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A Comparison of Different Approaches for Predicting Transonic

Buffet Onset on Infinite Swept Wings

Kirill V. Belyaev1 , Andrey V. Garbaruk1 , Sergey V. Kravchenko2 ,

Michael K. Strelets1
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A comparative study is performed on three different approaches for prediction of transonic

buffet onset on infinite swept wings. All three approaches are based on the unsteady Reynolds-

averaged Navier–Stokes (URANS) equations, and include: quasi-3D and fully-3D global stability

analysis of the corresponding steady 2.5D RANS solutions and direct numerical solution of the

3D URANS equations. The results are presented for an infinite swept wing based on the ONERA

OAT15A airfoil section. The quasi-3D stability analysis is shown to be accurate and most efficient

and, thus, is best suited for this spanwise-uniform flow. The fully-3D stability analysis ensures

the same accuracy, provided that the grid-step in the spanwise direction is sufficiently small. It

is much more demanding in terms of computer memory but can be extended to more-general

wing configurations. Good agreement is observed between the three approaches in terms of critical

conditions for buffet onset and the instability growth characteristics, providing a cross-validation

of the methods and an assessment of their computational demands.

Keywords: transonic buffet onset, infinite swept wing, global stability analysis, quasi-3D and

fully-3D approaches, direct URANS solution.

Introduction

Transonic buffet phenomenon is characterized by self-sustained oscillations of the shockwave

that forms on the upper surface of airplane wings. At Mach numbers typical of cruise flight for

commercial airliners (M = 0.75 − 0.9), these shock oscillations turn out to be rather intensive

over a wide range of angles of attack and lead to large airplane-level normal accelerations.

This can limit the maximum allowable angle of attack, and, therefore, the maximum lift and

also the flight altitude. Hence, a determination of the conditions for the buffet onset and its

characteristics is essential for airplane design, and it is not surprising that different aspects

of this phenomenon (its mechanism, critical values of the onset Mach number and angle of

attack, and post-onset unsteady characteristics) have been investigated in a very large number

of experimental and numerical studies (see the review of Giannelis et al. [6], and more recent

papers [2, 3, 8, 12–17, 21, 23]).

According to the experimental studies, the shock-wave oscillations observed in transonic-

wing flow after buffet onset are characterized by frequencies that are much smaller than the

frequencies associated with turbulent fluctuations typical of high-Reynolds-number aerodynamic

flows. This justifies modeling of the buffeting flows and predicting the buffet onset based on the

direct time-accurate numerical integration of the unsteady Reynolds-averaged Navier–Stokes

equations (URANS). Along with this, it is now generally accepted that the buffet phenomenon

is explained by the onset of a global instability in transonic-wing flows at supercritical values

of the Mach number and angle of attack [6]. This opens the possibility of using an alternative

approach to predicting the buffet onset, namely, applying global stability analysis to steady

RANS solutions. The applicability of this approach was first demonstrated for two-dimensional
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(2D) airfoil buffet [1, 4], and the approach is now widely used in the investigation of buffeting

flows (see, e.g. [2, 3, 14, 15, 23]).

Extensions of the approach to quasi-three-dimensional (q-3D) flows for application to infinite

swept wings have been presented in the works [2, 14, 15]. Meanwhile, fully-three-dimensional

(3D) stability analysis has been used to analyze a swept tapered wing [23]. More recently, He

and Timme [8] used the fully-3D approach to analyze an infinite swept wing. This shows the

linkage between the discrete modes of the fully-3D analysis and the continuous band of modes

predicted by the q-3D analysis. The work of He and Timme [8] also considered the effects of a

stationary mode as part of the baseflow for the onset of oscillations on an unswept wing. This

is possible with the fully-3D analysis, but not the q-3D approach.

Here, we provide a quantitative comparison between the q-3D and fully-3D stability ap-

proaches for the infinite swept wing, along with comparisons to the unsteady simulations. These

three approaches involve independent formulations, but all flow variables and turbulence-model

parameters are matched for the comparisons, allowing an assessment of both the accuracy and

the efficiency for varying spanwise representations.

In this article, the comparisons are carried out for an infinite swept wing based on the

ONERA OAT15A airfoil section [10]. First, in Section 1, we briefly present an overview of

the three approaches. Then, in Section 2, we discuss the basic flow conditions and some of

the numerical aspects of the performed computations. In Section 3, results are presented and

discussed. Finally, in Conclusion, we summarize the major findings of the study.

1. Overview of the Considered Approaches

Steady flows past an infinite swept wing are characterized by uniformity in the spanwise

directions z, with flow variation dependent only on x and y (see Fig. 1). Hence, such flows may

be computed by numerical integration of the RANS equations in which the spanwise derivatives

are set zero, that is, within an effectively 2D problem statement. In order to distinguish this

type of flow from the purely-2D and fully-3D flows it is often referred to as 2.5D flow (with flow

in the z direction, but ∂/∂z = 0).

Figure 1. Schematic of section of infinite swept wing with the length Lz

The critical values of the angle of attack and Mach number corresponding to transonic

buffet onset in the 2.5D flows may be determined using any of the three approaches based
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on the RANS equations. The first approach involves the direct numerical integration of the

full 3D URANS equations for a wing section with a span length Lz (a free parameter of the

problem) using periodic boundary conditions in the z-direction and a steady solution of the 2.5D

RANS equations as initial conditions. For subcritical values of the angle of attack, α < αcrit,

corresponding to a given Mach number, the URANS solution does not change in time, whereas

for supercritical values α > αcrit, the solution is characterized by exponential growth of flow

disturbances (deviations from the initial conditions). Thus, a series of 3D URANS computations

at different values of α and Lz provides the critical buffet-onset conditions and the corresponding

post-critical growth rate and frequency of the disturbances, based on post-processing of the

simulation time-histories in the linear stage of the solution. The spanwise domain length Lz

selects the admissible spanwise wavelengths for the disturbance, so multiple values should be

considered. Along with this, based on the developed non-linear stage of the solution, one can

compute the unsteady and mean local and integral aerodynamic characteristics of the buffeting

flow, e.g. the lift and drag of the wing. This approach is the most general, but it demands large

computational resources needed for performing multiple 3D unsteady simulations. Additionally,

when close to critical buffet-onset conditions where disturbances grow or decay very slowly with

time, the simulations require extremely long time samples and results can be highly sensitive to

numerics.

Two alternative approaches for investigating buffet-onset conditions are based on global

stability analysis of the 2.5D steady RANS solutions at different angles of attack. These ap-

proaches employ linear stability equations for describing the disturbances, which are derived by

decomposing the total flow field into a steady baseflow and a small superimposed perturbation.

Note that in the presence of shock waves, this is, strictly speaking, impossible, but still seems to

be justified for the numerical solutions, if the perturbations are sufficiently small not to change

the set of the grid cells “occupied” by the shock (i.e., if the shock remains effectively still).

After introducing the decomposition into the 3D URANS equations with associated boundary

conditions, and canceling terms which describe the steady RANS solution, the equations are lin-

earized to provide a system of equations for the small 3D disturbances. Nontrivial solutions to

this system are found by solving an eigenvalue problem for the corresponding linear differential

operator [4]. The real and imaginary parts of the complex eigenvalues represent the frequency

and the growth/decay rate (depending of the sign), respectively. The associated eigenfunction

provides the spatial distribution for the disturbance. Hence, in order to answer the question

on whether the considered steady solution is stable or unstable in the framework of these ap-

proaches, it is sufficient to find the eigenvalue with the maximum growth rate. If this value turns

out to be negative, the steady solution is stable and otherwise it is unstable.

The first of the stability approaches, the q-3D approach, uses the spanwise invariance of

the steady baseflow, and decomposes the disturbance into Fourier modes in z. Each mode is

characterized by a spanwise wavelength λz, defined by the wave number β (λz/c = 2π/|β|),
which is a free parameter of the q-3D stability problem. As a result of the Fourier decomposition

in z, the q-3D eigenmodes are two-dimensional and sometimes referred to as “biglobal” [22]. The

computational cost for this approach (both in CPU time and, especially the computer memory)

is much less than for the URANS simulations or the fully-3D stability analysis described below.

Not surprisingly, this method is widely used in the literature (see, e.g. [2, 3, 14]). However, for

problems in which the steady baseflow is not strictly uniform in the spanwise direction, the q-3D

formulation is only an approximation.

A Comparison of Different Approaches for Predicting Transonic Buffet Onset on Infinite...
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Thus, a more-general form of the stability problem is given by the fully-3D approach. Rather

than introducing a Fourier decomposition in z, this approach considers a 3D eigenmode extending

over the spanwise domain Lz. This is sometimes referred to as “triglobal” stability analysis [22].

