation of A and B by discrete analogues Ahτ and Bhτ , respectively. Now,
under fixed h and τ , minimizing the norm of residual of (4), ||ε∗hτ ||, over λ∗(fhτ ) does not lead
to vanishing of εhτ and δλ(fhτ ) → 0. This is because the residual of discretized PDE is caused
by both the deviation of test coefficient function from the true one and discretization errors, so
that vanishing ||ε∗hτ || means εhτ → O(hn) +O(τm). In this study, we minimize the discretization
issue by using fine-resolution grids for PDE approximation.

1.2. Equations for Soil Thermodynamics and Hydrodynamics in Weather
and Climate Models

The land surface scheme is a necessary compartment of any numerical weather forecast
system or the Earth system model. Its key feature is the presence of a number of loosely con-
strained parameters of PDE coefficients which need to be identified using observation data. This
includes the biophysical properties of soil and vegetation responsible for simulation of soil mois-
ture regime and river runoff, inter alia. In this paper, we suggest a new ANN-based approach
for identification of heat conductance and Richards equations. These equations are standard for
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land surface schemes, and are used in the land surface scheme jointly developed by the Institute
of Numerical Mathematics (INM) RAS and Lomonosov Moscow State University (MSU). This
land surface scheme is a module of the national INMCM Earth system model [42] and SLAV
numerical weather forecast system [13].

The basic numerical kernel of any land surface scheme is a solver for an equation system
governing heat and water transport in soil. This system includes heat equation:

ρc
∂T

∂t
=

∂

∂z

(
λT
∂T

∂z

)
+ ρd (LiFi − LvFv) , (5)

where T is temperature, ρc is volumetric specific heat of soil, ρd is dry soil density, L and F are
specific heat and rate of water phase transition (subscript i standing for freezing/melting and v
denoting evaporation/condensation processes), t is time, z is a spatial coordinate directed along
gravity. Importantly, the heat conductivity coefficient λT is a function of liquid water content
W (expressed in kg/kg or m3/m3), i.e., it depends on the solution of the equation set. The l.h.s.
represents the change of soil enthalpy, and terms to the r.h.s. stand for heat conductance and
heat release/consumption due to phase changes. An equation for liquid water content is referred
to as Richards equation and takes into account vertical transport (diffusion and gravitational
infiltration), freezing/melting and evaporation/condensation:

∂W

∂t
=

∂

∂z

(
λW

∂W

∂z

)
+
∂γ

∂z
− Fi − Fv −Rroots −Rrunoff , (6)

where γ is gravitational water flux, Rroots is soil moisture uptake by roots, and Rrunoff is a sink
of water due to horizontal runoff. This equation involves a concept of soil moisture potential
(or water retention curve, WRC), Ψ, and hydraulic conductivity, γ, which are dependent on
moisture W , defining coefficients λW , γ as functions of PDE solution. The liquid water diffusiv-
ity λW (W ) and hydraulic conductivity (HC) γ(W ) are related functions, i.e.:

λW (W ) = γ(W )
∂Ψ(W )

∂W
. (7)

At least 22 semi-empirical forms are proposed for the WRC function [12], fitting different sets
of empirical data with different performance. The WRC function explicitly enters the hydraulic
conductivity function. For instance, choosing Mualem approach for HC quantification [36], one
arrives to:

γ = γsW̃
1/2



∫ W̃

0

dW̃ ′

Ψ(W̃ ′)

(∫ 1

0

dW̃ ′

Ψ(W̃ ′)

)−1

2

, (8)

where W̃ .
= (W −Wr)/(Ws −Wr) is a degree of soil moisture saturation, subscripts “s” and “r”

standing for saturated and residual quantities of liquid water in a soil matrix. Thus, introduc-
ing in (8) and (7) n = 22 forms of WRC yields 22 possible pairs of functions (λW , γ), based on
Mualem equation. Given existence of different theoretical approaches (including Mualem’s formu-
lation (8)) to quantify hydraulic conductivity [9, 14, 36], say, m approaches, we get m∗n possible
functional forms for a pair (λW , γ), which is ∼ 100 for the current state of the field. This clearly
shows that no generally accepted formulations for these two coefficients are available, so that
a method, deriving coefficients λW (W ) and γ(W ) independently from data on measurable vari-
ables such as W with very general a priori assumptions on these functions (such as positive
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definiteness, monotonicity) would ease the collection of more empirical data on WRC and HC
functions and eventually serve the development of unified theory.

The dynamics of water vapor (V , kg/kg) in soil pores in the INM RAS-MSU land surface
model is governed by diffusion equation with evaporation/condensation term:

∂V

∂t
=

∂

∂z
λV

∂V

∂z
+ Fv, (9)

(λV – diffusivity coefficient for the water vapor) while the evolution of ice content I (kg/kg) is
defined by phase transitions only:

∂I

∂t
= Fi. (10)

The system of equations (5), (6), (9), (10) is supplemented in the land surface model by boundary
conditions, representing heat and moisture balance at the top and bottom margins of the soil
column:

− λT
∂T

∂z

∣∣∣∣
z=0

= Rnet −Hs − LEs, (11)

− λW
∂W

∂z

∣∣∣∣
z=0

= rpr − Es, (12)

V |z=0 = V0(t), (13)
∂T

∂z

∣∣∣∣
z=H

=
∂W

∂z

∣∣∣∣
z=H

=
∂V

∂z

∣∣∣∣
z=H

= 0. (14)

Here, Rnet is the net radiation, Hs and LEs are sensible and latent heat fluxes in the surface
air layer, respectively, L – specific heat of evaporation/condensation, rpr – the liquid water
flux to the soil from rain or melted snow. The lower boundary conditions mean zero flux. The
infiltration flux, γ is non-zero at the lower bound of soil column, and is assumed to contribute
the river runoff. The aforementioned boundary conditions are prone to uncertainties induced by
quantifying radiation and heat fluxes, both in measurements and theoretical approaches. Thus, in
this study, we make use of a fact that at the diurnal scale, the temperature and moisture remain
almost constant at sufficiently large depth, and follow sinusoidal pattern at the soil-atmosphere
interface (see Problem Specification section).

1.3. Problem Specification

The key feature of the soil model described above is a set of PDE coefficients, which are
dependent on PDE solution. These coefficients are routinely not measured. Our objective is to
find coefficients as functions of solution, given the solution is known. The temperature T and
moisture W can be available either from observations or from reference direct problem solution
with a priori given coefficients. In order to simplify the task, we neglect water phase transitions,
root uptake, horizontal runoff, which leaves us with a set of two equations – (5), (6) – with
Fi = Fv = Rroots = Rrunoff = 0:

ρc
∂T

∂t
=

∂

∂z

(
λT
∂T

∂z

)
, (15)

∂W

∂t
=

∂

∂z

(
λW

∂W

∂z

)
+
∂γ

∂z
, (16)
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and the simplified Dirichlet-type boundary conditions are specified as:

f |z=0 = f1 +
1

2
(f2 − f1) (1 + sin(ωt− π/2)) , (17)

f |z=H =
1

2
(f1 + f2) , (18)

where f = T, W , W1 = Wmin, W2 = Wmax, and T1 = Tmax, T2 = Tmin (Tmin = 0 K,
Tmax = 5 K, Wmin = 0.2 kg/kg, Wmax = 0.65 kg/kg), and ω is a frequency of the surface
forcing, in this study set as ω = 2π/Td, Td = 24 h. We substituted the conventional flux-type
boundary conditions (11)–(14) with (17)–(18) to avoid additional uncertainties associated to
parameterization of heat and moisture turbulent fluxes to the atmosphere (whereas Dirichlet
conditions are directly measurable). The initial profiles for temperature and moisture are:

f |t=0 = f1 + (1− exp(−λdecz))(f2 − f1), (19)

with f = T, W , λdec = 3 m−1.
The coefficients λT , λW and γ are assumed to be the functions of W only, i.e., no explicit

dependence on z is imposed owing to the vertical soil structure. In other words, all soil physical
parameters (e.g., soil porosity, heat conductivity of solid particles, hydraulic conductivity at
saturation, etc.) potentially affecting thermal conductivity and Richards equation coefficients
are taken as depth-independent.

Equations (9) and (10) are no longer a part of the problem, due to neglecting the phase
transitions. The depth of soil is set as H = 1 m, a depth where diurnal oscillations are typically
vanishing in real soils. In this study, the direct problem is solved using the reference (“true”)
functions describing λT , λW , γ using finite difference scheme and thus providing Thτ , Whτ at
a fine grid, with number of layers nz = 1000, and timestep ∆t = 10 s or ∆t = 1 h. Then the
reference λT , λW , γ are sought given Thτ , Whτ only. The two methods for seeking the PDE
coefficients are used:
• method constructed by joining the well-known elements (referred to hereafter as “classical

method”): the functional form of coefficients is given by one of options well-established
in soil science (Cote-Konrad [11] or Johansen [24] representations of λT , and Mualem-van
Genuchten [17], Books-Corey [7] or Gardner [15] formulae for λW , γ), the parameters of
these forms are optimized by stabilized Barzilai–Borwein algorithm [6, 8];
• new artificial neural network (ANN)-based method: the functional form of coefficients
λT , λW , γ is represented by artificial neural network, and the parameters of ANN are
optimized.

In the implementation of ANN method, a special focus is put on the impacts of using FP32
(floating point, 32 bits) and FP16 (floating point, 16 bits) precision on solution wall-clock time
and accuracy of inverse problem solution using the Ascend platform provided by Huawei.

In both methods of PDE identification, the parameters of analytical forms for λT , λW , γ are
sought to minimize a loss function of PDE residual εhτ (see eq. (4)), where operators Bhτ and Ahτ
represent discretization of heat conduction (15) and Richards (16) equations. The discretization
of heat conduction equation and diffusive part of Richards equation is central-difference in space
and 1st order implicit in time. The advective part of equation (16) is approximated by 1st order
explicit scheme in time and central-differences in space. Thus, the Richards equation is solved
by time-splitting by physical processes (terms to the r.h.s. of (16)).
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2. Methods

2.1. Reference Solutions

2.1.1. Heat conduction equation

To produce the reference numerical solution of direct heat conduction problem, we use the
Cote-Konrad model for coefficient of soil heat conductivity [11] (hereafter denoted as “C-K”):

λT = λT,dry + (λT,sat − λT,dry)Ke, (20)

λT,dry = ξ10(−η∗p), (21)

λT,sat = λpwλ
1−p
sp , (22)

Ke = (KteW̃ )/(1 + (Kte − 1)W̃ ), (23)

where λT,dry and λT,sat are the values of conductivity coefficient for dry and saturated soil,
respectively, Ke is the so-called Kersten number, p is the soil porosity (taken as 0.496, from the
measurements in soil of Meteorological Observatory of Moscow State University [27]), λw is heat
conductivity of water, λsp is heat conductivity of soil solid particles (taken as 2.5 W m−1 K−1),
and the soil-type specific constants are set to be representative of silt and clay: Kte = 1.69, η =

1.8, ξ = 1.7 W m−1 K−1, ρc = 2.4×106 J m−3 K−1. The Cote-Konrad model is a representative
of a class of conductivity models based on normalized heat conductivity concept, where Kersten
number is used to interpolate between dry and saturated soil state.

2.1.2. Richards equation

To produce reference numerical solutions of Richards equation (16), we involved widely used
functions of the soil moisture developed by Mualem [36] and van Genuchten [17] for the liquid
water diffusivity λW (W ) and hydraulic conductivity γ(W ) (hereafter abbreviated as “M-vG”):

λW,M−vG(W ) =
γs(1−m)

αm(Ws −Wr)
W̃ 1/2−1/m

[(
1− W̃ 1/m

)−m
+
(

1− W̃ 1/m
)m
− 2

]
, (24)

γW,M−vG(W ) = γsW̃
1/2
[
1−

(
1− W̃ 1/m

)m]2
. (25)

These functions monotonically increase with liquid moisture content W , and are zero in the
origin (W = Wr). The parameters in the above formulae are taken from [27]: m = 0.272,
γs = 3.78D−1sec ms−1 (hydraulic conductivity of saturated soil), α = 0.7 m−1, Wr = 0.149,
Ws = 0.7, where Dsec = 86400 s is a day duration.

2.2. General Approach of the Study

In this paper, we present two methods for PDE identification: classical method and ANN-
based approach. We compare them in terms of wall-clock computational time and accuracy. In
both methods, the coefficients of PDEs are sought as those minimizing the PDE residual εhτ ,
where the Bhτ and Ahτ operators correspond to central differences in space and 1st order scheme
in time.

Key Differences in Classical and ANN-based Methods. The methods presented in this
study have a similar structure, differing in the components:
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• loss function, which is a measure of εhτ deviation from zero in classic method and is a more
complex metrics in a case of ANN-based method,
• explicit form of coefficients λT , λW , γ as functions of soil moisture W ,
• method for the optimization of parameters in the assumed coefficient functions of W .

In the later sections, the detailed description of classical and ANN-based methods highlight these
features.

2.3. Classical Method

2.3.1. Loss function

The loss function in classical method is defined as RMSE of εhτ computed in time and space,
where the boundary mesh nodes are excluded, i.e.:

LCM =


 1

(nz − 1)nt

nz∑

i=2

nt∑

j=1

(
εjhτ,i

)2


1/2

, (26)

with i standing for index of depth level, j denoting the time instant, nt being the number of
timesteps (in classical method, nt = 24, corresponding to ∆t = 1 h).

2.3.2. Assumed form of solution

Having data on the measured evolution of physical variables (soil temperature T and mois-
ture W ) we always do not know the real functional forms of λT (W ), λW (W ), γ(W ), so that
any functional form which is assumed during inverse problem solution differs from that provided
by nature. The indirect corroboration of this statement is provided by existence of ∼ 100 pairs
of explicit functions λW (W ), γ(W ) reported in literature, none of which performs best on all
the empirical datasets. At the same time, it is generally accepted that the heat conduction (15)
and Richards (16) equations are exact. In the classical method of PDE identification, the dif-
ference between real and assumed types of PDE coefficients inevitable in real applications is
imitated by using the widespread representations of heat conductivity, liquid water diffusivity
and hydraulic conductivity which are different from Cote-Konrad and Mualem-van Genuchten
formulae, used to compute reference solution, respectively. At the same time, using the functional
form of λT (W ), λW (W ), γ in PDE identification algorithm which are the same to ones used to
produce reference direct problem solution allows to check the correctness of the gradient-descent
algorithm in classical method as the latter allows to provide exact inverse problem solution in
this case.

For solution of inverse temperature conduction problem we use the Johansen parameteri-
zation of heat conductivity [24], which involves the normalized heat conductivity concept (20),
and the geometric mean approach for conductivity coefficient of saturated soil (22), however,
proposes the different (compared to C-K) formulations for dry soil conductivity and Kersten
number (hereafter referred to as “Joh”):

λT,dry =
C1ρdry + C2

ρp − C3ρdry
, (27)

Ke = W̃ , (28)
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where dry soil density ρdry and mean soil particles density ρp are expressed in g cm−3, and
C1 = 0.135, C2 = 0.0647, C3 = 0.947 are empirical constants. The second equation in a set
above has been suggested for fine soils.

For identification of the Richards equation (16), the Brooks-Corey parameterization [7] (here-
after referred to as “B-C”):

λW,B−C(W ) =
γs|Ψmax|b
Ws −Wr

W̃ b+2, (29)

γB−C(W ) = γsW̃
2b+3, (30)

and the Gardner parameterization [15] (hereafter denoted as “Gard”):

λW,Gard =
γsa

1/c

c
W̃ 1/2W

c+1

c , (31)

γGard = γsW̃
1/2W

2c+2

c , (32)

are involved, a, b, c are empirical constants to be calibrated, see details in Section 2.3.3.

2.3.3. Optimization method

As the functional forms of λT , λW , γ are defined above, the task of PDE identification
is reduced to finding optimal values of parameters in formulas (27)–(28), (24)–(25), (29)–(30),
(31)–(32). These parameters are sought using gradient descent method in Barzilai–Borwein mod-
ification, having the form [6]:

xn+1 = xn − Γn∇LCM (xn), (33)

Γn,0 =
|(xn − xn−1)T (∇LCM (xn)−∇LCM (xn−1))|

||(∇LCM (xn)−∇LCM (xn−1))||2 . (34)

Here, xn is a vector of parameters at n-th iteration, vertical index T stands for vector transpose.
The gradient of the loss function∇L(xn) at each iteration is found by finite-differencing, gradient
descent rate Γn is set to Γn,0 in conventional BB method, and in this study we use the stabilized
Barzilai–Borwein method [8], which introduces the following limiting of the descent rate:

Γn = min(Γn,0,Γ
stab
n ), (35)

Γstabn =
∆

||∇LCM (xn)|| , (36)

where ∆ is maximal value allowed for ||xn+1 − xn||. This method is referred to as BBstab, and
is free from large “jumps” of parameter vector xn during iteration process, which are known
to happen in conventional BB algorithm, and were observed in the course of Richards equation
identification process in our study. As the physical parameters entering x have different scales, the
equation being identified is rewritten in terms of parameters, normalized by respective maximal
values, so that x is sought in a unit hypercube, and ∆� 1.

The loss function LCM (x) is defined as a RMS of finite-difference equation residual at a given
set of test coefficients taken over all time and depth combinations of the mesh (equation (26)).

The parameter vector is dependent on a PDE being identified:
• x

.
= (p, λsp,Wr,Ws) in C-K case of temperature equation (15),

• x
.
= (p, λsp, ρp,Wr,Ws, ρdry) in Joh case of temperature equation,
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• x
.
= (m, γs, α,Wr,Ws) in M-vG case of Richards equation (16),

• x
.
= (b, γs,Ψmax,Wr,Ws) in B-C case of Richards equation,

• x
.
= (c, γs, a,Wr,Ws) in Gard case of Richards equation.