In this formulation, the spanwise wavelength is set by the domain size Lz, just as it is in

the URANS simulations. Note that in principle (neglecting any difference in the discretization

errors of the URANS equations and the equations for the disturbances), predictions of the

critical values for buffet onset based on the fully-3D stability analysis should coincide with

those predicted based on the 3D URANS simulations, provided that the latter are started from

the baseflow with superimposed disturbances of a very small amplitude (see below). However,

computational resources needed for implementation of these two approaches are quite different:

the 3D stability analysis is much less expensive than 3D URANS in terms of the CPU time, but

is much more demanding in terms of computer memory, which strongly limits the size of the

computational grids. For the current analysis of a 2.5D baseflow, this fully-3D analysis can be

directly compared to the q-3D analysis, allowing an independent validation of each approach.

2. Flow Regimes and Numerical Aspects of Computations

Specific computations performed in the present work are carried out for an infinite-span

wing based on the supercritical airfoil OAT15A at different angles of attack α varying in the

range from 2.75◦ up to 3◦ and fixed values of the wing sweep angle Λ = 30◦, Reynolds number

Ren = Unc/ν = 3 · 106 and Mach number Mn = Un/a∞ = 0.73. Nondimensionalization is based

on the normal to the wing leading edge component of the free-stream velocity Un = U∞cosΛ.

The boundary-layer flow is assumed to be fully turbulent and is modeled using the Spalart–

Allmaras turbulence model [19] with the Compressibility Correction [20] (SA CC model), which

has been successfully used in many transonic buffeting flows (see, e.g. [1–4, 14]).

Computations are carried out with the in-house computer codes developed by the authors.

In particular, the compressible steady and unsteady RANS equations are solved using the code

of Numerical Turbulence Simulation (NTS) [18], and the algorithms implemented for solutions

of the stability problems are presented in detail in [1, 2, 4]. The NTS code accepts structured

multi-block overset grids. Computational domain and grid are divided into a set of grid blocks,

taking into consideration both the flow geometry and effective usage of computers with large

amount of nodes/cores. For massively parallel computations, the code employs a so-called hybrid

Message Passing Interface (MPI)/Open Multi Processing (Open MP) parallelization scheme,

which ensures a high efficiency of simulations on very large computational grids required for

3D URANS and scale-resolving simulations (see, e/g. [7]). Within this approach, both MPI

libraries (with distributed memory technologies) and Open MP libraries (with shared memory

technologies) are used for parallelization of computations in different grid blocks (or set of grid

blocks). This strategy is very flexible and is easy to adapt to computers with different architecture

by manually varying a set of managing parameters. The code has been thoroughly validated by

comparisons with the solutions of a wide range of aerodynamic and stability problems and

experimental data available in the literature.

The computational domain and the grid in the XY-plane used for the computations are

shown in Fig. 2. The domain has a radius of about 30c, which, along with the use of the

characteristic non-reflecting boundary conditions with the Riemann invariants computed by the

free-stream flow parameters, ensures an adequate representation of the transonic flow past the

wing. The structured computational grid has two overlapping blocks, shown in Fig. 2 by blue

K.V. Belyaev, A.V. Garbaruk, S.V. Kravchenko, M.K. Strelets
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(a) Entire domain

(b) Zoomed in view in the vicinity of the wing (c) Zoomed in view in the vicinity of

the blunt trailing edge

Figure 2. Computational domain and two-block grid in XY plane

and green grid lines. The main (blue) block is a C-grid with 343 × 140 cells, and the second

(green) block is an H-grid with 97 × 374 cells. As a result, the total cell count of the grid in

the XY-plane is about 85,000. In the streamwise direction the grid-step was reduced by a factor

of ten over a wide area encompassing the shock location (in this area ∆x/c ≈ 0.002). The step

in the wall-normal direction was decreased toward the wing surface so that the size of the first

near-wall cell in the coordinates of the law of the wall ∆+
y,1 = ∆y,1uτ/ν (uτ =

√
τw/ρ is the

friction velocity) is less than 1.0.

The span length of the computational domain Lz used in the 3D URANS (this size defines

the maximum wavelength of the solution) was set equal to 2c, and the grid spacing in the z-

direction ∆z is uniform and equal to 0.005c, which ensures sufficient resolution (not less than

20 cells per wavelength) of disturbances with length λz > 0.1c (as will be shown shortly, for

all the considered flows the most unstable modes have wavelengths within this range). As a

result, the number of spanwise grid planes is Nz = 400, and the total cell count for the 3D

URANS-simulation grid is around 35 million.

A Comparison of Different Approaches for Predicting Transonic Buffet Onset on Infinite...
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Time-integration of the URANS equations in the NTS code is performed with the use of

the implicit three-layer backward scheme of second-order accuracy with the time-step ∆t =

10−3 · c/Un, which ensures the Courant-Friedrichs-Lewy criterion CFL < 1.0 everywhere except

for the close vicinity of the wing surface with extremely small wall-normal steps ∆y.

The flow-fields used to initialize the unsteady simulations are chosen based on the angle of

attack. Particularly, for α ≥ 2.9◦ (i.e., well above the critical angle of attack for buffet onset, see

Fig. 10 below), the simulations are initiated with steady RANS solutions. At the lower α values,

the initial fields are obtained by superposing the corresponding steady solutions with eigenvectors

from the stability analysis with small (10−6) amplitude. For the simulation at α = 2.8◦ (stable

according to URANS), this is the only way to determine the negative growth-rate (decay rate)

in the URANS framework. At α = 2.85◦, close to the URANS critical value, this approach offers

a huge savings in CPU time; using only the steady RANS initial field, the time sample T = c/Un

needed for development of the instability and extraction of the growth-rate would be an order

of magnitude larger.

In principle, the fully-3D stability analysis provides simultaneous results for disturbances

to the steady RANS solutions with wavelengths λz = Lz/m, where m is an arbitrary natural

number. However, as mentioned above, this approach demands very large computer memory

and, hence, imposes severe restrictions on the size of the computational grid. Particularly, with

the memory available for the computations performed in the present study, the maximum af-

fordable grid size for the fully-3D stability analysis is about 2 million cells. With the XY grid

of 85,000 cells, this allows a maximum number of cells in the spanwise direction of Nz = 22.

Thus, for a single solution only the disturbances at the maximum wavelength λz = Lz may be

analyzed reliably (i.e., with greater than 20 cells per wavelength). In order to consider differ-

ent wavelengths, instead of using one computation in the domain with Lz/c = 2, as in the 3D

URANS simulations, a series of 3D stability analyses are carried out with a fixed number of

Nz = 22 cells in the spanwise direction, but with Lz/c varying over the range 0.5 up to 25. This

ensured that the stability analysis only considered well resolved disturbances, i.e., those having

the maximum wavelength λz = Lz or the wave number β = 2π/Lz.

Finally, the q-3D stability analysis is performed using the same XY grid as the URANS

simulations and the fully-3D stability analysis. Calculations are conducted for different values

of β (a free parameter within this approach), varying in the range from 2π/25 up to 2π/0.5, i.e.,

in the range corresponding to the wavelengths addressed in the fully-3D analysis.

3. Results and Discussion

In order to show the basic character of the instability for transonic flows past an infinite

swept wing, we first present results from the q-3D stability analysis for the considered flow at

α = 2.95◦. An extensive discussion of this problem is available in earlier papers [2, 14]. Building

on this example, the primary results are then presented for the direct comparison of predictions

using the three different approaches: q-3D stability analysis, fully-3D stability analysis, and 3D

URANS simulations.

3.1. Baseflow and Q-3D Stability Results

Figure 3 illustrates major features of the steady 2.5D RANS solutions used for the stability

analysis. It shows contours of the Mach number in XY-plane and streamwise distributions of
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the skin-friction and pressure coefficients Cf and CP over the wing surface at α = 2.95◦, as

an example. One can see that the flow is characterized by the formation of a shock closing

the supersonic region above the suction side of the wing. This shock induces separation of the

boundary layer, which extends downstream to the wing trailing edge for this particular value of

α.

(a) Contours of Mach number (b) Cf and CP distributions over the wing surface

Figure 3. Steady 2.5D RANS solution (baseflow) for OAT15A swept wing at α = 2.95◦, Mn =

0.73

As shown in [2, 14], for transonic flows past swept wings, the q-3D analysis predicts two

modes of instability, an oscillatory mode and a traveling propagating outboard mode. There can

be two characteristic wavelengths for the traveling modes (λz ≈ c and/or λz ≈ 0.1c), depending

on the values of Mn and α. Figure 4 illustrates the mode shapes for the u-component of the

eigenvectors corresponding to the spanwise uniform (β = 0) oscillatory mode and the traveling

mode at β = 2π (λz = c). The Figure shows that the two modes are qualitatively similar.

The oscillatory mode has maximums at the shock and in the separated shear layer, with the

magnitude at the shock roughly 20 times larger than in the shear layer. In contrast to this, for

the traveling mode, the magnitudes of u-component of the eigenvector at the shock and in the

separated shear layer differ by only a factor of 5.

(a) Oscillatory (β = 0) mode (b) Traveling (β = 2π, λz = c) mode

Figure 4. Contours of magnitude of u-component of eigenvectors of instability, normalized by

the maximum, from q-3D stability analysis at α = 2.95◦, Mn = 0.73

A Comparison of Different Approaches for Predicting Transonic Buffet Onset on Infinite...
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Figure 5 presents quantitative characteristics for the two unstable modes, showing the

growth-rates and the frequencies of these modes as functions of the wavenumber β for the

baseflow shown in Fig. 3 (negative values of β in this figure correspond to waves propagating in

the direction opposite to the direction of the z axis, i.e. inboard).

(a) Growth rates (b) Frequencies

Figure 5. Characteristics of the oscillatory (Mode 1) and travelling (Mode 2) unstable modes

as a function of wavenumber from q-3D stability analysis at α = 2.95◦, Mn = 0.73

The Figure shows that the oscillatory mode (Mode 1 in the figure legend) is observed for

|β| < 1, and is characterized by long-wavelength disturbances (λz/c > 2π). The frequency of

these disturbances ωr is less than ≈ 0.7 (St = fc/Un ≈ 0.11) and the maximum growth rate

ωi,max is equal to ≈ 0.05. The maximum growth is reached in the vicinity of β = 0 (i.e., for

the disturbances nearly uniform in the z-directions), and shows a slight bias towards inboard

propagation.

The unstable traveling mode, which results in a spanwise undulating shape of the shock [9],

is observed at wavenumbers β in the range from ≈ 2.5 up to ≈ 10 (λz/c from ≈ 0.63 up

to ≈ 2.5). These wavelengths are intermediate to the long-wavelength oscillatory mode and

shorter-wavelength traveling disturbances (λz/c ≈ 0.1) observed for some flow conditions [2, 3].

The traveling mode frequency increases linearly with β and is significantly higher than that of

the oscillatory mode. The maximum growth rate of the traveling mode occurs at β ≈ 5.5 and is

equal to ≈ 0.14 (almost 3 times larger than that of the oscillatory mode). For this reason, this

mode has been observed to be dominate for both infinite [9] and finite [11, 23] swept wings. The

following section focusses on this traveling mode to assess the different approaches used for the

prediction of buffet onset.

3.2. Comparison of Approaches for Buffet Onset Prediction

The comparison of stability characteristics of the traveling mode predicted by q-3D analysis

and fully-3D analysis at α = 2.95◦ is presented in Fig. 6 and 7.

Figure 6 compares the predicted mode shapes in the form of the magnitude of the u-

component of velocity at β = 2π. In the q-3D approach, this quantity is part of the 2D eigenfunc-

tion, and in the fully-3D analysis it is derived by spanwise-averaging of the 3D eigenfunction.

Figure 7 presents the growth rate and frequency of the traveling mode as functions of β. The

Figures show that the q-3D and fully-3D analyses return qualitatively-similar results for both

the shape and the growth rate and frequency.
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(a) Q-3D stability analysis (b) Fully-3D stability analysis

Figure 6. Contours of magnitude of u-component of traveling-mode eigenvectors normalized by

the maximum at β = 2π (λz = c) and α = 2.95◦, Mn = 0.73

(a) Growth rates (b) Frequencies

Figure 7. Comparison of characteristics for travelling mode of instability from q-3D and fully-3D

stability analysis as functions of wavenumber at α = 2.95◦, Mn = 0.73. GLSA stands for Global

Linear Stability Analysis. Circles show the three least stable eigenvalues calculated at β = 2.7,

Nz = 22

The growth rate for the fully-3D analysis is dependent on the number of grid planes in the

z direction, but converges to the q-3D result with increasing grid resolution Nz. The fully-3D

results (shown by the dashed lines) are based on β = 2π/Lz, so the Nz value is the number of

grid planes per wavelength λz. As the value of Nz is increased from 6, to 12, and to 22, the fully-

3D growth rates approach the q-3D curve. As noted earlier (and discussed in [8]), the fully-3D

solution includes a set of discrete modes with λz = Lz/m, or β = m · 2π/Lz. An example of

these modes is shown by the blue symbols, for β = m · 2.7, and m = 1, 2, 3. At the wavelength

corresponding to m = 1, the Nz per wavelength is 22, and the growth rate falls on the curve

associated with Nz = 22. For m = 2, the Nz per wavelength is 11, and the growth rate is just

below the curve for Nz = 12. Likewise, for m = 3, the Nz per wavelength is approximately 7, and

the growth rate is close to the Nz = 6 curve. These results show that the fully-3D growth rate is
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very sensitive to the Nz per wavelength, so that unless the m = 1 mode is highly over-resolved,

the higher modes (m > 1) need to be viewed with caution.

The frequencies shown in Fig. 7 have a much weaker sensitivity to the spanwise grid resolu-

tion. These frequencies are set by the spanwise propagation of the fixed-wavelength mode (along

with the sweep angle [2, 14]), so they are not strongly dependent on finer details of the mode

shape.

Finally, a direct comparison of the shapes of the 3D unstable traveling mode predicted by

the q-3D and fully-3D stability analyses and by the 3D URANS simulations is provided in Fig. 8.

This shows instantaneous fields of the normalized amplitude of the density component of this

mode at β = 2π (λz/c = 1) and α = 2.95◦ on the wing upper surface computed with the use of

these three approaches. This comparison shows very good agreement for the spatial structure of

the unstable modes.

(a) Q-3D stability analyses (b) Fully-3D stability analyses (c) 3D URANS simulation

Figure 8. Comparison of normalized amplitude of density component of eigenvector on the airfoil

surface at β = 2π (λz/c = 1) and α = 2.95◦, Mn = 0.73

We now consider the temporal variation of the 3D URANS solutions for the spanwise domain

Lz = 2c started from the steady 2.5D RANS solutions at supercritical values of the angle of

attack. In general, after some transient period, the flow becomes unsteady with a periodic

spatial variation in the spanwise direction with wavelength λz/c = 1 (β = 2π). This wavelength

is close to the wavelength with the maximum growth rate for the traveling unstable mode,

according to both the fully-3D and q-3D stability analysis (see Fig. 6a) and is admissible by the

spanwise domain length Lz = 2c. At this stage of development, the amplitudes of the oscillations

for all aerodynamic variables (i.e. their maximum deviation from the initial conditions) grow

exponentially in time. This growth is illustrated in Fig. 9, showing the time-evolution of the

v-component of the unsteady disturbance at the point x = 1.05, y = 0 for α = 2.95◦, as an

example. The growth rate ωi deduced from these curves is equal ≈ 0.1, which is roughly 0.03

below the stability results.

Similar post-processing of the 3D URANS solutions at other values of the angle of attack in

the range 2.8◦ up to 3.0◦, gives the dependence of ωi(α) shown in Fig. 10 together with the similar

dependencies based on the q-3D and fully-3D stability analysis. The very small shift in the growth

rate for the fully-3D stability analysis, compared to the q-3D result, is linked to the spanwise

grid resolution as discussed for Fig. 7. The slightly lower growth rates for the URANS results

are attributed to differences in the discretization errors compared to the stability formulations.

Recall that the stability equations are derived and discretized independently, as opposed to

using the discrete linearized operator from the URANS. The observation of generally-lower

growth rates in the URANS for near-critical conditions has been observed in other applications

as well [4, 5].
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(a) Linear y-axis (b) Exponential y-axis

Figure 9. 3D URANS simulation results for the time-evolution of the v-velocity component of

the disturbance in the linear stage of solution at α = 2.95◦, Mn = 0.73. Dashed lines show

amplitude of the disturbances as a function of time

Figure 10. Comparison of growth rates for the travelling mode of instability at β = 2π as a

function of angle of attack, from q-3D and fully-3D stability analysis and 3D URANS simulations,

Mn = 0.73

The small shifts in the growth rates translate to differences in critical conditions for the

onset of buffeting as presented in Tab. 1. The value of αcrit is somewhat larger for the URANS

simulations compared to the stability analysis. However, the difference of αcrit does not exceed

0.03 degrees (roughly 0.15% difference in lift at buffet onset). The maximum difference of the

frequency of the disturbances predicted by the three approaches is about 2%. In practice, these

overall differences are considered to be very small compared to other potential contributors (e.g.

turbulence-model parameters).