The criterion to stop iterations used in our study is satisfaction of any of the two inequalities:
LCM changes negligibly with iteration number or n > nmax. The first guess x0 significantly
affects the number of iterations needed to converge to true solution. Moreover, given that some
of parameters in λW and γ vary between soil types orders of magnitude (e.g., γs), the initial guess
far from optimal value leads to large error in solution. In the numerical experiments presented
below, we use the values x0 = 0.5 ∗ xtrue, x1 = 0.6 ∗ xtrue (Barzilai–Borwein method needs
first two points in x-space to start iterations by formula (33)–(34)), which ensured the correct
convergence. Alternatively, to compute x1, one may use (33) with some small Γ0. Other choices
of initial guesses (e.g., x0 = 0.1 ∗ xtrue, x1 = 0.2 ∗ xtrue; x0 = 1.9 ∗ xtrue, x1 = 1.8 ∗ xtrue),
have been tested and delivered comparable results in accuracy and number of iterations. In
addition to numerical experiments, where all parameters listed above were optimized, a set of
simulations were conducted, where all but two parameters were fixed to known reference values,
and the these two were optimized only. It was found that nmax = 100 ensures convergence (i.e.,
negligible change of LCM with iteration number) of the algorithm for both PDEs studied in this
paper and both types of optimization.

2.4. Neural-Network-Based Solution

2.4.1. PDE identification as a differentiable inverse problem

In this study, we consider PDE identification as an inverse problem of regression type (see
Problem Specification section). In both cases of simulated evolution and a solution given by
regular observations, we refer to the given evolution as the true one. However, when using the true
evolution as a reference, one still cannot apply routine data science approach for approximating
the coefficients λT , λW and γ with ANNs. Instead, in case of ANN-based method, we propose to
minimize the error of an integrated evolution within the gradient minimization approach given the
coefficients λT , or λW and γ approximated by ANNs that are essentially differentiable parametric
functions of potentially unlimited expressive power. More precisely, we propose minimizing PDE
residual or, equivalently, the error of the tendencies ∂T

∂t (in case of heat diffusion equation)
and ∂W

∂t (in case of Richards equation). The tendencies are estimated using finite-differences
approximation of the equations (5) and (6). Finite-differencing is a differentiable operation as
well as loss function characterizing errors of tendency estimates. Thus, there is a straight-forward
way for the computation of the gradients of the loss function w.r.t. parameters of the functions
modeling λT , or λW and γ. In Fig. 1, we present our ANN-based approach in a form of data-flow
and operations scheme for Richards equation as a demonstrative example. Due to similarity of
the derivatives inference, optimization procedures and regularizations applied in cases of heat
diffusion equation and Richards equation, we further use X as a substitute correspondingly for
W or T (e.g., see Fig. 1). We also present the formulae considering Richards equation case
with λW and γ terms further in this section. At the same time, the derivatives inference, the
regularizations and optimization procedure are the same for λT in case of heat diffusion equation.
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Figure 1. The PDE identification approach using ANNs Fλ and Fγ for Richards equation (16) in
case of either (a) measured evolution, or (b) modeling the reference evolution using known coef-
ficients λW and γ. Here X is a substitute for W , the similar algorithm is applied for temperature
equation (X = T ). The bold red arrows indicate the computational graph that involves chain
rule (a.k.a. backpropagation) for evaluating the gradients of loss function L w.r.t. the parameters
θλ of Fλ and θγ of Fγ . In this paper, the case (b) is considered only

2.4.2. Assumed form of solution

In this method, the approximations of the coefficients λT , λW and γ of the heat conduc-
tion (15) and Richards equations (16) are represented by artificial neural networks (ANNs)
denoted further as either FNN,λT , FNN,λW and FNN,γ or FλT , FλW and Fγ (for the sake of clar-
ity). The architecture of the ANNs is the same for all the cases. It is the fully-connected ANNs
(a.k.a. multilayer perceptron) with six layers. The layers are wide for the networks to have high
enough expressive power for approximating functions like eqs. (20), (24) and (25). We optimized
the structural hyperparameters of the networks ensuring the capability of approximating the
target functions by solving simple supervised problem with target values generated by “true”
forms like eqs. (20), (24) and (25). In order to improve convergence, we used Mish activation
function [34] for all layers except the last one, where we used linear activation.

2.4.3. Loss function

The basic part of the loss function in this study is a weighted sum of the three components:
MAPE of tendency, MSE (mean square error) and MAE (mean absolute error) of PDE residual:

L = αmse
1

N

∑
ε2hτ + αmape

1

N

∑
∣∣∣∣∣

̂(∂X/∂t)hτ − (∂X/∂t)hτ,true
(∂X/∂t)hτ,true + ε

∣∣∣∣∣+ αmae
1

N

∑
|εhτ | , (37)

where N is a number of mesh nodes over which the PDE residual and discrepancy between
test and reference tendencies are summed, X stands for T or W , depending on equation being
identified, the subscript “hτ ” indicates variables discretized on the mesh, the hat (̂...) denotes
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values calculated using test PDE coefficients represented by ANNs, and ε = 10−8 is a number
added for numerical stability. Note that ̂(∂X/∂t)hτ − (∂X/∂t)hτ,true = εhτ .

Zero-Point Regularization. In order to stabilize the ANN training and improve the con-
vergence, we complemented the loss function (37) with the regularization terms informed by
physical constraints. First, one may note that dry soil should not conduct liquid water. This
is in agreement with the reference solutions for λW and γ given by eqs. (24) and (25). Thus,
λW (W = 0) = 0, and γ (W = 0) = 0. We implemented the respective regularization loss terms
as:

Lreg,zp = αzp,λ × |FNN,λW (W = 0)| , (38)

Lreg,zp = αzp,γ × |FNN,γ (W = 0)| , (39)

where αzp,λ and αzp,γ are regularization coefficients related to the zero-point values of λW and
γ approximated by the ANNs FNN,λW (W ) and FNN,γ (W ), correspondingly.

Known Points Regularization. In a real-world application case, one may improve the con-
vergence with a regularization encouraging the ANNs to predict specific known (e.g., measured)
values of PDE coefficients for a set of argument values Xkp. We call the respective loss term the
known-points regularization:

Lreg,kp = αkp,λ ×
∑

i

|FNN,λW (Wkp,i)− λW (Wkp,i)| , (40)

Lreg,kp = αkp,γ ×
∑

i

|FNN,γ (Wkp,i)− γ (Wkp,i)| , (41)

where αkp,λ and αkp,γ are regularization coefficients related to the values of λW and γ correspond-
ingly in a limited set of known points Wkp,i approximated by the neural networks FNN,λW (W )

and FNN,γ (W ); i enumerates measured tuples of Wkp, λW and γ. In our study, the number of
known points is 3.

Derivative Penalty. One may also note that the coefficients λW and γ are strictly increasing
functions, which is a case for all analytical representations (including Mualem-van Genuchten,
Brooks-Corey and Gardner) for physical reasons. According to this constraint, we introduce
corresponding physics-guided regularization terms that we call derivative penalty:

Lreg,dp = αdp,λ ×
∑

∂FNN,λW
(W )

∂W
<0

∣∣∣∣
∂FNN,λW (W )

∂W

∣∣∣∣ , (42)

Lreg,dp = αdp,γ ×
∑

∂FNN,γ (W )

∂W
<0

∣∣∣∣
∂FNN,γ (W )

∂W

∣∣∣∣ . (43)

The regularizations presented in eqs. (38)–(43) are “soft”, meaning they do not necessarily de-
liver the desired properties of the approximations. Thus, one may note that the derivative penal-
ties in eqs. (42) and (43) do not necessarily guarantee strictly ascending ANN-approximations
for λW and γ. In order to additionally encourage the ascending approximations, we complement
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the loss function with one more term which encourages the networks to output less value at the
left margin of the X range compared to the output at the right margin of X range:

Lreg,lr = { αlr,λ × |FNN,λW (Xmax)− FNN,λW (Xmin)| if FNN,λW (Xmax) < FNN,λW (Xmin)

0 otherwise
(44)

Lreg,lr = { αlr,γ × |FNN,γ (Xmax)− FNN,γ (Xmin)| if FNN,γ (Xmax) < FNN,γ (Xmin)

0 otherwise,
(45)

where Xmin and Xmax are the lower and higher limits for X that are either inferred from
measurements or set by a researcher conducting a computational experiment. In case of X being
substitute for W , one may set the lower limit to 0 and higher one to the maximum value inferred
from data. In case of X being substitute for T , both lower and higher limits may be set to the
values inferred from data. Here one needs to pay attention to the way we inject regularization
terms into loss function. In particular, one should pay attention to derivative penalty Lreg,dp,
since gradients of this loss term w.r.t. network parameters includes second-order derivatives
∂FNN (W,θ)
∂W∂θ , which is computationally expensive. In order to save computational power, we do not

compute the derivative penalty using the W and T profiles themselves since the number of data
points in this case is batch_size*nz. Instead, we compute derivative penalty using additional
sample of T and W values distributed uniformly in the range [Tmin, Tmax] and [Wmin,Wmax]

correspondingly. The same applies to the regularization terms Lreg,zp, Lreg,kp. In this case, the
number of data points is managed by a researcher. We set this number to nz. Here, Tmin and
Tmax are the maximum and minimum values of temperature in the limited set of measured known
data points; Wmin and Wmax – the same for liquid water content W . This way, we managed to
improve the performance approximately 6-8 times compared to that when using computations
with full training set of W and T profiles.

Rescaling Neural Networks Output. ANNs are known to be strongly overparameterized
and thus having too high expressive power for representing functions of relatively simple form. In
the case of limited support of target value distribution, one may need to restrict the distribution
of the output of the network. One way to do so is using a finite-bounds activation function for
the output layer, e.g., tanh or sigmoid. These functions are known to saturate which may cause
optimization difficulties and low approximation accuracy in some argument ranges. In our study,
we use dynamic min-max rescaling of the network output for both λW and γ networks:

ζ = FNN (X) , (46)

ζ̃ = ζmin,true +
ζ − ζmin

ζmax − ζmin
× (ζmax,true − ζmin,true) , (47)

where ζ is the substitute for λW or γ; ζ̃ is the substitute for λW or γ rescaled using min-
max scheme; ζmin,true and ζmax,true are the minimum and maximum values of true λW or γ in
the [Xmin, Xmax] range; ζmin and ζmax are the minimum and maximum values of ANN-based
approximations for λW or γ in the [Xmin, Xmax] range. One may note that the values ζmin and
ζmax may not be the ones FNN (Xmin) and FNN (Xmax) due to inaccurate meeting of the strictly-
ascending requirement by the neural network. On the contrary, here we consider once again the
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known-points values for ζmin,true and ζmax,true to be the ζXmin,true and ζXmax,true. These values
are guaranteed to be minimum and maximum ones due to strictly ascending λW and γ.

Initial Guess. There is a well-known issue related to the choice of initial guess for the ANN
parameters θλT , θλW and θγ of the networks FNN,λT , FNN,λW and FNN,γ . One may even choose
an initialization that would prevent a network from training. In [33], the importance of proper
initialization is demonstrated. In this paper, the authors demonstrated that one needs to initial-
ize deep ANNs with ReLU activations using random variables drawn from a uniform or normal
distribution with parameters dependent on layers’ sizes. This is done for the variance of activa-
tions of hidden layers and the output layer to remain nearly constant, which prevents output
and gradients variances from vanishing or exploding. The most successful initialization at the
moment is Kaiming He [21]. However, the so-called “gain” parameter in Kaiming He initializa-
tion [21] is computed using the size of layers’ weight tensors with the assumption of either ReLU
of Leaky ReLU nonlinearity. In our study, we use Mish activation functions, thus, there may
be a need for a derivation of proper gain value. We did not conduct this research. Instead, we
assumed that Mish has the effect on the distributions of activations similar to ReLU due to
their large-scale similarity. Thus, in our study, we used Kaiming He initialization with gain value
similar to the one computed with ReLU nonlinearity assumption. The results of our ANN-based
method presented in Section 3.2 confirm the validity of this decision.

Optimization of Hyperparameters. In this study, we demonstrate that the balance between
the multipliers standing before the loss function terms is crucial for the stability of training, for
Richards equation (16) identification. In order to stabilize the training, we explored the space of
hyperparameters.

Learning Rate Schedule. In our study, we exploited stochastic gradient-based optimization
procedure, which implies iterative increment of network’s parameters with adjusted loss gradients
multiplied by a small factor namely learning rate. In recent studies, the importance of learning
rate scheduling was shown [31]. However, we found that with the stability improvements presented
further in this section, there is no need to apply sophisticated learning rate schedules. Thus, we
employ exponential decay of learning rate. Typically, the starting leaning rate is 10−4, and the
decay rate is 10−2. Thus, to the end of the training, learning rate decreases to 10−6 level.

2.4.4. Optimization and implementation details

In case of ANN-based PDE identification of our study, in the numerically-simulated evolu-
tion, the number of z-levels is nz = 1000, and the number of time steps is nt = 8640 (∆t = 10 s)
which corresponds to 24 hours of modeled time. The optimization of ANNs implies stochastic
optimization algorithms (in this study, we employ Adam [26]). For this algorithm, to evaluate loss
function, we implemented data sampler, which draws batch_size time steps from the reference
PDE solution dataset.

In our study, we found that Adam optimization is not enough for the stable loss function
minimization and for reaching the solution with low uncertainty in case of Richards equation
problem. Inverse PDE problems are known for sensitivity of the solution to input data. One more
issue compromising the solution stability is the mixed precision computations which requires
particular attention in case of small and large loss values and gradient values. There are known
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approaches of loss scaling and corresponding gradient inverse scaling by NVIDIA [1]. However,
we faced the issue of partly implemented method of NVIDIA loss scaling in Tensorflow 1.15,
which fails to run in case of provided software and hardware stack (see Section 2.5). In order to
achieve stable and converging training of ANNs for λW and γ approximations, we implemented
several additional approaches described below.

Scaling Scheme for Scalars and Tensors. Optimization of ANNs using mixed precision
floating-point calculations is complicated by the narrow range of values represented in FP16.
General description of computational issues related to FP16 is presented on NVIDIA web-site.
The NVIDIA loss scaling [1] is implemented in detail in Tensorflow 2.x, and is partially im-
plemented in Tensorflow 1.15. On Huawei Ascend platform, Tensorflow 1.15 was more matured
at the time that the study was conducted, thus, we developed a new scheme for loss scaling
which may be characterized as more “gentle” yet efficient. The same scheme may be employed
for gradient scaling in a case the tensors are found vanishing.

The main goal of the scheme is to preserve the scale of loss function values close the order
of 100. To do so, we introduce the following variables:
1. a factor for exponential moving average fema. We typically set it to 0.1;
2. loss which is subject to scale L. This loss value is the one we compute directly using networks

outputs with equations (37)–(45);
3. current loss scale s;
4. scaled loss Ls;
5. log2(Ls), denoted as l2;
6. exponentially moving averaged value of the loss Lema;
7. exponentially moving averaged value of log2(L), denoted as l2,ema;
8. gradients gs computed using backpropagation implemented in auto-differentiation schemes

of Tensorflow or other autodiff frameworks. These gradients are calculated from scaled loss
values Ls;

9. inverse-scaled gradients g.
The operation of loss scaling and gradients inverse scaling are linear operations:

Ls = L× s, (48)

gs = ∇θLs, (49)

g = gs/s, (50)

where θ is a set of parameters (a.k.a. weights) of ANNs involved in loss function computations,
and ∇θ is a gradient over this parameter set.

The operations for scale s adjustment are the following:

L(τ)
ema = L(τ−1)

ema × (1− fema) + L(τ) × fema, (51)

l
(τ)
2 = log2 L

(τ)
ema, (52)

l
(τ)
2,ema = l

(τ−1)
2,ema × (1− fema) + l

(τ)
2 × fema, (53)

s(τ) = 2−bl
(τ)
2,emae, (54)

where bxe denotes rounding to a nearest integer; τ is the number of iteration of adjustment
(typically coincides with the number of optimization iteration). With this scheme, the loss scale
remains to be of order 100.
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With the same scheme, one may apply gradient scaling for its expected absolute value to
be of order 100. To do so, the only corrections to the scheme presented above are the following:
instead of L, one needs to use the scale of L̃ = mean |gθ|, where g is gradient tensor of a neural
network w.r.t. parameters tensor of a particular layer of a network. In case of some other variable
of interest A subjected to scaling, the scheme looks the following:

As = A× sA, (55)

Ã(τ)
ema = A(τ−1)

ema × (1− fema) +A(τ) × fema, (56)

a
(τ)
2 = log2A

(τ)
ema, (57)

a
(τ)
2,ema = a

(τ−1)
2,ema × (1− fema) + a

(τ)
2 × fema, (58)

s
(τ)
A = 2−bl

(τ)
2,emae, (59)

where Ã is sample mean of |A| in case of A being a tensor with rank greater than zero, and
Ã = A in case of A being a scalar. This way, we scale the gradients and values of (∂X/∂t)hτ
preventing them from becoming small enough to vanish to FP16-zero level in case of quadratic
loss components MSE

[
( ̂∂X/∂t)hτ , (∂X/∂t)hτ,true

]
.