Table 1. Critical angles of attack and corresponding frequencies for travelling mode at

β = 2π predicted by 3D URANS and the q-3D and fully-3D stability analysis for Mn = 0.73

Approach αcrit ωr

3D URANS 2.83 2.36

3D stability 2.81 2.43

q-3D stability 2.80 2.37
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Conclusion

A comparative study is performed for the three URANS-based approaches to predicting

buffet onset and its characteristics for an infinite swept wing. Results are presented for the su-

percritical OAT15A airfoil, with that as an example. The most general of these approaches is

based on the direct numerical solutions of 3D URANS equations, while two other approaches

employ fully-3D and quasi-3D linear global stability analysis of the corresponding steady 2.5D

RANS solutions. For this spanwise-uniform flow, q-3D stability analysis provides the most ef-

ficient and accurate representation of the instabilities leading to buffet onset. The fully-3D

stability analysis, which does not require spanwise uniform flow, provides a potential link to

more general wing configurations similar to the 3D URANS simulations.

Based on the analysis of the results of the 3D URANS and comparisons to the q-3D and

fully-3D stability analysis, both stability formulations are shown to accurately capture the initial

disturbance development. Spanwise-wavelength selection for the fully-3D analysis, as for the 3D

URANS simulations, is dependent on the spanwise domain length. By varying the domain length,

the fully-3D stability results are shown to capture the growth rates and frequencies predicted

by the q-3D analysis. In addition, the spatial distributions of the disturbances over the wing

cross-section plane are shown to be in good agreement for the different approaches. Stability

predictions for the critical angle of attack for buffet onset at a given Mach number are in

good agreement with the 3D URANS simulations (the difference is within the range of 0.03◦,
representing less than 0.15% in lift at buffet onset). The good overall agreement for these three

independent formulations applied to the infinite swept wing provides a cross validation of the

approaches.
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One Case of Shock-free Deceleration of a Supersonic Flow

in a Constant Cross Section Area Channel

Dmitry E. Khazov1
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Air flows with supersonic speeds are used in many cases, for example, as aircraft air intakes,

wind tunnels, and energy separation devices. In many cases it is necessary to decelerate the flow

to sonic speeds. Traditionally the deceleration realized through the shocks system, which leads to

total pressure losses. The article considers the method of deceleration of supersonic flows using

permeable surfaces. In this case, the deceleration process occurs without shocks and, therefore,

with lower total pressure losses. We have considered the flow in a tube with permeable wall located

behind a supersonic nozzle. One-dimensional and axisymmetric mathematical models of such a

device are developed. The calculation results are compared with experimental data. It is shown

that, depending on the ratio of pressure inside the tube and the ambient pressure, different flow

regimes inside the tube are possible: pure subsonic, transitional from supersonic to subsonic, and

pure supersonic. The transition from supersonic to subsonic flow occurs without shocks due to the

suction and friction combined effects.

Keywords: supersonic flow, permeable wall, Mach number, deceleration, injection/suction.

Introduction

The problem of a viscous supersonic flow deceleration in channels is of interest to researchers

and engineers due to the importance of this problem for modern and future jet engines and wind

tunnels. In the case of a constant cross section channel with impermeable walls, the supersonic

flow is decelerated through a complex shocks structure and near-wall separation regions, gener-

ally called a pseudo-shock [4]. The deceleration of supersonic flow in the shock waves leads to the

additional total pressure losses. Considerable potential in this regard has the use of permeable

surfaces.

In the work [3], permeable (perforated) boundaries were used to accelerate the flow from

sonic to supersonic speeds, as well as to equalize the non-uniformity of the supersonic flow. The

authors of the paper [11] performed an experimental study of the flow in a permeable tube of

constant cross section, installed in a supersonic nozzle. Experiments have shown that a transition

from subsonic to supersonic flow occurs inside the tube.

As it can be seen from the works cited above, the use of permeable surfaces demonstrates

the possibility of supersonic flow control. The purpose of this work is to study the processes

of a supersonic flow deceleration in a channel of constant cross section with a permeable wall.

To achieve this goal, it is necessary to develop numerical models that describe supersonic flows

(with the possibility of passing through the critical point) in a channel of constant cross section

with a permeable wall. Validate these models on the available experimental data, as well as

perform a parametric study.

The article is organized as follows. Section 1 is devoted to the problem statement. In Sec-

tion 2, we described two numerical models. The Section 3 discusses the main results of this

study. The Conclusion summarizes the results of the study and indicates directions for further

work.
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1. Problem Statement

Let us consider the flow of a perfect gas in a channel of constant cross section with mass

suction and friction. This type of flow can be found in transpiration cooling devices, fuel supply

channels in burners, etc. In general, the device consists of a nozzle and a working channel with

permeable wall. The permeable wall can be made of perforated or porous, permeable material.

The parameters of porous materials, such as porosity and particle size, provide a different surface

mass flux for the same pressure drop.

This article considers a device consisting of a supersonic nozzle and a cylindrical channel

of constant cross section with a permeable wall (see Fig. 1). The gas accelerates to supersonic

speeds in the nozzle and then enters the channel, where the flow decelerated. Since the wall is a

permeable the pressure ratio in the channel pinn and the ambient pressure pamb will determine

the direction of the flow through the wall: by pinn > pamb gas will be sucked out from the

channel; by pinn < pamb gas will be injected into the channel. Thus, depending on the pressure

drop inside the channel and the ambient pressure, various flow regimes can be realized.

jw = (ρu)w = f(pinn − pamb)
r

x

P ∗
0

T ∗
0

pamb

pinn pamb

Nozzle Tube

Figure 1. A sketch of the considered device

2. Numerical Models

We used one- and two-dimensional (axisymmetric) mathematical models for a detailed study

of the processes occurring in the channel with permeable wall. The one-dimensional model allows

to obtain the distribution of the main parameters (velocity, pressure, temperature, etc.) along

the channel. It is assumed that all parameters are uniformly distributed across the section. In

turn, the two-dimensional model allows to get more detailed information about the processes

taking place inside the device. However, the use of such models is much more time consuming,

as for the stage of model creation, and at the stage of a solution.

2.1. One-Dimensional Model

We used the well-known Shapiro–Hawthorne method [1] for a one-dimensional gas flow

model. The main idea of the method is that the differential of each variable (velocity, pressure,

temperature, etc.) is expressed through a linear combination of independent elementary factors

of influence (such as friction, area change, external heat exchange, etc.); the coefficients of these

linear combinations, called “influence coefficients”, are expressed as functions of one variable

(Mach number).

Based on the balance relations for the selected elementary volume and using the equation

of state (perfect gas), we can obtain the following equation for the Mach number changing in a
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constant area channel with friction, heat and mass transfer:

dM2

M2
=

heat transfer︷ ︸︸ ︷
1 + kM2

1−M2

dQw

mcpT
+

friction︷ ︸︸ ︷
kM2

(
1 + k−1

2 M2
)

1−M2
4cf

dx

dh
+

injection/suction︷ ︸︸ ︷
2
(
1 + kM2

) (
1 + k−1

2 M2
)

1−M2

dm

m
, (1)

wherem is the mass flow rate, cp is the specific heat at constant pressure, T is the thermodynamic

temperature, Qw is the net heat flow, cf is the friction coefficient and dh is the hydraulic diameter

of the channel.

Equations for other variables (pressure, temperature, etc.) can be found in [1].

The amount of the heat (removed or added to the main flow) was determined from the

following relation:

dQw = 4qw
A

dh
dx, qw = jwcp (Taw − T ∗) , (2)

where A is the cross-sectional area, jw = (ρu)w is the mass flux through permeable wall, Taw is

the adiabatic wall temperature and T ∗ is the stagnation temperature of the flow.

The value of mass flux jw was determined from the Darcy–Forchhämer law for a cylindrical

tube with inner and outer diameters dinn and dout, respectively [7]:

p2
amb − p2

inn

RT∆d
= αµ

dinn
∆d

ln
dout
dinn

jw + β
dinn
dout

j2
w, (3)

where pinn is the pressure at the inner surface of a wall, ∆d = dout − dinn is the diameter

difference, µ is the molecular viscosity and R is the specific gas constant.

Let us assume that a porous tube consists of uniform spherical particles of diameter dp. In

this case, values of viscous α and inertial β coefficients can be obtained from [7]:

α =
171 (1− ε)2

ε3d2
p

, β =
0.635 (1− ε)
ε4.72dp

. (4)

Values of porosity ε and diameter of spherical particles dp determined based on the exper-

imental flow characteristic of the sample of a permeable wall given in [12] which was used in

present experiments and were as follows:

ε ≈ 34% dp = 70× 10−6 m. (5)

The friction coefficient was determined from the Colebrook–White ratio [9]:

1√
λ

= −2 log10

(
2.51

Re
√
λ

+
∆s

3.7

)
, cf 0 =

λ

4
, (6)

where λ is the Darcy friction factor, ∆s = hs/dh is the relative roughness. The Reynolds number

is defined as Re = ρudh/µ with ρ the fluid density, dh the hydraulic channel diameter, u the

mass-mean fluid velocity and µ the fluid viscosity.

There is a need to take into account the effects of compressibility ΨM and injection/suction

Ψb on the friction coefficient according to [6]:

cf = ΨΣcf 0, ΨΣ = ΨMΨb, (7)

ΨM =


arctan M

√
r k−1

2

M
√
r k−1

2




2

, Ψb =

(
1− b

bcr

)2

, bcr = 4, (8)
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where permeability parameter b was obtained by following:

b =
jw
cf 0/2

, jw =
jw

(ρu)∞
. (9)

Massflow change was obtained from following relation:

dm = jwdhπdx. (10)

Thus, using Eq. (1) (and others for pressure, temperature, etc.) and the closing rela-

tions Eqs. (2)–(10), it is possible to form a closed system of equations describing the flow in a

channel with friction, heat transfer and injection/suction through a permeable wall. The system

can be numerically integrated under the appropriate initial conditions:

M = M0, u = u0, T = T0, p = p0 at x = 0. (11)

2.2. Two-Dimensional Model

The problem was modeled in the axisymmetrical formulation by using of ANSYS Fluent.

Structured mesh was created by gmsh [2] preprocessor. The mesh size was about 105 cells. The

discretization of the Reynolds-averaged Navier–Stokes equations (RANS), the energy equations

and the equations of the corresponding turbulence model was performed on the basis of the

control volume method. The second order upwind scheme was used for the spatial discretization.

Based on previous study [5] the standard k − ω turbulence model was used.

The permeable wall was not modeled explicitly. The mass flux and heat flux were applied

at the internal cylindrical surface of the porous tube. The value of mass flux was obtained on

the basis of the Darcy–Forchhämer equation (3).

The following boundary conditions were used for the 2D model. Total pressure P ∗0 and

temperature T ∗0 were specified at the inlet (see Fig. 1). The static pressure (pamb) was specified

at the outlet. The value of the specified static pressure is used only while the flow is subsonic.

For the supersonic flow the pressure will be extrapolated from the flow in the interior.

3. Results and Discussion

We used two mathematical models developed above to simulate the flow in the exper-

imentally investigated device in [8]. The profiled axisymmetric supersonic nozzle was used.

The divergent section was profiled by using the method of characteristics. The nominal Mach

number determined from the area ratio of the throat (dcr = 3.2 mm) and the exit section

(dex = 3.4 mm) in the case of isentropic air expansion is Mis = 1.43. The coordinates of the noz-

zle contour are given in [8]. The permeable tube was made of synthetic corundum, L = 150 mm

in length, dout = 10.4 mm in the outer diameter, dinn = 3.5 mm in the inner diameter. Note

that the experimentally investigated permeable tube’s inner surface was treated as rough with

hs = dp/2 = 35× 10−6 m (∆s = 0.01).

The inlet total temperature was equal T ∗0 = 295.6 K for all cases. The ambient pressure was

equal pamb = 0.1 MPa.

We extracted mass mean values from the 2D model for comparison with experimental and

1D data. Then we provided the parametric study by using the validated 2D model.

Figure 2 shows distribution of main flow parameters along the channel by P ∗0 = 0.4 MPa. In

addition to measured data (symbols), calculation data (lines) are also shown. The correspondence
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between measured and calculated data is acceptable. The difference in temperature distribution

is observed at the beginning of the channel (x/dh < 5). It can be explained by the presence of

shock waves generated by the backward step between nozzle and tube (see Fig. 3). As mentioned

above, in the numerical model, the porous tube was not modeled explicitly. Therefore, the

peaks of the wall temperature were observed. In contrast, in the experiment, the influence of

shock waves on the wall temperature, as we assume, was smoothed by the porous tube thermal

conductivity.

nozzle wall
permeable wall

step hstep =
dex−dh

2dh
= 0.014

�ow direction

r

x0 dhdex

Figure 3. Numerical Schlieren of flow in the channel with a permeable wall. P ∗0 = 0.4 MPa

The radial stagnation pressure distributions and static pressure at the wall were measured

at x/dh = 41.4 to obtain the Mach number distribution. Results of recovered Mach number
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distributions are shown in Fig. 4. In addition to the measured values (symbols), the figure also

shows the calculated data (lines). Mach number distribution along the channel with permeable

wall is shown in Fig. 5.

From the Fig. 4 we can see that at lower initial stagnation pressures (P ∗0 < 0.5 MPa) the

flow is sub- or transonic at the section x/dh = 41.4, although, for these pressures, the velocity

at the nozzle exit is supersonic (see Fig. 5). This circumstance requires clarification.
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Figure 4. Mach number radial distribution at x/dh = 41.4 by different initial stagnation pressure
in plenum. Symbols are measured data; solid lines are results of 2D calculations

As it can be seen from the Fig. 2, throughout the entire length of the channel, the pressure

exceeds atmospheric and, therefore, gas is sucked out along the whole length of the channel

(jw < 0) through the permeable wall. The combination of the suction and friction leads to the

fact that at a certain length (x/dh ≈ 27), the Mach number takes a critical value M = 1, and

then the Mach number goes into the subsonic flow region. It should be noted that the transition,

according to the calculation results, is not accompanied by shock waves, which can also be judged

by the measured pressure distribution (see Fig. 2). As the pressure in the plenum increases, the

critical section inside the channel (M = 1) shifts to the outlet section (see Fig. 5) and, starting

from some value of P ∗0 > 0.5 MPa, the flow throughout the whole length of the channel remains

supersonic. The possibility of such passage through the sonic point will be discussed below.

Let us consider the physical possibility of the shock-free deceleration of a supersonic flow

using a one-dimensional model. The Eq. (1) can be rewritten as it has been done in [10]:

1−M2

M2

dM2

dx
= G(x), (12)

where

G(x) =
1 + kM2

mcpT

dQw

dx
+kM2

(
1 +

k − 1

2
M2

)
4cf
dh

+

+2
(
1 + kM2

)(
1 +

k − 1

2
M2

)
1

m

dm

dx
=

=GQ +Gf +Gm,

(13)
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Figure 5. Mach number distribution along the channel with a permeable wall by different initial
stagnation pressure in the plenum. Symbols are measured data; dashed lines are results of 1D
calculations; solid lines are 2D calculations

where GQ, Gf and Gm are elementary actions induced by heat transfer, friction and injec-

tion/suction, correspondingly.

Equation (12) shows that the local Mach number increases or decreases along the channel

depending on the flow regime (subsonic or supersonic), as well as on whether the function G

(summary action) is positive or negative, according to Tab. 1.

Table 1. Relations between G and
dM2/dx [10]

M < 1 M = 1 M > 1

G < 0 − ∞ +

G = 0 0 0/0 0

G > 0 + ∞ −

Therefore, the Mach number along the channel can vary in different ways, depending on

whether the initial Mach number (M0 at x = 0) is less or greater than one. Depending on

whether the function G is always positive, negative, or changes sign. Figure 6 shows all the

possible options.

As it is shown in the Fig. 6, the G function should change its value from positive to negative

to implement the supersonic flow’s deceleration to subsonic speeds (see Fig. 6e).

Figure 7 shows the changing of the Mach number and components of the func-

tion (see Eq. (13)) G = G/G(0) (normalized to initial value) along the channel for P ∗0 = 0.4 MPa.

As it can be seen from Fig. 7, the main factors are the mass removal Gm and the friction Gf

(and they have different signs Gm < 0 and Gf > 0) along the whole channel length. At the

initial section Gf > |Gm| and G > 0. Further, downstream the amount of sucked air decreases

(see Fig. 2) and Gf also decreases (in absolute value). At the section x/dh ≈ 27 the value of

the function is G = 0 and Mach number takes the critical value M = 1 according to Eq. (12).
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Figure 6. Possible options for changing the Mach number along a channel depending on the
initial Mach number M0 and the summary action G [10]

Summary action G changes its sign from positive to negative when passing through the critical

section (M = 1).