The gradient scaling scheme has an impact on the optimization procedure. First, using this
scheme, one introduces noise into stochastic optimization when the scale s is changing, since
the change is made in a discrete multiplicative manner (see eq. (54)). Second, when one applies
gradient scaling presented in this study, the magnitude of gradients is preserved of order 100. In
common gradient optimization algorithms, the gradients’ magnitudes are assumed to decrease
over time, resulting in sampling of the loss landscape with increasing resolution and, thus, finding
the solution with increasing accuracy. This behavior is essentially equivalent to learning rate
decrease, which does not take place in case gradient scaling applied. Thus, one needs to pay
additional attention to setting the learning rate schedule, which may play the role of a factor
increasing the resolution of loss landscape sampling.

Reducing the Interaction between Loss Sum Components. There is one more issue
of the ANN-based identification of the Richards equation related to smooth nature of γ func-
tion. The finite-difference approximation of the gravitational infiltration term in the Richards
equation (16) is:

(
∂W

∂t

)

γ,i

=

(
∂γ(W )

∂z

)

i

≈
γ(Wi+1/2)− γ(Wi−1/2)

∆zi
,

MSE

[(̂
∂W

∂t

)

γ,hτ

,

(
∂W

∂t

)

γ,hτ,true

]
=

1

N∆z

N∑

i=1

[(̂
∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

]2
,

MAE

[(̂
∂W

∂t

)

γ,hτ

,

(
∂W

∂t

)

γ,hτ,true

]
=

1

N∆z

N∑

i=1

∣∣∣∣∣

(̂
∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

∣∣∣∣∣ ,

MAPE

[(̂
∂W

∂t

)

γ,hτ

,

(
∂W

∂t

)

γ,hτ,true

]
=

1

N∆z

N∑

i=1

∣∣∣∣∣∣

(̂
∂W
∂t

)
γ,hτ,i

−
(
∂W
∂t

)
γ,hτ,true,i(

∂W
∂t

)
γ,hτ,true,i

∣∣∣∣∣∣
.

(60)

Here, we replaced residual by difference of tendencies, i.e., εhτ = ̂(∂W/∂t)hτ − (∂W/∂t)hτ,true
and ∆zi with ∆z for the uniform z mesh, i enumerates individual components of loss sums. One
may note that the consequent terms of MSE, MAE and MAPE sums interact between each other
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due to smoothness of the γ function (see details in Appendix A). We also found empirically that
the gradients of these loss function terms are zero almost everywhere except for small subset of
depths including the boundaries at z = 0 and z = H (Fig. 2a).

(a) (b)

Figure 2. MAEγ loss gradients w.r.t. γ as individual sum terms vs. γ: (a) in case of standard
MAEγ formulation; (b) in case of random re-weighting of individual MAEγ sum terms according
to eq. (61). The logarithmic scale uses additive log-stability term 10−14

In order to alleviate this issue, we introduce the technique of random re-weighting of loss
sum components. We reformulate the loss function terms the following way:

LMSE =
1

N∆z

N∑

i=1

WMSE,i ×
[(̂

∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

]2
,

LMAE =
1

N∆z

N∑

i=1

WMAE,i ×
∣∣∣∣∣

(̂
∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

∣∣∣∣∣ ,

LMAPE =
1

N∆z

N∑

i=1

WMAPE,i ×

∣∣∣∣∣∣

(̂
∂W
∂t

)
γ,hτ,i

−
(
∂W
∂t

)
γ,hτ,true,i(

∂W
∂t

)
γ,hτ,true,i

∣∣∣∣∣∣
.

(61)

Here, we generate the weights as Gaussian random variable: W ∼ N
(
1, σ2

)
, where σ may be

optimized during hyperparameters optimization stage. In our study, we set σ = 0, 1. As a result,
the loss gradients became more informative and are not zero, as shown in Fig. 2b.

2.4.5. Further details of the ANN-based solution for Richards equation

We found that λW -network converges much faster compared to the one approximating γ
due to the strongly interacting loss sum components in the latter case described in the
previous section. Moreover, the λW -network converges to a very good approximation with
MAPE (λW ) ≈ 10−2. Thus, in this study, we used the approach of consequent training of γ-
and λW -networks. First, we trained λW -network with the γ-network initialized to output zeros.
Then, after a fixed training period, we freeze the λW -network and optimize the one approximat-
ing γ.

2.5. Hardware and Software

Numerical experiments with classical method of PDE identification were performed on Mac-
Book Pro, 2.3 GHz Intel Core i5, 8 Gb RAM, 2133 MHz, LPDDR3.
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Computations using ANN-based approach were conducted on Atlas 800 Training Server
(Model 9010) with 8-socket Huawei Ascend 910 NPUs, 16 Huawei 64-bit TaiShan CPU cores at
2.4 GHz. Each NPU provides three HCCS links and a maximum bandwidth of 90 Gbit/s. The
server supports two CPUs with up to 3.8 GHz frequency, 38.5 MB L3 cache, and three 10.4 GT/s
UPI links, up to to 24 DDR4 RDIMMs, 16 GB, 32 GB or 64 GB per DIMM. The capacity of
HBM is 32 GB with bandwidth 1228 Gbit/s.

In this study, we developed the software package implementing our ANN-based method
using Python 3.5.7 [41] with Tensorflow 1.15 (within the session.run() approach and explicit
computational graph definition) [2]. We also used numpy [20] and other python modules typical
for data science data processing and visualization.

2.6. Metrics for Quality of the Inverse Problem Solution

The values of coefficients λW and γ range of orders of magnitude depending on the argu-
ment W , as well as corresponding tendency of the solution ∂W/∂t in Richards equation (16).
Thus, in order to represent the accuracy of the inverse problem solution, we use several quality
measures: RMSE (λX); MAPE (λX); RMSE (γ); MAPE (γ). We calculate these measures using
conventional RMSE (·) and MAPE (·) formulations without any re-weighting. We also use the
following error metrics: RMSE ((∂X/∂t)hτ ) which is equivalent to root mean squared εhτ , and
MAPE ((∂X/∂t)hτ ) (X = W,T ):

Qrmse,εhτ = RMSE

[(
∂X

∂t

)

hτ

]
=

√√√√ 1

N

N∑

1

ε2hτ , (62)

Qmape,εhτ = MAPE

[(
∂X

∂t

)

hτ

]
=

1

N

N∑

1

∣∣∣∣∣
εhτ(

∂X
∂t

)
hτ,true

+ ε

∣∣∣∣∣ . (63)

3. Results and Discussion

3.1. Stabilized Barzilai–Borwein Method

First, we consider the loss function LCM of two parameters, where the rest parameters are
fixed to reference values, and where LCM is computed at a regular grid 30×30 (Fig. 3 and 4). The
range of parameters covers most of variability reported in soil science. Note the single minimum
of loss function for each of three functional forms of test coefficients. The minimum in parameter
space of reference C-K and M-vG form delivers exact solution of the inverse problem. However,
in a case, where all (from 4 to 6) parameters are optimized, the minimum of LCM is no more
unique (including a scenario of inverse problem solution, where C-K and M-vG forms are used),
which is manifested by the fact that the argument of loss minimum found by BBstab method
does depend on initial guess (not presented in this paper).

As a result of multiple minima of LCM in parameter space, optimal coefficient functions,
provided by all analytical forms, significantly differ from the reference ones (Fig. 5ab, 6a–c, 7a–
c). The thermal conductivity coefficient remains the same order of magnitude over the W range,
and the absolute error does the same. Using the Joh formulation provides significantly larger
errors compared to a case of using C-K representation. For Richards equation (16), the optimal
test coefficients significantly deviate from reference ones as well, with absolute error increasing
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towards W values close to saturation. Surprisingly, seeking Richards coefficients in M-vG way,
does not necessarily provide the smallest MAPE and RMSE respective to “true” coefficients,
compared to other scenarios (e.g., compare B-C and M-vG results for γ), which means the
choice of initial M-vG parameter values close to exact ones is crucial for solution accuracy.

(a) The case of Cote-Konrad (C-K) formulation (b) The case of Johansen (Johansen) formulation

Figure 3. Loss function LCM of two parameters (porosity, p, and heat conductivity of soil
particles, λsp) being optimized in the cases: Cote-Konrad (C-K, left) and Johansen (Johansen,
right) formulas for thermal conductivity in test evaluation of thermal conductivity equation (15)
residual εhτ , the realistic reference solution T of PDE being produced using C-K formulation

3.2. Neural-Network Method

Here, we present results of the optimization of ANNs within the framework described in
Section 2.4, for the Richards (16) and temperature conductance (15) equations with realistic
reference direct problem solution. We use soil column temperature and moisture profiles generated
by direct solution of PDEs for 24 hours of model time. This way, we obtained 8640 profiles. For
each of these profiles we apply our scheme described in Section 2.4. We use stochastic optimization
with batch_size=128 number of profiles per iteration, each containing nz = 1000 number of z-
levels.

We optimized some of the hyperparameters of the method using Optuna framework [3]. To
optimize the hyperparameters, we compute quality metrics of the solutions with λT in case of heat
conductance equation or λW , γ in case of Richards equation modeled by ANNs for each set of hy-
perparameters; the learning rate schedule was set to exponential decay with starting value 1e-4,
decay rate 1e-2 and number of steps 8192. We found that in this setup, the ANNs optimization
can converge with reasonable quality, thus we have the opportunity to assess the quality metrics
for each set of hyperparameters. We performed 3500 runs optimizing the following hyperparame-
ters: αmse, αmape, αmae, αzp, αdp, αkp. A sample for each of these hyperparameters was generated
using log-uniform sampling with the distribution support [1, 1014]. As a result, we found the
following hyperparameters that let us train our networks reaching appropriate quality Qrmse,εhτ
and Qmape,εhτ : αmse = 1011, αmape = 10, αmae = 1, αzp = 108, αdp = 10, αkp = 108 (see
(37), (38), (41), (42)). With these hyperparameters, we then trained the networks FNN,λW and
FNN,γ in case of Richards equation (16), and FNN,λT in case of heat conductance problem (15).

M.A. Krinitskiy, V.M. Stepanenko, A.O. Malkhanov, M.E. Smorkalov

2022, Vol. 9, No. 3 37



(a) The case of Mualem-van Genuchten (M-vG)
formulation

(b) The case of Brooks-Corey (B-C) formulation

(c) The case of Gardner (Gard) formulation

Figure 4. Loss function LCM of two parameters being optimized in the cases: Mualem-van
Genuchten (M-vG, (a), parameters are γmax, m), Brooks-Corey (B-C, (b), parameters are
Ψmax, b) and Gardner (Gard, (c), parameters are a, c) formulas for moisture diffusivity and
hydraulic conductivity coefficients used in test evaluation of Richards equation (16) residual εhτ ,
the realistic reference PDE solution W being produced using M-vG formulation

Important part of our study was focused on computations in mixed precision (MP). We ob-
served that the out-of-box MP settings resulted in the drop of accuracy comparing to single preci-
sion, but we managed to stabilize those using the black-list of operations which were prohibited to
run in FP16: "Exp", "Tanh", "TanhGrad", "Div", "Sub", "Pow", "Add", "Mul", "Log".
With this black-list and the stability improvements described in detail in Section 2.4, we man-
aged to reach the quality of the approximation similar to FP32 computations (see results in
Tab. 1 and 2) without negative impact to the computational efficiency. We also tested the com-
putational efficiency (performance) in FP32 and mixed-precision. The quantitative results for
heat conductance problem are presented in Tab. 3. Corresponding measures for Richards equa-
tion case are presented in Tab. 2 and 4. One may note, that in Tab. 4, we show the performance
estimates in iterations per second. Here, one iteration corresponds to 128000 profile elements per
second since the number of moisture profiles is exactly 128 per batch (iteration), and number of
z-levels is 1000 for ANN-based experiments in this study.
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RMSE = 6.1×10&'
MAPE = 1.7×10&)

(a)
reference:          Cote-Konrad
approximation: Cote-Konrad form

(a) The case of BBstab method, C-K formulation

reference:          Cote-Konrad
approximation: Johansen form

RMSE = 1.5×10&'
MAPE = 4.2×10&*

(b)

(b) The case of of BBstab method, Johansen formu-
lation

(c)

RMSE = 3.2×10'()
MAPE = 6.4×10',

reference:          Cote-Konrad
approximation: ANN, FP32

(c) The case of ANN, FP32 precision

(d)

RMSE = 3.6×10'()
MAPE = 8.1×10'+

reference:          Cote-Konrad
approximation: ANN, MP (Ascend)

(d) The case of ANN, mixed precision (MP)

Figure 5. Thermal diffusivity coefficient λT for soil as a function of volumetric moisture con-
tent W being approximated (a) in a form given by C-K formulae in test solution of heat con-
duction equation using BBstab optimization procedure; (b) in a form given by Johansen formula
in test solution of heat conduction equation using BBstab optimization procedure; (c) in a form
of artificial neural network, FP32 precision computations; (d) in a form of artificial neural net-
work, MP computations employed on Ascend compute platform. Here, we produce the reference
solution using the C-K formulation

The results of PDE identification using ANN-based method are shown in Fig. 5cd, 6d, 7d.
One may see excellent correspondence between the reference forms of the coefficients and the
approximations made by ANNs.

We found that ANNs optimization process may begin to diverge if one continues to run it
long enough in case of Richards equation problem. Thus, there is a room for decision at which
point to get the snapshots of the networks and corresponding quality measures. In case of real-
world application, one cannot compute quality measures for the parameters λT , λW and γ due
to unavailability of their ground truth. Thus, one cannot formulate the stopping rule for ANNs
optimization based on RMSE (λW), MAPE (λW), RMSE (γ) or MAPE (γ). The only indicators
one may use to judge on solution accuracy during optimization process are the measures of
discrepancy between true and approximated PDE tendencies Qrmse,εhτ or Qmape,εhτ . In our study,
we used Qrmse,εhτ as the indicator for the stopping rule, thus, in eqs. (1) and (2) we demonstrate
the quality measures corresponding to optimal (minimal) Qrmse,εhτ
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RMSE = 6.42×10()
MAPE = 0.13

(a)
reference:          MvG
approximation: MvG form

(a) The case of BBstab method, M-vG formulation

reference:          MvG
approximation: Brooks-Corey form

RMSE = 2.0×10&'
MAPE = 0.13

(b)

(b) The case of BBstab method, B-C formulation
(c)

RMSE = 4.4×10&'
MAPE = 0.44

reference:          MvG
approximation: Gardner form

(c) The case of BBstab method, Gard formulation

(d)

RMSE = 7.5×10'(
MAPE = 0.01

reference:          MvG
approximation: ANN, MP (Ascend)

(d) The case of ANN, mixed precision (MP)

Figure 6. Diffusion coefficient for soil moisture λW as a function of volumetric moisture con-
tent W being approximated given forms of (a) M-vG, (b) Brooks-Corey (B-C) and (c) Gardner
(Gard) formulae for moisture diffusivity λW and hydraulic conductivity γ coefficients in test
solution of Richards equation (16), BBstab optimization procedure applied. In (d), we present
diffusion coefficient for soil moisture being approximated given artificial neural networks for
moisture diffusivity λW and hydraulic conductivity γ coefficients in test solution of Richards
equation (16), MP computations employed on Ascend compute platform. Here, we produce the
reference solution using the M-vG formulation

Table 1. Quality measures of the temperature conductance equation (15)
identification. The ANN-based solutions are obtained using Ascend compute platform

method; MAPE (λT /ρc) RMSE (λT /ρc) Qmape,εhτ Qrmse,εhτ
FP32/MP - m2s−1 - K s−1

ANN, MP 8.1× 10−4 3.6× 10−10 7.04× 10−3 1.9× 10−6

ANN, FP32 6.4× 10−4 3.2× 10−10 4.1× 10−4 5.2× 10−7

BBstab(C-K), FP32 1.7× 10−2 6.1× 10−9 3.6× 10−2 1.6× 10−6

BBstab(Joh), FP32 4.2× 10−2 1.5× 10−8 8.7× 10−2 4.1× 10−6

3.3. Relative Performance of ML-Based Method vs. Classical PDE
Identification Method

Tables 1–2 and 3–4 allow the direct comparison of BBstab and ANN methods in terms of
error metrics and computational efficiency, respectively. Though being faster in wall-clock time,
BBstab method significantly underperforms in accuracy. In MAPE and RMSE for temperature
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RMSE = 4.3×10'(
MAPE = 0.76

(a)
reference:          MvG
approximation: MvG form

(a) The case of BBstab method, M-vG formulation

reference:          MvG
approximation: Brooks-Corey form

RMSE = 2.3×10'(
MAPE = 0.31

(b)

(b) The case of BBstab method, B-C formulation
(c)

RMSE = 3.4×10'(
MAPE = 2.3

reference:          MvG
approximation: Gardner form

(c) The case of BBstab method, Gard formulation

(d)

RMSE = 9.5×10'(
MAPE = 0.09

reference:          MvG
approximation: ANN, MP (Ascend)

(d) The case of ANN, mixed precision (MP)

Figure 7. Hydraulic conductivity coefficient for soil moisture γ as a function of volumetric mois-
ture content W being approximated given forms of (a) M-vG, (b) Brooks-Corey (B-C) and (c)
Gardner (Gard) formulae for moisture diffusivity λW and hydraulic conductivity γ coefficients
in test solution of Richards equation (16), BBstab optimization procedure applied. In (d), we
present hydraulic conductivity coefficient for soil moisture being approximated given artificial
neural networks for moisture diffusivity λW and hydraulic conductivity γ coefficients in test
solution of Richards equation (16), MP computations employed on Ascend compute platform.
Here, we produce the reference solution using the M-vG formulation

Table 2. Quality measures of the Richards equation (16) identification. The ANN-based
solutions are obtained using Ascend compute platform

method; MAPE (λW ) MAPE (γ) RMSE (λW ) RMSE (γ) Qmape,εhτ Qrmse,εhτ
FP32/MP - - m2s−1 m s−1 - s−1

ANN 1.01× 10−2 8.9× 10−2 7.5× 10−9 9.5× 10−9 5.8× 10−1 6.1× 10−8

MP
BBstab(M-vG) 1.3× 10−1 7.6× 10−1 6.4× 10−7 4.3× 10−7 1.2× 100 1.3× 10−6

FP32
BBstab(B-C) 1.3× 10−1 3.1× 10−1 2.0× 10−6 2.3× 10−7 1.2× 100 1.2× 10−6

FP32
BBstab(Gard) 4.4× 10−1 2.3× 100 4.4× 10−6 3.4× 10−7 8.1× 10−1 3.1× 10−6

FP32

conductivity, liquid water diffusivity, and hydraulic conductivity, BBstab demonstrates error
values 1–3 orders of magnitude higher than those obtained with ANN method.
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Table 3. Performance estimates of the temperature conductance
equation (15) identification. The ANN-based solutions were
obtained using Ascend compute platform

method FP32/MP perf., it/sec Tc, iter Tc, w.time

ANN MP 8.68 11800 2086 s.
BBstab(C-K) FP32 9.1× 10−2 100 1096 s.