Thus, the performed analysis shows that the shock-free deceleration in a constant cross-

section channel with friction and suction through the permeable wall is possible. Moreover, the

measured static pressure distribution (Fig. 2) and Mach number value at x/dh = 41.4 (Fig. 4)

confirm this conclusion.

It is possible to change the critical point location by using a tube with the different inner

surface roughness. Figure 8 shows the local Mach number distribution (2D results) for different

values of relative roughness. As it can be seen from the figure, a critical point locates upstream

(closer to the initial section) for the bigger values of roughness. Then, as the roughness value

decreases, the critical point shifts downstream. It can be noted that for the hydrodynamically

smooth wall (∆s = 0), there is no critical point and the pure supersonic flow is realized along

the full channel length.

Conclusion

The flow in a supersonic nozzle with a permeable tube is considered. Two numerical models

(one- and two-dimensional) have been developed that describe the processes occurring in such a

device. The developed numerical models were validated against available experimental data. The

experimental and calculated values are compared both along the channel axis and depending on

the radius.

The presented results of numerical simulation of the flow in a permeable tube make it

possible to conclude that a shock-free deceleration from supersonic to subsonic flow in a channel
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with permeable walls is possible. It is shown that the position of the transition (critical) point

is determined by the pressure in the plenum and the relative roughness value. The comparison

of the results of one-dimensional and two-dimensional models allows to conclude that the one-

dimensional model is applicable to the analysis of such class of flows.
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Functional Programming Libraries for Graphics Accelerators
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Modern graphics accelerators (GPUs) can significantly speed up the execution of numerical

tasks. However, porting programs to graphics accelerators is not an easy task, sometimes requiring

their almost complete rewriting. CUDA graphics accelerators, thanks to the technology developed

by NVIDIA, allow you to have a single source code for both conventional processors (CPUs) and

graphics accelerators (CUDA). However, parallelization on shared memory is done differently and

still must be specified explicitly. The use of the functional programming library developed by the

authors makes it possible to hide the use of one or another parallelization mechanism on shared

memory inside the library and make the user source code independent of the computing device

used (CPU or CUDA). Functional programming is based on the modern mathematical theory,

namely the Category Theory, in which the notions of Functors and Monads are widely used.

Our work intensively utilizes these notions and extends them to grid expressions used in solving

numerical problems.

Keywords: C++, functional programming library, CUDA, OpenMP, OpenCL, OpenACC.

Introduction

In recent years, graphics accelerators (GPUs) have become increasingly popular as com-

puting devices for numerical calculations. Such accelerators are installed on many computing

clusters. In the TOP500 list of the most productive supercomputers of November 2022 [1], graph-

ics accelerators from NVIDIA [2] and AMD [3] occupy leading places, including the first place,

which has overcome the long-desired exascale performance. NVIDIA, which for many years was

among the first, has lost the palm to AMD with its AMD InstinctTM MI250X Accelerator. As

for the most high-performance supercomputers in Russia, as of March 2022 [4], almost all of

them are equipped with accelerators from NVIDIA. The speed of numerical calculations on such

accelerators can be many times higher than on the CPU (according to the experience of the

authors, the acceleration can reach 10–20 times), so the transfer of programs that implement

numerical methods to graphics accelerators is an extremely urgent task.

However, porting an existing program to a GPU is not an easy task. Of course, the ideal

option is to immediately write a program so that it can work on any computer. In any case,

the main question arises – what technology to use for the GPU? Currently, there are three

main technologies – OpenCL (an open standard for heterogeneous systems) [5], OpenACC [6]

and CUDA, developed by NVIDIA for its graphics accelerators [7]. Each of these technologies

has its own advantages and disadvantages. The main advantage of OpenCL is that it is an

open standard. A program that uses OpenCL will run on any computing device that supports

this standard, including NVIDIA and AMD GPUs, Intel Xeon Phi processors with Intel MIC

technology, and even conventional CPUs. The main disadvantage of this technology is that the

source code of the program often appears in two copies: for the CPU, which is compiled by a

conventional compiler and is part of the main program, and the text for OpenCL in separate files.

With changes in the algorithms, changes will need to be made in both places. The advantages and

disadvantages of the CUDA technology are a mirror image of the advantages and disadvantages

of OpenCL. CUDA works only on NVIDIA GPUs. On the other hand, in CUDA we have a single

source code that is precompiled and is part of the main program (including the code that will be
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executed on the GPU). Unfortunately the OpenACC technology is not accessible to us, as the

compiler that supports this technology is not installed on our clusters with graphics accelerators.

Nowadays, many calculations are carried out on heterogeneous systems using graphics accel-

erators. Examples include recent publications [9, 12, 13]. Some of works use OpenCL technology

and as a result have two versions of source code, others use NVIDIA CUDA and have common

code for CPU and GPU, but they cannot run on e.g. AMD GPUs. We choose CUDA technol-

ogy. Our main argument is that in (our) real life we only deal with devices from NVIDIA. AMD

GPUs and Intel Xeon Phi processors are still quite exotic for us. Therefore, the disadvantage of

CUDA is not a disadvantage for us, but its advantage remains.

The next problem is that shared memory parallelization is done quite differently on the

CPU and on the GPU. If we want to get a single text that should be compiled for both the CPU

and CUDA, then in those places where there should be parallelization, we will have to write

different code (for example, using the #ifdef construct), which is inconvenient. We emphasize

once again that we are talking about the parallelization of the loops on shared memory. Although

it is possible to write a single source code for the CPU and GPU for the loop body, the loop

organization itself is written differently.

And then the idea arose to use the funcprog functional programming library for the C++

language [14], previously written by one of the authors of the article. An appropriate modification

of this library will allow all the specifics of a computing device (CPU or CUDA) to be placed

inside the library, and the user source code will turn out to be completely platform independent.

The article is organized as follows. Section 1 is devoted to a brief introduction to functional

programming (to the extent necessary to understand the rest of the text). In Section 2 a brief

description of the funcprog2 functional programming library is given and Section 3 contains

examples of using this library to solve numerical problems. Conclusion summarizes the study

and points directions for further work.

1. Functional Programming Library

1.1. Scope of the Funcprog2 Library

Let us describe a family of algorithms for which the developed funcprog2 library is applicable.

Technologically, any task of numerical simulation begins with the construction of a grid in

the calculation area. Moreover, in areas of complex shape, this grid is, as a rule, non-structural.

The grid functions of interest to the researcher can be specified both at the nodes of the cells

and at their centers.

At this stage of the study, we consider only non-stationary problems and believe that various

explicit schemes are used for time integration, for example, in the software package that we used

to transfer to the GPU, this is an explicit classical Runge–Kutta scheme of the fourth order.

Implicit schemes involving the solution of linear systems of equations have not been considered

at the moment. Using the described approach to solve settling problems using implicit schemes

requires additional developments that expand the capabilities of the presented library.

If the method is explicit, then the values of the grid functions at different points of the grid

can be calculated independently of each other, and, therefore, these calculations can be carried

out in parallel. Thus, each explicit step (loop over the grid function index) can be parallelized on

shared memory. Note that MPI parallelization is also possible, but has not yet been considered.
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The developed functional programming library funcprog2 allows an applied mathematician

to implement the described numerical algorithms without delving into the details and features

of parallelization.

1.2. General Description of the Funcprog2 Library

When implementing the functional programming library funcprog2 for the C++ language,

the task was to write a library with which one could write in the C++ language in a style

close to the style of the Haskell language [8]. We cite the Haskell language as a role model,

as it seems to be one of the most advanced modern functional programming languages based

on modern mathematical theory (category theory), widely used and actively supported by the

world scientific community. Details about category theory can be found, for example, in the

books [15, 16].

An important question is what is a function from the point of view of this library? In the

original version of the library, a function meant an object of the std :: function class. This option

does not suit us now, since we want the function to be executed on the graphics accelerator,

and the std :: function class object can only be executed on the CPU (mainly because its imple-

mentation uses virtual functions that are not portable on the GPU). It cannot be an ordinary

function either, since it cannot be passed as a parameter from the CPU to CUDA, because an

ordinary function can only be passed by address, and addresses cannot be passed from the CPU

to CUDA. It was decided to create a function2 class within the funcprog2 library and consider

any object of this class to be a function. Any function object (having a functional operator ())

can be converted into an object of the function2 class, in particular, it can be a lambda expres-

sion. Recall that in modern C++ (since C++11), a lambda expression begins with a pair of

square brackets, inside of which variables accessible from the lambda expression can be placed.