BBstab(Joh) FP32 9.1× 10−2 100 1053 s.

Table 4. Performance estimates of the Richards equation (16)
identification. The ANN-based solutions were obtained using
Ascend compute platform

method FP32/MP perf., it/sec Tc, iter Tc, w.time

ANN MP 9.1 15507 2500 s.
BBstab(M-vG) FP32 1× 10−1 100 994 s.
BBstab(B-C) FP32 1.2× 10−1 100 843 s.
BBstab(Gard) FP32 1.1× 10−1 100 939 s.

3.4. Relation to Results of Other Groups

An idea to reconstruct the Richards equation from measured data on soil moisture has
got development during recent years. In [5], the ANN with monotonicity constraints were used
to approximate coefficients of the Richards equation of the same form as used in our study.
The reference solutions were produced by HYDRUS-1D model with Mualem-van Genuchten
formulation for PDE coefficients. The results of inverse problem solution are thoroughly analyzed
from the point of soil physics, however, no comparison with the baseline PDE identification
method (like BBstab in our case) is provided and the visual inspection of figures in the cited
paper allows to conclude that in our study the ANN-based algorithm produces solution with
much higher accuracy. In [18], the ANNs are involved to recover the linear Richards equation
containing additional terms of higher-order derivatives. In contrast, our approach sticks to classic
nonlinear form of Richards equation, having solid physical basis. In both mentioned papers, the
input data for identification problem was synthetic, produced by direct problem solution with
parameters and/or boundary conditions, instructed from real measurements; the same strategy
applied in our work.

Conclusions

In this study, we propose a novel method based on ANNs for the identification of partial
differential equations. We demonstrated its efficacy and high accuracy in a case of diffusion equa-
tion applied to the problem of heat conduction in soil, and nonlinear diffusion-advection equation
(Richards equation) applied to the soil moisture simulation. We also propose physics-guided and
other types of regularizations for the stabilization of neural networks training. We found that
in case of the identification of advection term, one may face the issue of strong interaction be-
tween loss sums elements in MSE, MAE and MAPE, which may cause uninformative gradients
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and, in turn, poor identification quality and high uncertainty in approximated PDE coefficient.
To alleviate this issue, we elaborated random re-weighting of the individual components of these
terms’ sums, which resulted in informative gradients, stabilized training and good approximation
of the PDE coefficient. The usage of novel AI Ascend platform allows to significantly speedup
implementation of ANN-based algorithm.

Regarding the quality of the PDE identification, we draw the following conclusions:
• novel method based on ANNs for the identification of PDE coefficients describing heat and

moisture transport in soil implemented on Ascend platform using mixed precision floating
point operations overperforms the classical gradient descent method in Barzilai–Borwein
stabilized (BBstab) modification, in terms of MAPE and/or RMSE at least an order of
magnitude;
• BBstab method requires good initial guess of parameters being optimized to converge to

true solution, whereas, for ANN method, the sensitivity of training results to initial guess
is much less limiting the accuracy of solution.

The ANN-based method we developed for PDE identification may be used in research ar-
eas other than soil thermodynamics. The Richards equation is a diffusion-advection type equa-
tion, with highly nonlinear advective term. We expect applicability of suggested approach to
hydrodynamic-type problems, e.g., developing turbulence closures, where the reference solutions
of PDEs are usually obtained from high-resolution direct Navier-Stokes simulations. Moreover,
our method of ANN-based identification is not limited to the cases where a PDE solver is im-
plemented in a form of finite-difference approximation, it can be used in conjunction with any
other differentiable numerical PDE solvers.
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Appendix A. On the Interaction of the Loss Sum Elements
in Approximated Advection Term

In Section 2.4.4, we stated that in Richards equation case, there is an issue of loss sum
elements strongly interacting with each other resulting in uninformative gradients. In particular,
this feature takes place when one considers the advective term ∂γ

∂z of the r.h.s. of Richards
equation within our approximation approach. In this section, we present the derivation of the
gradients of loss sums in eq. (60) w.r.t. γ in order to demonstrate either their reduction to zero
or to come constant independent of ground truth, in case of smooth function γ (W ) and fine
z-grid.

Let us consider the loss function of a tendency ∂W
∂t concerning the term ∂γ

∂z :

L = Err

(
∂W

∂t

∣∣∣∣
γ

)
= Err

(
∂γ

∂z

)
, (64)

where Err is either MSE, MAE or MAPE.

A.1. MSE Term

First, we consider MSE
(
∂γ
∂z

)
(see the details for MAE and MAPE further).

L =

N∑

i=1

(
∂γ

∂z

∣∣∣∣
NN,i

− ∂γ

∂z

∣∣∣∣
true,i

)2

, (65)

where i enumerates z-elements of a soil profile.
In our scheme, the r.h.s. of Richards equation is approximated using finite differences, thus,

one may express the loss sum the following way:

L =

N∑

i=1

(
∆γ

∆z

∣∣∣∣
NN,i

− ∆γ

∆z

∣∣∣∣
true,i

)2

, (66)
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In our method, z-grid is uniform, thus, all the ∆zi are equal: ∆zi = δz,∀i. Let us denote
L′ the finite-difference approximated loss term multiplied by δ2z : L′ = δ2zL. Then this term is
expressed the following way:

L′ =
N∑

i=1

(
∆γ|NN,i − ∆γ|true,i

)2
, (67)

Let us denote ν = γNN , and τ = γtrue for the convenience and brevity. Consider the
expansion of the sum in eq. (67):

L′ =
N∑

i=2

(νi − νi−1 − τi + τi−1)
2 =

= . . .+ (νj − νj−1 − τj + τj−1)
2 + (νj+1 − νj − τj+1 + τj)

2 + . . . =

= . . .+ ν2j + ν2j−1 + τ2j + τ2j−1−
− 2νjνj−1 − 2νjτj + 2νjτj−1 + 2νj−1τj − 2νj−1τj−1 − 2τjτj−1+

+ ν2j+1 + ν2j + τ2j+1 + τ2j−
− 2νj+1νj − 2νj+1τj+1 + 2νj+1τj + 2νjτj+1 − 2νjτj − 2τj+1τj + . . .

(68)

Here, j is an index of some arbitrary sum element in the expansion. When one would like
to compute the gradients of the loss term L w.r.t. parameters θγ of the neural network Fγ

approximating γ coefficient, the chain rule is applied in the following form:

∂L
∂θγ

=
1

δ2z

∂L′
∂θγ

=
1

δ2z

∂L′
∂γ

∂γ

∂θγ
=

1

δ2z

N∑

i=1

∂L′
∂νi

∂νi
∂θγ

.

Since the most of the expanded sum terms in eq. (68) are not dependent of νj , the finite-
difference approximated gradient of the loss L′ w.r.t. γ for an arbitrary j-th element νj is ex-
pressed the following way:

∂L′
∂γ

∣∣∣∣
j

=
∂L′
∂νj

=

=
∂

∂νj

(
2ν2j − 2νjνj−1 − 2νjτj + 2νjτj−1 − 2νjνj+1 + 2νjτj+1 − 2νjτj

)
=

=2ν2j + 2νj (−νj−1 − τj + τj−1 − νj+1 + τj+1 − τj) .

(69)

Since the function γ is supposed to be smooth, and also the z grid has 1000 levels with fine
resolution, one may observe the following approximate equalities:

νj+1 + νj−1 ≈ 2νj ,

τj−1 + τj+1 ≈ 2τj .
(70)

Thus, the gradient in eq. (69) is transformed the following way:

∂L′
∂νj

=
∂

∂νj

(
2ν2j + 2νj (−2νj + 2τi − 2τj)

)
≈ −4νj . (71)

Thus, in case of smooth γ function and fine z-grid, one may clearly see that the gradi-
ents of MSE loss of the advective term do not depend on external data γtrue, and, thus, are
uninformative.
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A.2. MAE Term

In this section, we consider MAE
(
∂γ
∂z

)
.

L =

N∑

i=1

∣∣∣∣∣
∂γ

∂z

∣∣∣∣
NN,i

− ∂γ

∂z

∣∣∣∣
true,i

∣∣∣∣∣ , (72)

where i enumerates z-elements of a soil profile. Similar to the derivation of MSE term, we use
ν and τ notation for γNN and γtrue correspondingly. We also use the following notation here:
L′ = δzL. Thus, the gradient of the MAE loss term is expressed the following way:

∂L
∂θγ

=
1

δz

∂L′
∂θγ

=
1

δz

∂L′
∂γ

∂γ

∂θγ
=

1

δz

N∑

i=1

∂L′
∂νi

∂νi
∂θγ

.

Let us consider the gradient of the expansion of the L′ term w.r.t. some arbitrary sum
elements νj in case of finite-difference estimated derivatives ∂γ

∂z :

∂L′
∂νj

=
∂

∂νj

N∑

i=2

|νi − νi−1 − τi + τi−1| =

=
∂

∂νj
(. . .+ si (νj − νj−1 − τj + τj−1) + si+1 (νj+1 − νj − τj+1 + τj) + . . .) ,

where sj = 1 in case (νj − νj−1 − τj + τj−1) ≥ 0, and sj = −1 otherwise. Since ν and τ are
smooth, and z-levels are small, one may consider the case sj = sj+1 most frequent compared to
the case sj = −sj+1. In case sj = sj+1:

∂L′
∂νj

∣∣∣∣
sj=sj+1

= si
∂

∂νj
(νj − νj−1 − τj + τj−1 + νj+1 − νj − τj+1 + τj) = 0,

which is an uninformative gradient.
In case sj = −sj+1:

∂L′
∂νj

∣∣∣∣
sj=−sj+1

= sj
∂

∂νj
(νj − νj−1 − τj + τj−1 − νj+1 + νj + τj+1 − τj) = 2sj ,

which is an uninformative gradient since it is not dependent of “true” values that are τ in this
notation. Thus, in this section, we demonstrated that in case of MAE loss term, its gradients
w.r.t. γNN,j are uninformative constants - either zero or ±2δz. This is in agreement with Fig. 2,
where one may observe that the gradients with added 10−14 stability value are either 10−14 or
some constant.

A.3. MAPE Term

In this section, we consider MAPE
(
∂γ
∂z

)
.

L =

N∑

i=1

∣∣∣∣∣∣∣

∂γ
∂z

∣∣∣
NN,i

− ∂γ
∂z

∣∣∣
true,i

∂γ
∂z

∣∣∣
true,i

∣∣∣∣∣∣∣
, (73)
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One may notice that τ is smooth, thus, in case of finite-difference approximation of the
derivatives in this loss term, ∆τj ≈ ∆τj+1. The derivation of the gradients in this section is
similar to the previous section A.2 with the only reservation of denominator ∆τj , thus, the
gradients may be expressed the following way:

∂L′
∂νj

∣∣∣∣
sj=sj+1

= 0,

∂L′
∂νj

∣∣∣∣
sj=−sj+1

=
2sj
∆τj

.

(74)

Here one may note once again that the case si = sj+1 is much more frequent compared to
the case si = −sj+1 due to smoothness of γ coefficient and FNN,γ neural network. Thus, major
gradient values are zeros which is uninformative. This is in agreement with Fig. 8, where one
may observe that the gradients with added 10−14 stability value are mostly 10−14 with some rare
exceptions. In Fig. 8b, one may also observe that random re-weighting of individual MAPE sum
elements according to eq. (61) made the gradients informative.

(a)

(a) The case of routine MAPEγ formulation

(b)

(b) The case of random re-weighting of individual
MAPEγ sum terms

Figure 8. MAPEγ loss gradients w.r.t. γ as individual sum terms vs. γ: (a) in case of rou-
tine MAPEγ formulation; (b) in case of random re-weighting of individual MAPEγ sum terms
according to eq. (61). Here we present it in logarithmic scale with additive log-stability term
10−14
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Scalability and Performance of a Program that Uses Domain

Decomposition for Monte Carlo Simulation of Molecular Liquids

Alexander V. Teplukhin1
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The main factors hindering the development of supercomputer programs for molecular simu-

lation by the Monte Carlo method within the framework of classical physics are considered, and

possible ways to eliminate the problems that arise in this case are discussed. Thus, the use of

molecular models with moderate stiffness of covalent bonds between fragments makes it possible

not only to increase the efficiency of scanning the configuration space of the model, but also to

abandon the complex apparatus of kinematics with rigid links, which significantly limits the pos-

sibilities of domain decomposition. Based on the domain decomposition strategy and a simplified

treatment of the deformation energy of covalent bonds and angles, an original parallel algorithm

for calculating the properties of large all-atomic models of aqueous solutions of biopolymers by the

Monte Carlo method was developed. To speed up computations within the framework of this ap-

proach, each domain is assigned its own group of processors/cores using local data replication and

splitting the loop over the interacting partners. The article discusses the logical scheme of the com-

putational algorithm and the main components of the software package (fortran77, MPI 1.2). Test

calculations performed for water and n-hexane demonstrated the high performance and scalability

of the program in which the proposed algorithm was implemented.

Keywords: parallel calculation, biopolymers, Monte Carlo, MPI.

Introduction

Stochastic Monte Carlo algorithms [19] are successfully used to solve a wide range of prob-

lems in many areas of science and engineering [9, 13, 16]. So, when studying the physicochemical

and structural properties of molecular aggregates containing hundreds or more atoms, calcula-

tions are practiced within the framework of classical physics based on the mathematical appa-

ratus of Markov chains [2, 6, 18, 34]. Due to the statistical nature of this type of computational

experiments, it takes weeks, and sometimes months, to process huge amounts of data in order

to achieve acceptable accuracy of the results. Worse, the size of the modeled object is strictly

limited from above by the amount of RAM in a typical computer. It is clear that the study

of models represented by millions of atoms (for example, biopolymers in an aqueous solution)

should be carried out on a supercomputer using a program code that implements distributed

computing by hundreds of processor cores.

At first glance, it may seem that, unlike the molecular dynamics method [2], algorithms that

generate a Markov chain in the configuration space of the model under study (the Metropolis

et al. procedure [2, 18]) have an extremely low potential for parallelization. Indeed, in the first

case, all particles of the model simultaneously change their position at each iteration, while in the

second, usually only one, and even then with a probability of no more than 50%2. Respectively,

in the first case, parallelization can be organized by splitting the loops both over particles

and over their interaction partners [22], and in the second case, only over interaction partners.

Nevertheless, the success of using the Monte Carlo method in statistical physics [16] and polymer

science [17] gives a serious stimulus to find solutions to this problem.

1Institute of Mathematical Problems of Biology of RAS - the Branch of Keldysh Institute of Applied Mathematics

of RAS, Pushchino, Russian Federation
2Cluster and rejection free algorithms do not greatly improve the situation.
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A necessary condition for the parallelizability of an algorithm is the presence of data-

independent operations in it. It turned out that there is a very important class of models for

which the steps of the procedure of Metropolis et al. [2, 18] will have this property if a restric-

tion is introduced on the radius of interaction of their components. In this case, very often the

connection of the previous and subsequent states of the generated Markov chain will have a

formal character, since the values of the parameters characterizing one of these states do not

affect the probability of transition to the second and vice versa. Using information about the

interactions in the model, one can significantly reduce the time of calculations by organizing the

simultaneous execution of calculations for independent groups of components. For example, in

the 2D Ising model, the spins do not interact along the diagonals of the lattice. Consequently,

the entire system of spins can be divided into two subgroups like a chessboard [21] and the states

of all spins can be updated either in one or the other group in turn. Such a scheme is highly

scalable and allows efficient use of computing resources [23].

The transition to continual (off-lattice) models of condensed phases requires the use of more

complex grouping methods. Thus, in [10], a scheme was proposed according to which the space

of the system being modeled (a rectangular cell with periodic boundary conditions) is divided

into cubic domains, and each domain into eight more subdomains (cube octants). The length of

the subdomain edge must be greater than the radius of the sphere that limits the interactions

of particles in the model. This scheme ensures the independence of the movement of particles

in similarly oriented domain octants. In the simplest case, the number of processors3 used for

calculations is equal to the number of domains, so that the processors perform the procedure of

Metropolis et al. [2, 18] with particles of their domains selected from ‘active’ octants, looping

through in the same sequence for all domains. Note that each processor ‘sees’ only particles in

its own domain and in the boundary regions of 26 neighbors.

The domain decomposition strategy allows for a variety of practical implementations. In [10],

the authors focused on optimizing the use of memory by proposing an algorithm with a very

complex protocol of interprocessor communication, which adversely affected the speed of calcula-

tions. After Y2K, the problem of lack of memory lost its acuteness, which gave us the opportunity

to develop a more advanced algorithm, significantly reducing the intensity of interprocessor data

exchanges [14, 25].