In order for an object to be passed to CUDA, the functional operator must be marked with the

device keyword. To make user source code platform-independent, the funcprog2 library has

a DEVICE macro, which expands to the device keyword when compiled for CUDA, and to

an empty string when compiled for CPU. Thus, a functional operator must be marked with the

word DEVICE. To convert a functional object into an object of the function2 class, the library

has a special function (underscore). Here is an example of working with the funcprog2 library:

double d=( ( [ ] ( double x ) { return x ∗ x ; }) &

( [ ] ( double x ) { return x + 1 ; }) ) (5 ) ; //36

In this example, we created two functions, composed them (using the & operator), and

invoked the resulting compound function with a parameter of 5. The result is 36.

1.3. Implementation of Functors, Applicatives and Monads

The funcprog2 library essentially relies on the concepts of functor, applicative, and monad.

The implementation of functors, applicatives, and monads in the library is similar to the im-

plementation of these concepts in Haskell language. Any class can declare itself a functor, an

applicative, or a monad. To do this, it is enough to implement a specialization of the Functor,

Applicative and Monad classes, respectively, for this class. You don’t need to make any changes

to the class itself.

Inside the specialization of the Functor class, you need to define a static function fmap. The

specializations of the Applicative and Monad classes are defined similarly. For an applicative,
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the methods are called pure and apply, and for a monad, mreturn and bind. When implementing

the static methods of these classes, one should not forget about the implementation of functor,

applicative and monadic laws. Note also that in the funcprog2 library, the division operator is

used as a functor operator, and multiplication is used as an applicative operator.

1.4. Grid Expressions and Grid Functions

The notion of a grid expression plays a significant role in the funcprog2 library. This is

an object defined for all grid indices, that is, for any object that is a grid expression, you can

find out what its value is for a given index. The simplest special case of a grid expression is

a grid function, which simply stores its values in memory and returns them, if necessary. For

grid expressions, a grid expression class template is defined, from which all classes of objects

that are grid expressions must inherit (in particular, the grid function class is also inherited

from the grid expression class). Thus, the phrase “an object is a grid expression” means that the

class of this object is inherited from the grid expression class. This inheritance uses expression

templates [18] and the CRTP (Curiously Recurring Template Pattern) [10] design pattern, in

which the final class is passed to the base class as a template parameter.

Any grid expression can be assigned to a grid function. This assignment operator iterates

over all indices of the grid function to which the grid expression is assigned, for each index

queries the grid expression for its value, and assigns that value to the grid function at the given

index. The assignment operator implies that values for different indices can be calculated inde-

pendently of each other, and therefore they can be calculated in parallel. It is in the assignment

operator that the inner loop over the elements of the grid function is performed. The method of

parallelization of this loop is chosen by the assignment operator, depending on which compiler

the program is compiled with. If this is a compiler for CUDA (the CUDACC preprocessor vari-

able is defined), then parallelization is performed using CUDA, otherwise, using OpenMP. Thus,

the parallelization method is hidden from the application programmer within this assignment

statement.

Speaking about grid functions, one more aspect should be mentioned. The GPU can only

work with its own memory, which means that when working on the GPU, the grid function must

request memory for its data in CUDA memory. There are no problems with this either. Grid

functions are arranged in such a way that when compiled on CUDA they request memory from

CUDA, otherwise they request memory from the CPU.

1.5. Grid Expressions as Functors, Applicatives and Monads

Grid expressions can be thought of as containers (this is especially true for grid functions).

In the funcprog2 library, containers (such as lists) are functors, applicatives, and monads. This

makes it possible to apply ordinary functions to the values stored in them (a property of func-

tors). Let’s make the grid expression also a functor, an applicative, and a monad so that functions

can be applied to grid expressions as well. To understand how this can be done, consider a typical

loop that calculates the new value of the grid function from the old one:

for ( s i z e t i = 0 ; i < N; ++i )

f new [ i ] = c a l c u l a t e ( f o l d [ i ] ) ;
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Here calculate is a function that calculates the new value in the cell according to the old

one. It is passed the old value in the cell as a parameter. In the new approach, we want to be

able to write something like this in this case:

f new = ( c a l c u l a t e ) / f o l d ;

If the calculations require several more grid functions (let’s call them f2 and f3), then instead

of

for ( s i z e t i = 0 ; i < N; ++i )

f new [ i ] = c a l c u l a t e ( f o l d [ i ] , f 2 [ i ] , f 3 [ i ] ) ;

we could write:

f new = ( c a l c u l a t e ) / f o l d ∗ f 2 ∗ f 3 ;

that is, for the first grid function, we applied the functor property, and for the subsequent ones,

we applied the applicative. If we want to pass some additional constant value to the function

(independent of the cycle index), then instead of

for ( s i z e t i = 0 ; i < N; ++i )

f new [ i ] = c a l c u l a t e ( f o l d [ i ] , some value ) ;

we could write

f new = ( c a l c u l a t e ) / f o l d ∗ pure ( some value ) ;

Thus, the result of applying a function to a grid expression (or to several grid expressions in

the case of an applicative) must also be a grid expression, that is, it can be asked for a value by

index (the [] operator must be implemented). Grid expressions, in addition to grid functions, are

also the results of applying functions to grid expressions as functors and monads. In addition,

the sum and difference of two grid expressions, as well as the product and quotient of a grid

expression and a number, are also grid expressions.

Let’s show how functors, applicatives and monads for grid expressions are implemented.

Functor. The fmap function takes a function with one parameter and a functor (a grid

expression in our case) and returns the same functor (a new grid expression). This new grid

expression stores the parameters of the fmap function in its class member variables (let’s call

them f and gexp) and implements the [] operator as follows (in pseudo-Haskell):

( fmap f gexp ) [ i ] = f gexp [ i ]

Applicative. The pure function takes some value and “introduces” it into the applicative.

In our case, it makes a grid expression out of it. Let’s define its operator [] so that it returns

the same value val for any index:

( pure va l ) [ i ] = va l

The apply function (an analogue of the (<∗>) operator in Haskell) in our case takes two grid

expressions: the first (let’s call it gexp f) returns functions, and the second (let’s call it gexp)

returns some values (the parameters of these functions). Let’s define the grid expression of the

apply function as follows:

( apply gexp f gexp ) [ i ] = gexp f [ i ] gexp [ i ]
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Monad. The return monad function is defined in the same way as the pure applicative

function:

return = pure

The bind monad operation (in the Haskell language and in the funcprog2 library, the (>>=)

operator) takes a monad (in our case, a grid expression, let’s denote it by the variable gexp) and

a function that takes a regular (non-monadic) value and returns a monad (in our case, a grid

expression). Let’s define the bind operation as follows:

( bind gexp f ) [ i ] = ( f gexp [ i ] ) [ i ]

We have proved three theorems that these definitions of the functor, applicative, and monad

for grid expressions are correct, that is, they satisfy the functor, applicative, and monad laws,

respectively. This article does not present this evidence.

So grid expressions are functors, applicatives, and monads. This means that any ordinary

unary function can be “applied” to a grid expression (using the fmap function). This application

will return a new grid expression. Any binary function can be “applied” to two grid expressions

(using the apply function), and any function with n arguments can be “applied” to n grid

expressions. This can be done in one line. For example, suppose there are two grid functions f

and g. Then you can write like this:

g = ( [ ] ( double x ) { return s i n ( x ) ; }) / f ;

Since grid expressions are monads, it is possible to build chains of monad calculations of

the form from them:

g = f >>= f1 >>= f2 >>= f3 ;

Here f1, f2, f3 are some functions that take ordinary (non-monadic) values and return grid

expressions.

2. Examples

2.1. The Simplest Example

Consider the axpy function from the BLAS library. This function takes a constant a and

two vectors (x and y) and modifies the vector y as y[ i ] += a ∗ x[i]. Its implementation for a

conventional processor can be written as follows:

template<typename T>

void axpy (T a , vector<T> const& x , vec to r &y ) {
#pragma omp p a r a l l e l for

for ( int i = 0 ; i < y . s i z e ( ) ; ++i )

y [ i ] += a∗x [ i ] ;

}

This function is perfectly parallelized, but the method of parallelization in this implemen-

tation is specified explicitly and is not suitable for graphics accelerators. Using functional pro-

gramming, this function could be rewritten as follows:
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template<typename T>

void axpy (T a , g r i d f u n c t i o n<T> const& x , g r i d f u n c t i o n<T> &y ) {
y = ( [ ] ( T a , T xi , T &yi , s i z e t /∗ i ∗/ ) {

y i += a ∗ x i ;

}) / pure ( a ) ∗ x ;

}

The lambda expression in the body of this function takes as parameters our constant a,

the i-th element of the grid function x, by reference the i-th element of the grid function y,

and the current loop index i (which we ignore). Each input parameter (and we have two of

them) corresponds to one parameter of the lambda expression, and the grid function, to which

the expression is assigned, corresponds to the output parameter (passed by reference) and the

loop index. The first parameter (in our case it is pure(a)) is passed as for the functor (via the /

operator), and the next as for the applicative (via the * operator). Here is an example of calling

the axpy function:

int main ( ) {
s i z e t const N = 10 ;

math vector<double> x (N, 2) , y (N, 3) ;

axpy ( 5 . , x , y ) ;

s td : : cout << y [ 0 ] << std : : endl ; // 13

}

2.2. More Complex Example

Now we will calculate an expression like z[ i]=a∗x[i]+b∗y[ind[i ]] (let’s call the function axpby).