Theoretically, spatial (domain) decomposition is capable of providing high scalability of

computational algorithms by dividing a ‘big problem’ into several simultaneously soluble small

subtasks. However, within the framework of this method, it is possible to reduce the size of

domains only to a certain value (the cutoff radius of particle interactions). On the contrary,

splitting the loop over particles interaction partners is very useful when studying objects of

small and medium size, but it does not scale well and quickly exhausts the resources of the

computer’s RAM as the model size grows. The combination of these approaches makes it pos-

sible to ‘neutralize’ their limitations and develop efficient supercomputer programs capable of

outperforming popular packages using the molecular dynamics method when studying models

consisting of hundreds of millions of atoms. As a result of further modifications, we developed

a new algorithm for calculating the properties of simulated systems in an isobaric-isothermal

(NpT ) ensemble [2], in which each domain is serviced by its own group of processors [26]. The

program built on the basis of this algorithm was successfully used in the study of the structural

and thermodynamic characteristics of water in a wide range of pressure [29, 30].

3Hereinafter, the word ‘processor’ will mean a separate processor core.
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Another obstacle that generates skepticism about the Monte Carlo method and limits its

application in the applied fields of materials science and biomedicine is the problem of taking

into account intramolecular degrees of freedom. As it was shown in 1980 [20], the procedure of

Metropolis et al. [2, 18], applied to individual atoms of a peptide molecule, gives 11 times less

diffusion of atoms than the molecular dynamics method for the same amount of computer time.

The reason for this inefficiency is that random monatomic displacements in a covalently bound

system lead to large changes in the strain energy of bonds and angles, which significantly exceed

the contributions of van der Waals and electrostatic interactions.

The standard way out of this situation is based on the idea of excluding from consideration

the stiff degrees of freedom of molecules [8] by ‘freezing’ covalent bonds and the angles between

them (partially or completely), as well as through the use of united atoms [12] and coarse-grained

models of polymers. [24]. Unfortunately, the kinematics of displacements of atoms (groups of

atoms) in such models is implemented through laborious procedures that use difficult mathemat-

ical calculations, sometimes requiring the solution of systems of nonlinear algebraic equations.

Worse, some transformations [33] cannot be performed in parallel computations if the moved

atoms are in different domains.

To increase the effectiveness of Monte Carlo trial moves, we [27] proposed to completely

eliminate the contribution of the strain potentials of covalent bonds and angles to the energy

increment, which is taken into account in the procedure of Metropolis et al. [2, 18]. Within this

approach, a molecule must be considered either as one or several rigid fragments (compact, as a

rule, π-conjugated groups of atoms) connected by single covalent bonds with zero stiffness and

finite extensibility. Hydrogen and halogen atoms should be included in the fragment to which

they are bonded. Some fragments may consist of a single atom, such as an ether oxygen atom

or a quaternary carbon atom. From a mechanical point of view, fragments are solid bodies that

perform rotational and translational motions as a whole, which position in space is determined

by the Cartesian coordinates of their center and three Euler angles. The integrity of the chemi-

cal structure of the molecule is maintained by simply checking the bond lengths and angles for

compliance with the standard ranges of values [1] for specific types of neighboring atoms. In

the course of subsequent computational experiments, it turned out that such drastic measures

with respect to strain potentials are not necessary at all [31]. In fact, the moderate stiffness of

interfragment single bonds and angles not only improves the shape of the distribution of bond

lengths and angles, but also makes it possible to increase the maximum amplitude of trial dis-

placement and fragment rotation. It should be noted that this approach showed very good results

in calculating the structural and thermodynamic characteristics of liquid hydrocarbons [31, 32].

The purpose of this work is to study the performance and scalability of the program we

developed (fortran77, MPI 1.2), which uses domain decomposition together with the splitting

of loop over fragments interaction partners for calculations based on a model with a simplified

treatment of the strain energy of covalent bonds and angles [27, 31, 32], mentioned in the previous

paragraph.

The article is organized as follows. In Section 1 the data on the molecular models used in

the calculations will be presented. Section 2 is devoted to a description of a new algorithm for

parallel computing by the Monte Carlo method, as well as the main components of a prototype4

software package for studying aqueous solutions of biopolymers. The Section 3 discusses the

4In addition to the program code, it is necessary to prepare a set of force field parameters that is adequate to the

model we use and allows us to accurately reproduce the properties of substances in the condensed phase.
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Figure 1. n-hexane molecule. Hydrogen atoms are light gray; carbon atoms are dark gray. Rigid
fragments of the molecule are outlined by rectangles

results of computational experiments with all-atomic models of liquids of two kinds: n-hexane

and water. Conclusion summarizes the study and points directions for further work.

1. Systems under Consideration

The model of the n-hexane molecule is a system of configurationally rigid fragments (CH3–

(CH2)4–CH3: four CH2 groups and two CH3) connected by single bonds in accordance with

the chemical structure of this molecule (Fig. 1). The CH bond length is 1.085 Å, and the

HCH bond angles are 109.47◦. The potential energy characterizing the conformation of the

n-hexane molecule is acquired due to non-covalent interactions of atoms of its fragments (short-

range approximations of the Lennard-Jones and Coulomb potentials, see below), the deformation

(strain) energy of interfragment covalent bonds and bond angles adjacent to them, as well

as torsion potentials, hindering the rotation of molecular fragments around these bonds. The

parameters of the Lennard-Jones potential functions are the same as in [31], the partial charges

on atoms and the parameters of torsion potentials are taken from [32]. The strain energy is

proportional to the squared deviation of bond lengths and angles from their equilibrium values

with coefficients of 100 kcal/mol/Å2 and 25 kcal/mol/rad2, respectively. For the equilibrium

lengths of C–C chemical bonds, the value of 1.526 Å was taken, and for the angles, 109.47◦. This

choice was largely motivated by the parameters of the force fields presented in articles [5, 11].

Atoms of neighboring fragments, connected by a covalent bond with each other or through a

third atom, do not participate in the interactions described by the Lennard-Jones potential.

After a trial move (displacement and rotation) of the selected fragment, new values of the

lengths of covalent bonds and angles are calculated, in the formation of which this fragment

participates. If any bond or angle is not within the allowed range, the remaining bonds and

angles are not checked, the trial move is rejected, the state before the move is again taken

as the new state of the Markov chain, and the program continues to the next fragment. If all

stereochemical parameters of the proposed configuration remained within the acceptable limits

(±0.12 Å for bond lengths and ±12◦ for angles), the energy change and then the transition

probability are calculated according to the formula of Metropolis et al. [2, 18]. The maximum

displacement and rotation angle (for each coordinate and angle) is determined in a preliminary

computer experiment so that ∼38–43% of the trial configurations are accepted.
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Figure 2. View of the main cell of the simulated system containing 19200 n-hexane molecules
(384000 atoms). Hydrogen atoms not shown

To study water systems, we used the rigid three-center model of the water molecule

SPC/E [4], which is an example of a molecule consisting of a single fragment.

Three simulated systems contained 2400, 19200 and 64800 n-hexane molecules each (48000,

384000 and 1296000 atoms, respectively), and three more – 33666, 269328 and 908982 water

molecules (100998, 807984 and 2726946 atoms, respectively) in the main cubic cell with periodic

boundary conditions (Fig. 2). The energy of intermolecular interactions was calculated using

short-range pairwise additive atom-atom potential functions (Rcutoff = 14 Å, standard correc-

tion for the Lennard-Jones potential [2] and modification PF3 [28] for the Coulomb potential),

which effectively take into account the contributions of all images of the main cell under periodic

boundary conditions.

The initial configuration for each system is prepared using a special program that uses as

many processors as there are domains in the simulated object. This program randomly places

given amount of molecules within the boundaries of the main cell, taking into account periodic

boundary conditions. The trial position and orientation of the molecule inserted is randomly

set by the main processor (if the molecule is very large, the process is performed in batches).

It also determines which domain a particular fragment falls into and sends the coordinates to

the addressee. Upon completion of the distribution of fragments of the molecule intended for

insertion, all processes determine, using a geometric criterion, whether there is an overlap of

atoms with previously received fragments. The results of the check (0 or 1) are collected for all

processes (MPI ALLREDUCE, MPI SUM). If 0 is received the attempt is accepted, otherwise

it is retried. If the number of attempts exceeds the specified number, the program stops. To

prevent this from happening on subsequent launches of the program, it is necessary to increase
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the number of attempts or the volume of the main cell. If the program manages to fit all the

molecules, each process writes all the information about its domain to a separate file on an

external storage.

Obviously, the initial density of the simulated object will be much less than the real values

corresponding to the given temperature and pressure. The relaxation of the studied models to

the equilibrium state was carried out using the same program that is intended for calculating the

structural and thermodynamic characteristics. Depending on the type of molecules, this requires

5–20 million trial moves per fragment. The main indicator in this process is the absence of a

systematic trend in the batch-mean values of the density and heat of evaporation of the simulated

liquids. To accelerate relaxation, the initial stages were performed at a pressure increased to

1 kbar.

The results were obtained using the equipment of Shared Resource Center of KIAM RAS

(http://ckp.kiam.ru).

2. Computational Algorithm and Main Components

of the Program

The simulated system occupies the main cell of a cubic shape, on which periodic boundary

conditions are imposed. The volume of the main cell is divided into N=n3 domains (n pieces

along each coordinate axis). The computational task is submitted on M=m.n3 processors (pro-

cessor cores), i.e. each domain is serviced by m processors (hereinafter referred to as the domain

group of processors). Data about the simulated system are read from n3 files on external media

(each domain has its own data file) and written back to them after the completion of the next

portion of the calculation. At startup, the head processor of each domain group reads data from

the corresponding file and sends (MPI BCAST) a copy of it to the rest of the processors in

its group (replication). Processes of the same rank in a domain group are combined into cor-

responding communication groups with a 3D Cartesian topology (MPI CART CREATE). The

algorithm described in [35] was used to generate pseudo-random numbers.

The actual computational procedure (see the logical scheme of the Algorithm 1) consists of

two blocks of program code in the cyclic execution. The first block is responsible for perform-

ing an attempt, standard for the NpT ensemble [2], to randomly change the volume occupied

by the model. To do this, one of the processors (rank 0 in MPI COMM WORLD) generates a

new volume logarithm value and sends it (MPI BCAST) to all processors. Then, domain group

processors calculate trial values of atomic coordinates and exchange data with their topological

neighbors (MPI CART SHIFT, MPI SENDRECV). As a result, each processor receives infor-

mation about the coordinates of atoms in the border zone from the side of the neighbor. Next,

the processors calculate their portions in the change in the total energy of the system, and also,

using simple geometric criteria, identify the partners in non-covalent and covalent interactions.

All processors of each domain group, in parallel, carry out these operations by splitting of the

corresponding loops over atoms. Upon completion of this, the processors of each domain group

exchange data on the found pairs of neighbors (MPI ALLGATHER), and all calculated energy

increments are summed (MPI REDUCE) with the result transferred to one of the processors

(rank 0 in MPI COMM WORLD). It is this processor that decides (Metropolis et al. crite-

rion [2, 18]) whether to accept the new volume value or keep the old one, and then sends the

result to all M processors.
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Initialization, input previously saved data;

while NStep 6= 0 do

//Begin block 1;

Try to accept a new volume value;

Generate random vector to shift domain-splitting grid;

Generate random permutation for 8 subdomains selection order;

//End of block 1;

if Processor rank is 0 then
Accumulate the data required to obtain averaged values of the density and the

enthalpy of the simulated liquid;

end

//Begin block 2;

I ← 2;

while I 6= 0 do

if I = 2 then

Set direct order of 8 subdomains selection;

else

Set the selection in reverse order;

end

Try to change the position of a randomly selected fragments in ’active’

subdomains;

I ← I − 1;

end

//End of block 2;

NStep← NStep− 1;

end

Output data to next run;

Algorithm 1. The logical scheme of the computational algorithm

The second block is responsible for performing an attempt to randomly change the position

(shift and rotation) of a randomly selected rigid fragment. This operation is performed by the

head processors of each domain group in parallel in their domain. To ensure the statistical in-

dependence of n3 simultaneous trial moves, each domain is divided into 8 (2×2×2) subdomains

and moved molecules are taken from the subdomains in the same octant for all domains. This

construction ensures that the selected fragments do not turn out to be partners in interactions,

since all potential functions have a limited range of action, not exceeding half the length of

the edge of the domain cell. Next, each head processor calculates the increment in the strain

energy of the covalent bonds, bond and dihedral angles, and sends trial coordinates to the

domain group. The processors of each domain group calculate the increment in the energy of

non-covalent interactions from their portion of the neighbors of the tested fragment and ‘drop’

the results to the head processor of the group. After that, the head processor, having added the

previously calculated ‘covalent’ contribution, decides (Metropolis et al. criterion [2, 18]) whether

to accept the new position of the fragment or keep the old one, and then sends the result to

all m processors of its group and proceeds to select the next fragment in the same subdomain.

In practice, the loop over subdomain fragments should be long enough that on average each
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fragment is selected 25 times. In this case, the radius of the criterion for inclusion in the list

of interaction partners should be increased (Rneib=Rcutoff+Rfr, where Rfr is the radius of the

minimum sphere containing all atoms of the largest fragment) by 1.5–2.5 Å (buffer zone). Before

moving on to the next subdomains, the processors send to the topological neighbors the coor-

dinates of the fragments from the subdomains that have just completed their ‘activity’. After

fragments in all subdomains have been ‘processed’ in this way, the second block is completed,

control is transferred to the beginning of the first block, and so on. To calculate the desired

structural and thermodynamic characteristics, it is convenient to use the instantaneous config-

uration of molecular fragments formed before the start of the first block. Having performed the

procedure described above for a specified number of times (NStep), the head processors write

the information necessary for restart or further analysis to n3 files on an external storage and

the program stops.

An attentive reader may notice that in the above description of the logical scheme of the

computational algorithm, some of the directly or indirectly mentioned episodes were left with-

out discussion. Some of them have been omitted in order to reduce the size of the article. For

example, these are procedures for transferring data between processors in neighboring domains,

which can be implemented in different ways, depending on the preferences of the developer. The

other, on the contrary, require separate consideration due to their importance. These include

the problem of maintaining a detailed balance of transitions in the Markov chain while simulta-

neously performing the Metropolis et al. procedure [2, 18] in each domain. Recommendations on

how to avoid violations of the detailed balance, as well as to improve the ergodicity of scanning

the configuration space of the simulated systems, are given in the articles [3, 33].

Following these recommendations, our algorithm introduces a displacement of the bound-

aries of the system of domains by a random vector (the maximum displacement in each coordi-

nate does not exceed half the length of the subdomain edge), as well as by random shuffling [7]

of the order of selection of eight subdomains in the second block. The coordinates of this vector,

as well as the sequence of subdomain numbers, are generated by the processor of rank 0 (in

MPI COMM WORLD) and distributed (MPI BCAST) along with the trial value of the volume

logarithm to all processors at the very beginning of the first block. The second block is executed

twice: first, in the forward order of the sequence of subdomain numbers, and then in the reverse

order. The loop length over molecular fragments in a subdomain is equal to the number of frag-

ments in it multiplied by 25. This ensures the (asymptotic) equality of the fragment selection

frequencies regardless of local density fluctuations. Some unbalancing of the load of processors

is compensated by a decrease in the number of potential interaction neighbors due to a decrease

in the thickness of the buffer zone (Rneib). It should be noted that the fragments that crossed

the subdomain boundary remain in the lists of the same subdomain in which they were at the

time of the beginning of the second block. This guarantees the reversibility of the Markov chain

transitions and ensures that the detailed balance is fulfilled [3, 33]. The determination of whether

a fragment belongs to a particular subdomain occurs in the first block, after the boundaries of

the entire system of domains have been moved.

Concluding this section, we note two important problems associated with the limited ac-

curacy of the representation of floating point numbers in machine arithmetic. So, as a result

of displacements, the length of the covalent bond between the atoms of neighboring fragments

can be at the boundary established by the geometric criterion. In this case, it may turn out

that the next time the criterion is applied the bond between them will be broken. To avoid this,
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one should somewhat narrow (for example, by 0.0001 Å) the corridor of covalent bond lengths

admissible as a result of trial moves. It is also necessary to reject trial configurations in which

atoms that did not participate in the covalent bond are located at distances near the threshold

of this criterion.

Another dangerous situation arises in parallel computing when it is required to determine

which subdomain a fragment belongs to, i.e. to solve the problem of the position of its geometric

center. In the case when the center is on the border of subdomains, the processors related to this

fragment can find mutually contradictory solutions, which will result in the program crashing.

To avoid this, the calculation algorithm should be organized in such a way that only the head

processors of domain groups are involved in making such decisions, acting only on fragments in

their subdomains. As a result of the trial move, the fragment may remain in the same subdomain

or move to one of the 26 adjacent subdomains. To ensure conflict-free distribution of fragments

across subdomains, it is enough to associate with each fragment a special index indicating the

direction of the transition (from 1 to 27) and send it along with the coordinates. Conflict-freeness

is guaranteed by the fact that the first time the fragments are distributed by single processor

when preparing the initial configuration, and the control of their movement is performed by the

head processors of domain groups, each in its own domain.

The computer codes (fortran77 + MPI 1.2) developed by author as well as instructions ‘how

to run’ are available from the author on reasonable request.

3. Performance and Scalability of the Computational

Algorithm

To verify the program and evaluate the performance and scalability of the underlying algo-

rithm, two well-studied liquids were chosen: water and n-hexane. The calculation model of the

first one is represented by molecules consisting of one fragment (H2O), while the molecules of

the second one are composed of six fragments connected via single covalent bonds (Fig. 1). For

each substance, three variants of simulated systems were prepared and brought into thermody-

namic equilibrium at a temperature of 298 K and atmospheric pressure, differing in the size and

number of molecules in the main cell (see section ‘Systems under Consideration’). Small-sized

systems were divided into 8 (2×2×2), medium-sized systems into 64 (4×4×4), and large ones

into 216 (6×6×6) domains. The edge length of the domain of aqueous systems was, on average,

50.15 Å, while that of n-hexane systems was 40.3 Å.

In the course of computational experiments, we measured the execution time for the task

of calculating the density and heat of evaporation of the simulated liquid, which requires, on

average, 5000 trial moves of the Metropolis et al. procedure [2, 18] per each fragment. For each

system, a series of calculations was performed, gradually increasing the number of processor cores

in domain groups in the following order: 1, 2, 4, 7, 14, 28, and 35. Due to limited computing

resources (no more than 80 nodes equipped with 28 cores), no tests were performed on medium-

sized systems for 35, and for large models for 28 and 35 cores in domain groups. Recall that

M=m.N processor cores are required to run the test. Here N is the number of domains, and m

is the number of processor cores in the domain group.

Figure 3 shows the dependence of the test execution time on the number of processor cores

in the domain group on a logarithmic scale. Data for large systems (N=216 domains, m from

1 to 14) are not shown, as they are only a fraction of a percent higher than the corresponding
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Figure 3. The test execution time for water and n-hexane models of small and medium size
depending on the number of processor cores in the domain group. The symbols on the lines
indicate the results for 1, 2, 4, 7, 14, 28 and 35 processor cores

medium sized systems. The difference in test execution time for small and medium systems is

more noticeable and may be due to fewer data exchanges in the case of eight domains [14, 25, 26].

This figure clearly shows that after 28 a further increase in the number of processor cores in

domain groups becomes impractical. Note that, obeying the Amdahls law, this effect is universal,

since it practically does not depend on the kind of fragments and the presence of covalent bonds

between them, as well as on the size of the domains (on average, the domain of the aqueous

system contains 4208, and n-hexane – 1800 fragments) and the number of interaction partners

for each fragment (for a water molecule, on average, about 1380, and for a fragment of an n-

hexane molecule, 850). As it has been seen in Fig. 4, despite the fact that the Amdahls law limits

the increase in performance due to the increase in the number of cores in domain groups, the

tenfold acceleration of calculations is a very powerful incentive to use parallelization/splitting

of the loop over interaction partners in addition to domain decomposition.

The most important result obtained in these computational experiments is the absence of a

noticeable increase in the calculation time with an increase in the size of the simulated system,

which is achieved by proportionally increasing the number of processor cores used. The curves

in Fig. 3, which show the execution time of test calculations for systems of different sizes, begin

to diverge noticeably only when large domain groups of processor cores are used.

As shown by additional calculations, in our model, the root-mean-square deviation of n-

hexane atoms from the average position after performing 24000 trial moves (on average) for

each fragment is 0.76±0.19 Å at T=306 K. In the calculations of the protein molecule by the

Monte Carlo method, where parameters of the force fields relevant at that time, a significantly

lower value of 0.082 Å was obtained for this characteristic [20]. In turn, it was noted that the

rmsd of atoms of the same molecule reaches 0.75 Å after 105 time steps performed by the

molecular dynamics method. At the same time, the rmsd of n-hexane atoms after the same
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Figure 4. Acceleration of calculations of small and medium-sized water and n-hexane models
depending on the number of processor cores in the domain group. The symbols on the lines
indicate the results for 1, 2, 4, 7, 14, 28 and 35 processor cores

number of trial moves per each fragment is 1.36±0.37 Å in our model. It can be seen that the

use of molecular models with moderate stiffness of covalent bonds between fragments makes it

possible to surpass the molecular dynamics method in terms of the efficiency of scanning the

configuration space of the model by increasing the displacement amplitude of atoms in one step

of the computational procedure.

To date, several articles have been published that provide data on the performance of popular

software packages. Thus, in the article [15] one can find data on the calculations of the F1-ATPase

system (327506 atoms), comparable in size to one of the systems we considered: the medium-

sized model of liquid n-hexane (384000 atoms). As seen in Fig. 4 of the article [15], it takes 100, 65

and 35 ms to execute one time step by the NAMD2 package when using 256, 448 (interpolation)

and 1000 processor cores on the IBM Blue Gene/L supercomputer. In our case, it takes 117.6,

80.3 and 55.7 ms to perform similar work for the medium-sized liquid n-hexane model using 256,

448 and 896 processor cores on the K60 supercomputer (https://ckp.kiam.ru). This comparison

shows that even without deep, including low-level, code optimization, our approach ensures high

performance of the program developed on its basis.

Concluding this section, we recall that the development of a highly efficient program for

molecular Monte Carlo calculations requires solving two main problems: taking into account

intramolecular degrees of freedom and parallelizing the calculations over the Markov chain un-

derlying the computational algorithm. The first of them is proposed to be eliminated by dividing

biopolymer molecules into rigid compact fragments connected by single covalent bonds of mod-

erate stiffness. To solve the second one, domain decomposition in combination with splitting

loops over lists of interaction partners is well suited. Note that the implementation of domain

decomposition in the Monte Carlo method is fundamentally different from its implementation

in the molecular dynamics method, where all atoms are displaced at one time step. We add that
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the problem of applying domain decomposition in calculations of molecular systems using the

procedure of Metropolis et al. [2, 18] is very poorly covered in the literature, so we believe that

this article will provide new information useful for developers of supercomputer programs.

Conclusion

In this paper, we have considered the main factors affecting the performance of Monte

Carlo calculations for large models of molecular aggregates, and also proposed effective methods

for solving the identified problems. Thus, the use of domain decomposition and distributed

computing on hundreds of processor cores not only eliminates the problem of lack of RAM, but

also provides the possibility of simultaneous execution of the Metropolis et al. procedure [2, 18]

in each domain. The minimum size of a domain is determined by the cutoff radius for interactions

between atoms and the thickness of the buffer zone; therefore, each domain can contain several

thousand atoms. To further speed up calculations in domains, it is necessary to split the loop

over the list of interaction partners, assigning to each domain not one processor core, but a

group of 7–14 cores, using data replication. This will further reduce the calculation time by an

order of magnitude. The problem of slow diffusion in the configuration space of molecules with

internal degrees of freedom [20] is proposed to be solved using a simplified treatment of the

strain energy of covalent bonds and angles [27, 31, 32].

As shown by computational experiments with all-atom models of water and n-hexane, the

strategy of parallelization of calculations proposed by us makes it possible to develop highly

efficient programs for modeling biopolymers in an aqueous solution by the Monte Carlo method

in the framework of classical physics.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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The Brownian dynamics method can give insight into the initial stages of the interaction

of antiviral drug molecules with the structural components of bacteria or viruses. RAM of con-

ventional personal computer allows calculation of Brownian dynamics of interaction of antiviral

drugs with individual coronavirus S protein. However, scaling up this approach for modeling the

interaction of antiviral drugs with the whole virion consisting of thousands of proteins and lipids is

difficult due to high requirements for computing resources. In the case of the Brownian dynamics

method, the main amount of RAM in the calculations is occupied by an array of values of the

virion electrostatic potential field. When the system is increased from one S protein to the whole

virion, the volume of data increases significantly. The standard protocol for calculating Brownian

dynamics uses a three-dimensional grid with a spatial step of 1Å to calculate the electrostatic

potential field. In this work, we consider the possibility of increasing the grid spacing parameter

for calculating the electrostatic potential field of individual coronavirus S proteins. In this case, the

amount of RAM occupied by the electrostatic potential field is reduced, which makes it possible to

use personal computers for calculations. We performed Brownian dynamics simulations of inter-

action of an antiviral photosensitizer molecule with S proteins of three coronaviruses SARS-CoV,

MERS-CoV, and SARS-CoV-2, and demonstrated that reduction of detalization of electrostatic

potential field does not influence the results of Brownian dynamics much.

Keywords: Brownian dynamics, coarse grain, spike protein, SARS-CoV-2, SARS-CoV,

MERS-CoV, phthalocyanine, photosensitizer.

Introduction

Over the past twenty years, the world has suffered three outbreaks of viral diseases caused

by coronavirus, which are expressed mainly in the defeat of the respiratory system and are

called acute respiratory syndrome. The causative agents of these epidemics include coronaviruses

SARS-CoV, MERS-CoV and SARS-CoV-2. The last pathogen (SARS-CoV-2) was the cause of

the COVID-19 pandemic, which affected almost all countries of the world and claimed the lives

of 6.33 million people (as of June 2022). Coronaviruses are enveloped viruses consisting of a

nucleocapsid and an outer envelope. The outer envelope is represented by a lipid membrane and

contains spike (S), membrane (M) and envelope (E) proteins. While E proteins and M proteins

are involved in the assembly of virions, the S protein plays a key role in the early stages of

eukaryotic cell infection, as it recognizes and binds to the host ACE2 receptor and is responsible

for the penetration of the genetic material of the virus into the cell [7]. In this regard, the struc-

tures of S proteins are being actively studied, since it is a good target for the search for small

molecules that would limit or make it impossible for coronavirus virions to bind to cells. At the

moment, the spatial structures of the S proteins of the above viruses are already known. Previ-
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ously, a study of the interaction of zinc phthalocyanine and methylene blue molecules with the S

protein of coronavirus was carried out using the Brownian dynamics method using the ProKSim

software package, the main areas of landing of these small molecules on the protein surface and

their interaction with key amino acids were shown [2]. In that study, the full-atomic structure of

the S proteins of three coronaviruses was used, and the calculation of the electrostatic potential

was carried out in 1Å steps. However, scaling up this approach for modeling the interaction of

small molecules with potential antiviral activity with the structure of the whole virion is difficult

due to high requirements for computer RAM. In the case of the Brownian dynamics method, the

main amount of RAM in the calculations is occupied by an array of values of the electrostatic

potential field. When the system is increased from one protein to the whole virion, the volume of

the data increases significantly. The standard protocol for calculating Brownian dynamics uses

a three-dimensional grid with a step of 1Å to calculate the electrostatic potential field. In this

work, we will consider the possibility of increasing the grid spacing parameter for calculating

the electrostatic potential field to 2Å using the examples of individual SARS-CoV, MERS-CoV,

and SARS-CoV-2 S proteins. Thus, the amount of RAM occupied by the electrostatic potential

field is reduced by a factor of 8, which makes it possible to use personal computers for modeling

the interaction of antiviral drugs with the whole virion.

The article is organized as follows. Section 1 is devoted to the methods used in this work

and the specifics of the design of models of studied molecules. In Section 2, we described and

discuss the main results of this study. The Conclusion summarizes the results of the study and

indicates directions for further work.

1. Methods

1.1. 3D Protein Models

In this work, three-dimensional structures of S proteins of three human coronaviruses

(MERS-CoV, SARS-CoV, SARS-CoV-2) were used. The spatial structure of the SARS-CoV-

2 S protein was taken from [9]. The structures of the “heads” of the MERS-CoV and SARS-CoV

S proteins were taken from the PDB (Protein Data Bank), PDB ID 6NB3 and 5X58. Unresolved

remains in the “head” of the spike were completed using the i-TASSER program [10]. Based on

the amino acid sequence from the UniProt database (A0A140AYW5 for MERS-CoV and P59594

for SARS-CoV), their secondary structure was predicted using the Jpred4 package [1]. Based on

the predicted secondary structure, the unresolved parts of the “core” part of the S protein were

completed using the Modeller-9.19 program [8] using the PDB ID 2WPQ as template.

The model of the Zn-PcChol8+ molecule was taken from [6]. In that work, to determine pos-

sible positions of choline substitutes in the phthalocyanine macrocyclic core, we calculated Fukui

functions, reflecting the probability of electrophilic attack of substituents to isoindole rings. Tak-

ing into account these results, the steric effects and the electrostatic repulsion of substituents,

we determined the most plausible structure of Zn-PcChol8+ with specific positions of choline

substituents. Then quantum mechanical calculations were carried out in the framework of the

density functional theory using PC GAMESS/Firefly software. We performed two-cycle geom-

etry optimization of Zn-PcChol8+ molecule using the SBKJC basis set with energy-consistent

pseudopotential (ECP) and cc-PVDZ basis set for all atoms but Zn for the final optimization.

Atomic partial charges were fit to reproduce the ab initio electrostatic potential using the RESP

algorithm. Then we obtained all-atom topology for the predicted Zn-PcChol8+ structure in the
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GROMOS 54a7 force field using the online service Automated Topology Builder (ATB) and

performed all-atomic MD for 50 ns. On the basis of auxiliary all-atom simulation models we

created the CG model of Zn-PcChol8+ molecule in the Martini force field. The force field pa-

rameters of bonded interactions of CG model obtained from the series of short CG simulations

(10 ns) were iteratively optimized based on all-atom MD simulation. The distributions of bond

and angle terms governing the equilibrium bond/angle and force constant values at each CG

iteration step were compared with all-atom MD simulation until 85% coverage between all-atom

and CG distributions. The final CG model of Zn-PcChol8+ molecule consists of 62 CG beads,

50 bond terms, 18 constraints, 24 angle and 20 dihedrals terms.

To convert an all-atom structure of S protein to CG structure and create the suitable

topology in Martini 3 force field, we used martinize2 program (http://cgmartini.nl). The

general principle of Martini CG modeling of proteins is based on the suggestion that each amino

acid residue consisted of one backbone bead and several side chain CG beads. Each CG bead

represents group of 2–4 heavy atoms which belong to the certain chemical group. Martini CG

force field suggests that the majority of CG bead types are neutrally charged, while few of them

have +1 or –1 elementary electric charge.

1.2. Brownian Dynamics Simulation

For Brownian dynamics simulation, calculation of the electrostatic field and modeling of

long-range electrostatic interactions, the ProKSim software package was used [4]. The values of

the charges of coarse-grained models were taken according to the Martini-3.0.b.3.2 force field

(http://cgmartini.nl/index.php/martini3beta). The values of the electrostatic potential

created by the molecules were calculated on a cubic spatial grid using the Poisson-Boltzmann

equation [3] (for more details, see [5]). The grid step was a parameter and was taken equal

to 1Å or 2Å. Protein molecules and Zn-PcChol8+ were described as rigid particles placed in a

30x30x30 nm cubic virtual reaction volume with mirror boundary conditions such that the TM

(transmembrane) and CP (cytoplasmic) domains were outside the reaction volume for imitation

of the viral membrane. Electric permittivity of proteins ε=2, water ε=80. The ionic strength of

the solution was 100 mM, temperature T=300K. Water was taken into account as an implicit

solvent with a water viscosity coefficient corresponding to a temperature of 300 K. The effect

of thermal motion of water molecules is taken into account by introducing a random force with

normal distribution acting on Brownian particles. Van der Waals interactions are taken into

account using the excluded volume effect: particles cannot approach a shorter distance than the

sum of their van der Waals radii. For each of the three S proteins, 20000 Brownian dynamics

simulations were performed. In each simulation, the Zn-PcChol8+ molecule was placed in a

random position in the reaction volume and after diffusion and electrostatic interactions with

S protein it approached the protein and formed encounter complex. In this process, the Zn-

PcChol8+ molecule diffused until the energy of electrostatic attraction in such a complex would

be not less than specified threshold value of 8kT. The structure of the complex was then saved

for further analysis. Visualisation of the complexes was carried out in PyMol-2.5.2 software

(https://pymol.org).
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2. Results and Discussion

The main amount of memory in the Brownian dynamics calculation is occupied by the

electrostatic potential of the interacting particles and its gradient. In this work, we calculated the

electrostatic potential for the S protein molecules of MERS-CoV, SARS-CoV, and SARS-CoV-2

coronaviruses on the spatial grid with cell size of 1Å and 2Å. Table 1 shows the quantitative

characteristics of these calculations; in particular, the amount of memory occupied by the arrays

for storing the electrostatic potential and its gradient, as well as the total virtual memory

occupied by the program.

Table 1. The amount of memory occupied for each S protein/Zn-PcChol8+ system

Grid spacing

for ES potential

calculation (Å)

Number of cells

per edge of the cube

of the ES potential field

Array size of

ES potential (MB)

Size of the ES

potential gradient

array (MB)

Process virtual

memory (MB)

MERS-CoV 1 530 1136 3408 4586

SARS-CoV 1 542 1215 3645 4901

SARS-CoV-2 1 544 1228 3684 4955

MERS-CoV 2 266 144 431 595

SARS-CoV 2 272 154 460 635

SARS-CoV-2 2 272 154 460 635

RAM of conventional personal computer allows calculation of Brownian dynamics of inter-

action of antiviral drugs with individual coronavirus S protein. For whole SARS-CoV-2 virion

envelope the amount of memory occupied would be as much as 150 GB, which significantly

exceeds the memory of a typical personal computer. The amount of RAM required to store

arrays of the electrostatic potential and its gradient is about 8 times less when using a 2Å grid

compared to a 1Å grid. From Tab. 1 it follows that almost all the virtual memory of the program

is occupied by the ES potential and its gradient.

We performed Brownian dynamics simulations using two grid spacing values of the electro-

static potential to reveal differences in the interaction of Zn-PcChol8+ with coronavirus S pro-

teins. Figure 1 shows individual electrostatic encounter complexes of the photosensitizer molecule

with S proteins of MERS-CoV, SARS-CoV and SARS-CoV-2 coronaviruses calculated with two

different values of electrostatic potential grid spacing, namely 1Å and 2Å. The position of the

Zn-PcChol8+ molecule in the encounter complex is represented by the zinc atom visualized with

a marine-color sphere.

It can be seen that Zn-PcChol8+ molecules mainly bind to the protein in the upper part of the

stalk, at the junction of the stalk with the head, which is consistent with the results of previous

studies [2]. Zn-PcChol8+ molecules are distributed highly heterogeneously on the surfaces of

S proteins, forming distinct dense areas. Size and population of each area are characterized by

average pairwise RMSD of these molecules from each other, and the number of Zn-PcChol8+

molecules forming it (Tab. 2). Positions of these areas on S protein surface are pretty the same in

cases of 1Å and 2Å electrostatic potential grid. In general, the size of the areas slightly differs (no

more than 0.3Å). With increased 2Å step of the grid of electrostatic potential, small and thinly

populated areas located at the head of coronavirus S protein disappear, thus the population

of large areas increases and the portion of Zn-PcChol8+ bound with the stalk of coronavirus
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Figure 1. Encounter complexes of the Zn-PcChol8+ photosensitizer molecule in complexes with

S proteins of the studied MERS-CoV, SARS-CoV and SARS-CoV-2 coronaviruses at a grid

step for calculating the electrostatic potential of 1Å (upper row) and 2Å (lower row) obtained

by the Brownian dynamics method. Final positions of Zn-PcChol8+ molecules obtained in in-

dividual BD simulations are represented by the zinc atoms (marine-color spheres). S proteins

are presented as a coarse-grained model and colored, respectively, MERS-CoV – pale cyan,

SARS-CoV – light orange, SARS-CoV-2 – light pink. Isolated Zn-PcChol8+ binding areas are

numbered. Ratio of Zn-PcChol8+ bound with head and stalk of coronavirus is given in percent

Table 2. Percentage of structures forming individual binding areas and average pairwise

RMSD for this area in Å (value given in parentheses)

Grid spacing

for ES potential

calculation (Å)

1

binding

area

2

binding

area

3

binding

area

4

binding

area

5

binding

area

MERS-CoV 1 15.7 (1.8) 44.7 (3.0)

2 17.8 (1.8) 48.0 (2.9)

SARS-CoV 1 12.9 (1.5) 12.7 (1.4) 22.5 (2.7) 16.1 (2.4) 11.0 (2.3)

2 14.9 (1.2) 12.7 (1.1) 22.9 (2.5) 28.8 (2.2) 5.4 (2.2)

SARS-CoV-2 1 9.7(1.1) 47.4 (2.8) 25.1 (2.3) 12.8 (1.7)

2 2.0 (1.1) 49.7 (2.7) 27.7 (2.2) 12.9 (1.4)

S protein increases. The results show that bigger step of electrostatic potential grid leads to

slight changes in distribution of Zn-PcChol8+ molecules on coronavirus S proteins. Nevertheless,
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the main areas of binding of photosensitizer molecules can be found using rough electrostatic

potential field which takes not so much memory resources.

In calculations with different values of the grid spacing of the electrostatic potential, the

regions of the protein interacting with Zn-PcChol8+ do not change. However, the occupation of

minor binding sites differs between simulations with two cell grid steps (1Å and 2Å), since in

these positions the specified energy of electrostatic attraction (8kT) cannot be achieved due to

the coarse representation of the electrostatic potential field when using 2Å resolution. Never-

theless, this does not change the general distribution of Zn-PcChol8+. Thus, the coarsening of

the spatial grid for calculation of electrostatic potential makes it possible to perform Brownian

dynamics simulations using a smaller amount of RAM while obtaining a reliable result.

Conclusion

With the advent of a large number of molecular spatial structures of biological objects,

there is a need to create models of large systems, such as viral envelopes, microtubules, mem-

brane pigment-protein complexes, lipopolysaccharide membranes, etc. However, the available

computing resources remain limited. In this work, we evaluated the possibility of reducing the

requirements for computer RAM by reducing the detail of the electrostatic potential of molecules,

without losing the quality of the data obtained. In the case of the Brownian dynamics method,

the main amount of RAM in the calculations is occupied by an array of values of the electrostatic

potential field. We considered the possibility of increasing the grid spacing for calculating the

electrostatic potential field to 2Å using the individual S proteins of SARS-CoV, MERS-CoV and

SARS-CoV-2 and found that the main binding regions of the photosensitizer molecule can be

found using a coarse electrostatic potential field, which requires not so many memory resources.

Indeed, with a twofold increase in the grid spacing parameters, the amount of RAM occupied

by the electrostatic potential field decreases by a factor of 8, which makes it possible to perform

electrostatic potential and Brownian dynamics calculations on a personal computer for large

molecular biological systems.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Computational Alchemy Using Accelerated GPU Calculations:

Fine Structural Tuning Inhibitors of L,D-transpeptidase 2

from Mycobacterium tuberculosis

Semen M. Baldin1,2 , Vsevolod O. Shegolev1,3 , Vytas K. Švedas1,2,4
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The computational alchemy is based on equilibrium methods of molecular dynamics (MD),

including thermodynamic integration (TI) or free energy perturbation (FEP). It makes it possi-

ble to evaluate the energy characteristics of a subtile alchemical transformation of the prototype

compound structures in order to modulate their functional properties, what can be used searching

for new analogues of enzyme inhibitors. In recent years, the method is gaining new opportuni-

ties due to high-performance computing as different MD engines got the ability to perform TI

or FEP calculations using GPU acceleration. We have tested the method on two experimen-

tally studied enzyme-inhibitor systems: penicillin acylase from E. coli (PaEc) and Influenza A

virus neuraminidase (NaIAv) and performed computational alchemy calculations for pairs of their

known inhibitors. Thus, the validated methodology was then applied to estimate binding of L,D-

transpeptidase 2 from M. tuberculosis (LdtMt2) to the structural analogs of inhibitors previously

discovered in our group. We have found that the performance of computational alchemy predic-

tions is highly dependent on properly chosen simulation parameters and at optimal performance

the difference between the calculated and experimentally determined relative binding energies is

less than 1 kcal/mol. Thus, for optimal application to novel enzyme—inhibitor or receptor—ligand

systems, we recommend prior adaptation of this method, based on validation of force field combi-

nations as well as water models, to experimentally determined binding data of structurally related

inhibitors/ligands to the molecular target of interest, if available, and then to proceed to the study

of new compounds. High-performance computational alchemy can be used as a useful integrative

part of the methodology searching for new enzyme inhibitors or receptor ligands and optimizing

their structure at drug design.

Keywords: computational alchemy, thermodynamic integration, protein—ligand binding, bind-

ing free energy, drug design, L,D-transpeptidase.

Introduction

In classical molecular modeling, the veracity of calculation is believed to be a result of phys-

ically accurate approximations; contrariwise the molecular alchemy approach is dealing with

non-physically, but mathematically correct models, which, on the one hand, can be even more

precise than strict-physical models, and, on the other hand, adds new options to decrease com-

putational efforts. The computational alchemy approach can be applied to solve some problems

of computational chemistry (by so-called alchemical transformation, or “transmutation”) such

as calculation of the energy of hydration, estimation of relative changes of binding constants Ki

for substrates or inhibitors, all this by changing structures of ligands or amino acid residues even

within a binding site. The purpose of this work is to show how this approach can be applied

to process a structure fine-tuning of known inhibitors in case to find new analogues with lower

(better) inhibition constants Ki.
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1. Theoretical Aspects

1.1. Statistical Mechanics

In canonical ensemble the number of microstates accecible to the system is described by the

partition function Q. For the state A of the system,

QA(N,V, T ) =
1

N !h3N

∫∫
e−βHA(p,q)dpdq, (1)

where N is the number of (strictly speaking, indistinguishable) particles in the system, HA(p, q)
is the Hamiltonian depending on generalized momenta p = p1, · · · ,pN and coordinates

q = q1, · · · ,qN of all particles in the system, h is the Planck’s constant, β = 1/kT is the

“thermodynamic beta”, and k is the Boltzmann’s constant.

Free energy A of the system in a state A, and its difference between two states A and B of

the system can be written using (1) as

AA = − 1

β
lnQA and (2)

∆AAB = AB −AA = − 1

β
ln

QB
QA

accordingly. (3)

In molecular dynamics, the expression of the Hamiltonian H of the system of N particles

with masses mi and Cartesian coordinates r = r1, · · · , rN [21] is

H(p, r) =
N∑

i=1

p2
i

2mi
+ U(r1, · · · , rN ), (4)

potential term U of the Hamiltonian is usually defined5 [6] as

U =
∑

b

kb(lb − l̄b)
2 +

∑

a

ka(θa − θ̄a)
2 (5)

+
∑

d

∑

n

kd,n
{
1 + cos

(
nϕd − ϕ′

d

)}
(6)

+
∑

i<j

{
Ai,j

r12i,j
− Bi,j

r6i,j
+ ke

qiqj
ri,j

}
, (7)

where the energy of deformation from the average value is approximated by Hooke’s

quadratic potentials (5) for bond length lb and valence angles θa, and by periodic Fourie se-

ries (6) for dihedrals ϕd and its harmonics n; pairwise particles i, j interactions (7) are de-

scribed by Lennard-Jones “6-12” potential and Coulomb’s law and decrease in distance ri,j ;

kb, l̄θ, ka, θ̄a, kd,n, ϕ
′
d, Ai,j , Bi,j , ke, qi, and qk are the relevant empirical parameters which consist

the force filed.

1.2. Free Energy Perturbation

Substituting the expression (5–7) for U in (4), then in (1), and then in (3), reducing the

fraction QA/QB in (3) by the same kinetic energy term exp
∑

i
p2

i

2mi
leads to

∆AAB = − 1

β
ln

ZB
ZA

, (8)

5in AMBER family of force fields
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where configurational partition function Z depends only on coordinates r, e.g., for the B state:

ZB(N,V, T ) =

∫
e−βUB(r)dr, (9)

this equation can be rewritten in terms of the ensemble averages as

ZB =

∫
e−βUBdr =

∫
e−βUBeβUAe−βUAdr =

∫
e−β(UB−UA) e−βUA︸ ︷︷ ︸

ρA

dr =
〈
e−β(UB−UA)

〉
A
, (10)

where ρA is a distribution function of the state A, ⟨X⟩A denotes the average of X in ensemble

with the distribution e−βUA , and finally, (8) takes the form named free energy perturbation

formula [26]:

∆AAB = − 1

β
ln⟨e−β(UB−UA)⟩A. (11)

Physically, (11) means that microstates of the state A can be used to estimate the average

of the function e−β∆ABU and then calculate transitional free energy ∆AAB between two states A
and B, it means that microstates of state A must also be the microstates of the state B with a

sufficiently high probability to get an accurate estimate of the average ⟨· · · ⟩A, i.e., the state B
must be only the small perturbation of the state A.

1.3. Thermodynamic Integration

Equation (11) can be generalized to estimate ∆AAB between arbitrary states A and B, close
or not. It is only enough to maintain intermediate states s (with distrubutions e−βUs) between

A and B, satisfying the “closeness” condition:

∆AAB = − 1

β

∑

s

ln⟨e−β(Us+1−Us)⟩s, (12)

or, in continuous case, integration through the transformational path λ can be proceeded by

defining a sufficient transformation between two states in potential term of the Hamiltonian:

U(λ) = λUA + (1− λ)UB, (13)

from hence one can obtain a formula

∆AAB =

∫ 1

0

〈
∂U

∂λ

〉

λ

dλ, (14)

by using (2) and the following:

∂A

∂λ
= − 1

βQ

∂Q

∂λ
= − 1

βZ

∂Z

∂λ
= − 1

βZ

∂

∂λ

∫
e−βU(q;λ)dq =

= − 1

βZ

∫ (
−β∂U(q;λ)

∂λ

)
e−βU(q;λ)dq =

〈
∂U(λ)

∂λ

〉

λ

. (15)

The resulting relation (14) is called the thermodynamic integration formula. In practice, from

integration again switch to summation:

∆AAB ≈
∑

s

〈
∂U

∂λ

〉

λs

δλs. (16)
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1.4. Computational Alchemy

As mentioned above, thermodynamic integration (14) can be performed through a trans-

formational path λ connecting any two states of the system. Let us suppose, just conceptually,

at the start, we have a system of a ligand in water, at the state A, the ligand has a chemical

formula L1, during the all “alchemical” path λ, the ligand is continuously transforming into

the chemical formula L2, corresponding to the state B. In the other words, a chemical molecule

undergoes non-physical transformation, or “transmutation” during which the whole groups of its

atoms are changing their chemical nature. The described procedure can be easily implemented

in silico in two different ways.

1.4.1. The single-topology paradigm

Empirical parameters of the force filed (5–7), can be transformed during the molecular

dynamics simulation, e.g., phenol molecule can be transmutated to thiophenol by changing the

numerical parameters of the oxygen atom O into the sulfur S through the “fictitious” atom X(λ)

which is in the functional dependence on path λ (Fig. 1).

OH

phenol

λ = 0

X(λ)H

non-psylical molecule

λ ∈ (0..1)

SH

thiophenol

λ = 1

Figure 1. Scheme of alchemical transformation in single-topology paradigm

Mathematically, all force field parameters of the transforming atoms are changing along the

path λ = 0..1: 



mX(λ) = λmO + (1− λ)mS,
...

qX(λ) = λqO + (1− λ)qS.

(17)

Then, calculated parameters involve into forces calculation as (5–7), and integration of mo-

tion equation according to the Newton’s 2nd law. In that case, the one molecule topology is

transforming.

1.4.2. The dual-topology paradigm

Alternatively, Equation (13) can be implemented more straightforwardly by combining two

different topologies of the physical molecules at the start A and at the end B of the alchemical

path λ. Pairs of atoms, common for both topologies, share their coordinates and are treated as a

single atom in all interactions with the environment. In contrast, differing atoms do not undergo

a transformation as in the single-topology paradigm, instead, they do not sense the existence of

each other, but their interactions with the environment are scaled according to covered path λ

(Fig. 2). So, from the outside, the molecule looks like a chimera of two.

Values of λ can lay anywhere on the interval [0..1]. Because Lennard-Jones’s and electric

potential tends to +∞ when r → 0, the transition from λ ≡ 0 to λ ∼ 0 will be unstable because

a potential of appearing atoms will grow explosively in regions of r ∼ 0, so some “soft potential”
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OH

phenol

λ = 0

OH
SH

chimeric molecule

λ = 1/5

· · ·

OH
SH

chimeric molecule

λ = 4/5

SH

thiophenol

λ = 1

Figure 2. Scheme of alchemical transformation in dual-topology paradigm

approximation is used [2, 18]:

ULJ
i,j (ri,j , λ) = 4ϵi,jλ

n

{
1

[α(1− λ)2 + (ri,j/σi,j)6]
2 −

1

α(1− λ)2 + (ri,j/σi,j)6

}
, (18)

where ϵi,j , σi,j are Lennard-Jones parameters, n and α are numerical constants; and similarly

for electrostatics:

UCol
i,j (ri,j , λ) = (1− λ)

qiqj

4πε0
√
βλ+ r2i,j

, (19)

where ε0 is the permittivity, qi and qj are charges, β is a numeric constant.

1.5. Thermodynamic Cycle

Computational alchemy by itself is not very usable, however, the power of this technique

is revealed when using a hybrid experimental-computational approach. In the previous section,

we have described the transformation L1 −→ L2 for a ligand in bulk. In the same way, the ligand

can be transformed while being in a complex with a protein E, i.e. EL1 −→ EL2. Thus, we can

construct a thermodynamic cycle (Fig. 3): up and down edges of the cycle correspond to free

energies ∆alcAlig (free ligand) and ∆alcAcom (ligand in a complex) of alchemical transformations,

left and right, to experimentally measurable ligands-protein binding energies ∆bG.

The expression of the free energy A is defined by the thermodynamic ensemble, for canonical

NV T , A ≡ F (the Helmholtz free energy); in isothermal–isobaric NPT ensemble, A ≡ G (the

Gibbs free energy). Nevertheless, in condensed phases, ∆G ≈ ∆F ≈ ∆A in a large pressure

range [12], further, we will imply that.

Δalc Acom

ΔbGL1 ΔbGL2

EL1 EL2∫

Δalc Alig

L1 L2∫E E

λ1 λnλ2

λ1 λ2 λn

exp exp

Figure 3. Thermodynamic cycle for calculation of the relative binding energy of two ligands L1

and L2 in the active site of the protein E
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Having an experimental value ∆bGL1
for binding of L1 one can estimate ∆bGL2

for an

arbitrary ligand L2 by using the thermodynamic cycle:

∆bGL2
= ∆bGL1

+∆alcAcom −∆alcAlig

= ∆bGL1
+∆alcGcom −∆alcGlig︸ ︷︷ ︸

∆∆alcG

, (20)

where ∆∆alcG is the computed alchemical correction for the experimental ∆bGL1
. Hence, the

ratio for the relative binding energies is

∆∆bG = ∆∆alcG. (21)

2. Acceleration of TI MD Calculations Using GPU

Although the acceleration of GPU calculations for the molecular dynamics (MD) method has

been implemented in many MD engines for a while, the GPU acceleration for the thermodynamic

integration (TI) method has been tested relatively recently [9, 10]. It should be noted that

the motivation for the implementation of GPU acceleration for TI method was to speed up

calculations of relative binding energies of inhibitors with enzymes in order to adjust the inhibitor

structure to the geometry of the binding site [7].

Let us discuss a typical computational task for estimation of the relative binding energy of a

pair of inhibitors in a binding site of an enzyme. As it was previously revealed, to estimate the free

energy of the alchemical transformation we need to do two types of calculations: transformation

in the bulk (ligands) and in a binding site of an enzyme (complex ).

For the first system, considering the distance from the solute to the modeling cell boundaries

is from 12 to 15 Å, the size of such a box will be about 5K to 10K atoms. For the second system,

the size of the solvate box will be primarily determined by the size of the enzyme model. Using

the examples described later in this paper, one can find the sizes of the simulated systems:

for the model of L,D-transpeptidase 2 from M. tuberculosis (LdtMt2) model (373 aa, or amino

acid residues) the solvate box size will be around 66 K atoms, for penicillin acylase from E.

coli (PaEc) model (764 aa) the solvate box size will be around 111 K atoms, for 4 subunit

neuraminidase from Influenza A virus subtype H2N2 (NaIAv) model (1876 aa) the solvate box

size will be around 178 K atoms. The latter one is especially big system to run molecular dynamic

without any acceleration hardware.

To estimate ∆∆alcG for each of the described systems, it is necessary to calculate the

molecular dynamic trajectory for all λ in the course of transformations. Let us take the minimum

number of λ windows equal to 9, which are used in some cases in this work. In addition, to check

the reproducibility of the results it is necessary to perform at least three repetitions (runs) of

the same calculations. Thus, according to the most conservative estimate, in order to reliably

calculate one ∆∆alcG value, it is necessary to calculate 27 molecular dynamics trajectories for

the ligands system and 27 trajectories for the complex system. In case if ∂U/∂λ converges on a

time between 10 and 50 nanoseconds (ns) in every MD trajectory, one could see that from 270 to

1350 ns in total of MD trajectories for both complex and ligands systems are needed to calculate

in acceptable period of time. The number of available to compute ns of MD trajectories per day

is given in Tab. 1 for a few desktop-class GPUs in comparison to 27x Tesla P100 [22].

Obviously, only with parallel computing on multiple HPC-class GPUs it is possible to achieve

the required calculation speed and obtain one ∆∆alcG value per day, which is necessary if the
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Table 1. Comparison of speed in ns/day of MD TI calculations for 3 systems on desktop
and HPC GPU

system and size GTX 980 RTX 2070 Super RTX 3080 27x Tesla P100 [22]

LdtMt2 (66 K atoms) 24.3 49.1 87.4 1360.8

PaEc (111 K atoms) 12.6 26.1 45.5 —

NaIAv (178 K atoms) — 15.7 27.9 537.8

task requires to estimate dozens of ∆∆alcG values for potential analogues of inhibitors and their

one-to-one transformations.

3. Systems Preparation and Simulation Protocol

The full atomic structure of penicillin acylase from E. coli (PaEc) in a complex with oxidised

penicillin G (PDB 1GM9) was used as a starting structure for the construction of enzyme-

inhibitor complexes of PaEc with R-mandelic acid, S-mandelic acids and phenylacetic acid.

The full atomic four subunit model of neuraminidase from Influenza A virus subtype H2N2

in a complex with inhibitors was built from a complex with zanamivir (PDB 3TIC).

The three-domain structure of L,D-transpeptidase 2 from M. tuberculosis without a signal

peptide was assembled from two crystal structures: for domains A and B (PDB 4HU2), and

B and C (PDB 4HUC). The resulting structure was equilibrated by classical MD followed by

accelerated MD to obtain open conformations of a flexible lid covering the active site. MD frames

with the open lid were used to construct enzyme-inhibitor complexes by molecular docking.

Partial charges on inhibitors atoms were obtained by geometry optimization by the

B3LYP/6-31+G* method followed by calculation of the electrostatic potential by the HF/6-

31G* method and charge fitting by the RESP method [1]. The types of inhibitors atoms were

defined using GAFF [25] or GAFF2 force fields, enzymes were described using ff14SB [14] or

ff19SB [20]. TIP3P or OPC [8] water models were used.

MD parameters of simulations were as follows: ∆t = 1 fs, Langevin thermostat with col-

lision frequency γ = 2 ps−1, T = 298 K, Monte Carlo barostat with pressure relaxation time

τ = 2 ps, P = 1.01325bar, SHAKE was off, NTP ensemble, nonbonded cutoff for PME was

8.0 Å, for TI calculations softcore potentials were applied for Lennard-Jones and Coulomb po-

tentials with α = 0.5 and β = 12.0 Å2 respectively. The Amber package was used to simulate

MD trajectories [4].

The stresses in the constructed systems were eliminated by minimizing the energy using the

steepest descent algorithm. The systems were heated to 298 K on NVT ensemble, equilibrated

on NPT ensemble until the nominal values of water density were reached and 5 ns after that.

Separate trajectories were created for each value of λ using the last frame of the previous

trajectory. For each value of λ the velocities obtained at the previous step were not taken into

account, but the systems were heated again at a given value of λ, then equilibrated again using

NPT ensemble for the first 10% of the trajectory and during the last 90% of time, values of

∂U/∂λ were collected. The convergence of ∂U/∂λ values was monitored by the values of the

moving average and the incremental average. The obtained values of ∂U/∂λ for all λ windows

were integrated by the appropriate method, depending on the partition of the transformation

path (trapezoidal or Gaussian).
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4. Method Validation

4.1. Inhibitors of Penicillin Acylase from E. coli (PaEc)

The penicillin acylase is widely used in industry to catalyze an acyl transfer reaction from

the activated acyl donors to the amino group of the penicillin nucleus 6-aminopenicillanic acid.

Phenylacetic acid and its derivatives are also PaEc inhibitors. The inhibition constants for pheny-

lacetic, R-mandelic and S-mandelic acids are 0.06 mM, 31 mM and 10 mM, respectively, which

means (according to ∆∆bG = −RT ln
(
K1

i /K
2
i

)
) ∆∆bGexp = −3.7 kcal/mol for transformation

from R-mandelic acid to phenylacetic acid and ∆∆bGexp = −3.0 kcal/mol for transformation

from S-mandelic acid to phenylacetic acid.

COO−

OHH

COO−

HH

Figure 4. A scheme of alchemical transformation from R-mandelic acid (left) to phenylacetic
acid (right). Colored atoms are those to which the soft-core potentials were applied

Firstly, for transformation from R-mandelic acid to phenylacetic acid (Fig. 4) we decided

to use default force fields parameters for TI molecular dynamics (ff14SB, GAFF, TIP3P water)

and 13 λ windows (0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0). One could

see we add 2 additional λ values on the sides of the transformation path. Calculated values of

∆∆alcG are given in Tab. 2. After five runs of calculation, the estimated interval ∆∆alcG =

−1.0± 0.4 kcal/mol does not contain the experimental value ∆∆bGexp = −3.7 kcal/mol. At the

same time, the computed value agrees with the experimental trend, but the absolute error is

2.7 kcal/mol.

When analyzing the ∂U/∂λ of λ graphs, we found that the maximum change of ∂U/∂λ values

occurs in the interval between 0 and 0.1 in λ scale. Afterwards, to sample this interval more

rigorously and improve the estimation of ∆∆alcG, we introduced 5 additional λ windows (0.01,

0.02, 0.03, 0.04 and 0.075), their total number was increased to 18. Having performed similar

calculations, we obtained a new estimate of ∆∆alcG = −1.3 ± 0.2 kcal/mol. This estimate is

better in terms of reproducibility and closer to the experimental value of ∆∆bGexp but still

differs from the experimental value by 2.4 kcal/mol.

After several trials, we decided to choose more modern force fields: ff19SB for the enzyme

and GAFF2 for the inhibitors, relatively new OPC water model that is recommended [19] to be

used with ff19SB was applied. Under new conditions we estimate ∆∆alcG = −2.6±0.7 kcal/mol

which is better than previous result and differ from the experimental value by 1.1 kcal/mol.

COO−

HO H

COO−

H H

Figure 5. A scheme of alchemical transformation from S-mandelic acid (left) to phenylacetic
acid (right). Colored atoms are those to which the soft-core potentials were applied
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After applying a similar approach to modeling the conversion of S-mandelic acid to pheny-

lacetic acid (Fig. 5) using only 13 λ windows we get estimate of ∆∆alcG = −3.7± 1.2 kcal/mol,

while experimental value is −3.0 kcal/mol. Calculated values of ∆∆alcG are given in Tab. 3.

Table 2. Calculated thermodynamic integrals of alchemical
transformation for a pair of R-mandelic acid and phenylacetic
acid in the complex with PaEc (∆alcGcom) and in the bulk (∆alcGlig)
for different modeling parameters. All numerical values are given in
kcal/mol

run ∆alcGcom ∆alcGlig ∆∆alcG ∆∆alcG± CI95% ∆∆bGexp

ff14SB, GAFF, TIP3P, 13 λ windows

1 −73.71 −72.73 −0.98
2 −73.88 −72.74 −1.14
3 −74.10 −72.77 −1.33 −1.0± 0.4 −3.7
4 −73.56 −72.75 −0.81
5 −73.32 −72.75 −0.57

ff14SB, GAFF, TIP3P, 18 λ windows

1 −74.21 −72.88 −1.33
2 −74.13 −72.89 −1.24 −1.3± 0.2 −3.7
3 −74.30 −72.90 −1.40

ff19SB, GAFF 2, OPC, 13 λ windows

1 −76.13 −73.32 −2.81
2 −76.17 −73.56 −2.61 −2.6± 0.7 −3.7
3 −76.93 −74.69 −2.24

Table 3. Calculated thermodynamic integrals of alchemical
transformation for a pair of S-mandelic acid and phenylacetic
acid in the complex with PaEc (∆alcGcom) and in the bulk (∆alcGlig).
Parameters of modelling: ff19SB, GAFF2, OPC, 13 λ windows. All
numerical values are given in kcal/mol

run ∆alcGcom ∆alcGlig ∆∆alcG ∆∆alcG± CI95% ∆∆bGexp

1 −78.56 −74.38 −4.18
2 −78.27 −74.70 −3.57 −3.7± 1.2 −3.0
3 −78.42 −75.22 −3.20

As a conclusion for penicillin acylase inhibitors we found out that ff19SB+GAFF2+OPC

performs better in comparison with ff14SB+GAFF+TIP3P.

4.2. Inhibitors of Neuraminidase from Influenza A virus (NaIAv)

The neuraminidase enzyme of influenza virus cleaves of sialic acid from human receptors

to facilitate the release of newly formed viral particles from the cell surface and is a molec-

ular target for the most effective anti-influenza drugs zanamivir and oseltamivir [11, 23, 24].

Several sialic acid analogue inhibitors of the enzyme have been synthesized and characterized

experimentally [24].
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Let us look at the pair 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en (zanamivir)

(Fig. 6), the inhibition constants Ki are 50.0 nM and 0.2 nM respectively [24], which means,

∆∆bGexp = −3.3 kcal/mol for the transformation of 4-amino-Neu5Ac2en to 4-guanidino-

Neu5Ac2en.

COO−

NH+
3

NHCOCH3

O

OH

OH

OH

COO−

H
N
+

NH2

NH2

NHCOCH3

O

OH

OH

OH

Figure 6. A scheme of alchemical transformation from 4-amino-Neu5Ac2en (left) to 4-
guanidino-Neu5Ac2en, or zanamivir, (right). Colored atoms are those to which the soft-core
potentials were applied

In this case, we used ff14SB+GAFF+TIP3P to describe the system. We split the trans-

formation path into 9 λ windows (0.01592, 0.08198, 0.19331, 0.33787, 0.5, 0.66213, 0.80669,

0.91802, 0.98408) according to the n-point Gaussian quadrature (n = 9), then Gauss integration

method was applied to estimate ∆∆alcG. As can be seen in Tab. 4, after three runs of the calcu-

lations, ∆∆alcG = −3.3± 0.7 kcal/mol which is very close to the experimental (−3.3 kcal/mol)

value calculated from known Ki values.

Table 4. Calculated thermodynamic integrals of alchemical
transformation for a pair of 4-amino-Neu5Ac2en and
4-guanidino-Neu5Ac2en (zanamivir) in the complex with NaIAv
(∆alcGcom) and in the bulk (∆alcGlig). Parameters of modelling:
ff14SB, GAFF, TIP3P, 9 λ windows. All numerical values are given in
kcal/mol

run ∆alcGcom ∆alcGlig ∆∆alcG ∆∆alcG± CI95% ∆∆bGexp

1 −8.35 −4.94 −3.41
2 −8.07 −4.98 −3.09 −3.3± 0.7 −3.3
3 −8.65 −5.06 −3.59

4.3. Inhibitors of L,D-transpeptidase from M. tuberculosis (LdtMt2)

The L,D-transpeptidase 2 from M. tuberculosis is an enzyme catalyzing cross-linking of

peptidoglycan chains in the pathogenic cell wall [5]. This protein is a potential target for the

new class of antitubercular medications (anti-TB) due to high importance for the growth of the

pathogenic bacteria. Well-known β-lactams do not provide efficient anti-TB effect [16, 17], so an

active search for new treatments is underway: new combinations of known anti-TB drugs are

being studied [15] and new molecules are being sought [13].

Competitive inhibitors of L,D-transpeptidase 2 from M. tuberculosis are considered as per-

spective anti-TB preparations [3]. We have found a new representative by in silico screening

of commercial ligand libraries. The selected compound, inhA (Fig. 7) was then experimentally

studied, characterized as LdtMt2 inhibitor and used as a molecule at computational alchemy op-

timization. The resulting improved structure inhB of the inhibitor is shown in Fig. 7 and the data
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of the corresponding energy calculations are presented in Tab. 5. The computed value of relative

binding energy (∆∆alcG = −1.6 ± 0.6 kcal/mol) shows an appropriate fit with experimental

data, which has confirmed more effective inhibition of LdtMt2 by the designed compound inhB

(Ki = 5 µM) compared to the parent structure inhA (Ki = 14 µM); the absolute error between

calculated and experimental relative free energy of binding (∆∆bG = −RT ln
(
K inhA

i /K inhB
i

)
=

−0.6 kcal/mol) is in order of 1 kcal/mol.

CH3SO2NH

N
N

CH3

O

OH CH3SO2NH

N
N

S

O

OH

Figure 7. A scheme of alchemical transformation from inhA (left) to inhB (right). Colored
atoms are those to which the soft-core potentials were applied
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Figure 8. Visualization of ∂U/∂λ during the alchemical transformation of found and tested
competitive inhibitors inhA and inhB of LdtMt2
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Table 5. Calculated thermodynamic integrals of alchemical
transformation for a pair inhA, inhB in the complex with LdtMt2

(∆alcGcom) and in the bulk (∆alcGlig). Parameters of modelling:
ff14SB, GAFF, TIP3P, 9 λ windows. All numerical values are given in
kcal/mol

run ∆alcGcom ∆alcGlig ∆∆alcG ∆∆alcG± CI95% ∆∆bGexp

1 12.69 14.06 −1.37
2 12.36 14.18 −1.81 −1.6± 0.6 −0.6
3 12.48 14.15 −1.67

The parameters of computational experiment were as follows: nine λ values were chosen in

an interval from 0 to 1 (according to 9-point Gaussian quadrature integration), at least 50 ns of

MD trajectories were recorded for all 9 λ on three runs, i.e. [50 ns× 9 λ MDs]× 3 runs.

Let us take a closer look at how we processed the raw calculated data to obtain estimates of

the relative binding free energy. Values of ∂U/∂λ obtained during the simulations were threated

to compute two TIs (Gaussian quadrature integration was used) and then ∆∆alcG. Using an

example of one run (9 MDs for each λ value) we can briefly describe the results (Fig. 8). Estimates

of the averages ⟨∂U/∂λ⟩[0..t] reach a constant value in the first 20–30 ns of MD trajectories

(Fig. 8a), all observations after 20 ns were used to get the estimation (for all runs separately).

Values of ∂U/∂λ are distributed around their means, forming symmetric Gaussian-like “bell”

curves (Fig. 8b). Since the difference of two TIs is required to calculate relative energies ∆∆alcG

the “negative” and “positive” areas are shown in Fig. 8c, it can be seen that the larger in

absolute value term corresponds to a decrease in the free energy of binding.

The computational alchemy allows to estimate relative binding energies (21) which makes

it useful for structure optimization. It should be noted, that a straightforward transformation

with interpretable results can only be performed between close structural analogues (see subsec-

tion 1.2) which were found by methods of chemoinformatics (fingerprints, maximum common

subgraph). Thus, we can conclude that the method can be used to optimize the structure of

inhibitors.

Conclusion

The computational alchemy is based on equilibrium methods of molecular dynamics (MD),

including thermodynamic integration (TI) or free energy perturbation (FEP). It makes it pos-

sible to evaluate the energy characteristics of a subtile alchemical transformation of the proto-

type compound structures in order to modulate their functional properties, what can be used

searching for new analogues of enzyme inhibitors. In recent years, the method is gaining new

opportunities due to high-performance computing as different MD engines got the ability to

perform TI or FEP calculations using GPU acceleration. We have tested the method on two

experimentally studied enzyme-inhibitor systems: penicillin acylase from E. coli (PaEc) and

Influenza A virus neuraminidase (NaIAv) and performed computational alchemy calculations

for pairs of their known inhibitors. Thus, the validated methodology was then applied to esti-

mate binding of L,D-transpeptidase 2 from M. tuberculosis (LdtMt2) to the structural analogs

of inhibitors previously discovered in our group. We have found that the performance of com-

putational alchemy predictions is highly dependent on properly chosen simulation parameters.
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In our case, various combinations of force fields and water models (ff14SB+GAFF+TIP3P and

ff19SB+GAFF2+OPC) were used, and at the optimal performance, the difference between the

calculated and experimentally determined relative binding energies was less than 1 kcal/mol.

Thus, for optimal application to novel enzyme—inhibitor or receptor—ligand systems, we rec-

ommend prior adaptation of this method, based on validation of force field combinations, to

experimentally determined binding data of structurally related inhibitors/ligands to the molec-

ular target of interest, if available, and then to proceed to the search for new compounds. High-

performance computational alchemy can be used as a useful integrative part of the methodology

searching for new enzyme inhibitors or receptor ligands and optimizing their structure at drug

design.
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