Its peculiarity is that the index of the grid function y is contained in the additional grid function

ind :

template<typename T>

void axpby (T a , g r i d f u n c t i o n<T> const& x ,

T b , g r i d f u n c t i o n<T> const& y ,

g r i d f u n c t i o n<s i z e t > const& ind , g r i d f u n c t i o n<T> &z )

{
z = ( [ ] ( T a , T xi , T b , g r i d func t i on proxy<T> const y p ,

s i z e t ind i , T &zi , s i z e t /∗ i ∗/ )

{
z i = a ∗ x i + b ∗ y p [ i n d i ] ;

}) / pure ( a ) ∗ x ∗ pure (b) ∗ pr ( y ) ∗ ind ;

}

What is essentially new compared to the first example is that we can no longer pass the grid

function y through apply. Instead, we need to create a proxy object for it and pass it through

pure. This is exactly what the pr library function does:

template<class F>

auto pr (F const& f ) {
return pure ( get proxy ( f ) ) ;

}
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A few words about proxy objects. They are needed to transfer entire grid functions to the

GPU. The fact is that in the GPU, parameters can only be passed by value, that is, their copy

will be made. But a copy of the grid functions cannot be made, as this will lead to the creation of

a copy of the data. Instead, a “light” placeholder object is created for the grid function, storing

a pointer to the data and the size of the grid function. It is this object that is passed by value

as a whole (using the pure function).

Let’s also pay attention to the fact that global variables that are stored in CPU memory

are not available from the GPU, so they have to be passed explicitly using the pure function.

If you need a buffer for intermediate calculations, then its size should be equal to the number

of grid nodes, since in the case of CUDA we do not know the absolute number of the execution

thread.

Another important problem that often arises is reduction (for example, finding the maximum

value or the sum of all values). It is also very important to carry out the reduction in parallel.

In the original version of the program, the reduction was performed by means of OpenMP, but

now we cannot use this mechanism. Fortunately, in modern C++ (since the C++17 language

standard), reduction functions (such as std::accumulate and std::reduce) have parallel versions.

When working on CUDA, we use the thrust library, which is part of the CUDA Computing

Toolkit. This library also has parallel reduction functions running on GPU. Thus, when working

on CUDA, we use the parallel reduction functions from the thrust library, when working on the

CPU, if there are parallel versions of the reduction functions (if the compiler supports them),

then they are used, otherwise the reduction is done sequentially.

3. Performance Comparison

To evaluate the effectiveness of the proposed approach, a problem is proposed that simulates

an experiment carried out in the L2K pipe (Germany, [17]). An axisymmetric body consisting of

two conical and cylindrical surfaces is placed in an oncoming air flow with the following charac-

teristics: M∞ = 4.7, p∞ = 272Pa, T∞ = 764K, YO2 = 0.245, YN2 = 0.755. The geometry of the

problem is shown in Fig. 1. The solid body is combined from two parts with different thermo-

dynamic characteristics: the head part is made of UHTC (Ultra High Temperature Material)

and the rear cylindrical part is copper.

The initial temperature of the body is T=300 K. The adjoint problem is solved in a two-

dimensional formulation. Modeling is based on the solution of the Navier–Stokes equations in

a multicomponent gas and the heat equation in a solid using an original technique based on

explicit Chebyshev iterations [11]. The mesh size is 297192 nodes.

We solved this problem using a K60gpu hybrid supercomputer installed at the Keldysh In-

stitute of Applied Mathematics of RAS. One node of this supercomputer has two host processors

Intel Xeon Gold 6142 v4, 16 cores (total 32 threads) and four GPUs nVidia Volta GV100GL.

We used the program complex NOISETTE [12], which originally can work in two modes of

parallelization: on CPU using OpenMP and on using OpenCL (with separate sources for ker-

nels). We have rewritten it using our approach. For testing on CPU mode we used one host

(32 threads) and for OpenCL and CUDA modes – one GPU. The acceleration compared to the

CPU when using OpenCL was about 20 times, and when using our approach – about 12 times.

The acceleration is not as great as when using OpenCL, but given the above advantages (above

all, a single source code), it can be considered acceptable.
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Figure 1. Geometry of the problem with the shock wave structure

Conclusion

Declarative programming languages, which include functional languages, allow, unlike im-

perative languages, which include most programming languages in which numerical methods are

implemented, to briefly and at the same time quite clearly write down the desired result without

going into implementation details. The specific implementation may be hidden in the language

and depend on the current hardware and software environment. The C++ language proved to be

powerful enough to allow the implementation of a functional programming library on it, which

allows you to write programs in a style close to the style of purely functional languages such

as Haskell. Such concepts from the world of functional programming as functors and monads,

implemented in the functional programming library, turned out to be a very convenient tool for

porting numerical problems to CUDA graphics accelerators. Grid expressions have been defined

as functors, applicatives, and monads, allowing functions to be applied to the values they store.

These functions themselves can be built by combining complex functions from simple ones, which

is also the strength of functional programming.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Application of the Nonlinear SST Turbulence Model

for Simulation of Anisotropic Flows
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The application of the nonlinear SST turbulence model (SST NL) for the calculation of flows

with turbulence anisotropy is considered. The results of the following validation test cases are

presented: the flow in a square duct, the corner flow separation at a wing-body junction (NASA

Juncture Flow) and the transonic wing flow (NASA CRM). The nonlinear model has been found

to significantly improve the quality of simulating the anisotropic flows as compared to models

based on the Boussinesq hypothesis. It is shown that the model prevents false corner separation at

the wing-body junction and thereby achieves a qualitative improvement in simulation results. The

test case of the transonic wing flow revealed an upstream displacement of the shock wave on the

upper side of the wing which leads to an underestimation of the lift force when using the SST NL

model. In all the tests considered, the SST NL model required an increase in computational cost

of at most 5 % compared to the conventional SST model.

Keywords: turbulence model, nonlinear SST, SST NL, turbulence anisotropy, corner flow,

corner separation.

Introduction

The main tool currently used in studies of aircraft aerodynamics is the numerical solution

of the Reynolds-averaged Navier–Stokes equations, closed by a turbulence model. The most com-

mon turbulence models are the Spalart–Allmaras (SA) [1, 21], Menter (SST) [11, 12] and their

modifications (e.g., [8]). Both models belong to the family of linear turbulent viscosity models

(LEVM) based on the Boussinesq hypothesis, which assumes a linear relationship between the

Reynolds stress tensor and the mean velocity gradient. This limits their applicability to the

situations in which the flow is mainly affected by a single component of the stress tensor. For

more complex flows (e.g., corner flows or separation flows), the effects of turbulence anisotropy

appear that cannot be described by the Boussinesq hypothesis.

A practically important example of such a flow is the corner flow near the wing-fuselage

junction: calculations using Boussinesq models predict extensive corner flow separation, even

at small angles of attack. At higher values of lift on transonic regimes the separation starts

interacting with the shock wave, which can lead to global changes in the pressure distribution

on the upper surface of the wing and, consequently, to a noticeable reduction of the lift force.

Such an effect, observed in the computational studies of the models DLR-F6 [14] and CRM [23],

is not confirmed by experimental tests.

In order to correctly describe corner flows, it is necessary to use more complex turbulence

models that can reproduce the anisotropy of the Reynolds stress tensor. These are primarily

differential models for Reynolds stresses (DRSM) [7]. DRSM models require solving a specific

transfer equation for each component of the Reynolds stress tensor. This noticeably increases

the computational resource requirements, and makes it more difficult to formulate boundary

conditions. In addition, the nonlinearity of these models can lead to a lack of numerical stability,

especially when dealing with complex flows [4]. For these reasons, the DRSM models are rarely

used in practical applications.
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Another approach is the EARSM [24] models, which use explicit algebraic relations between

the Reynolds stresses and the strain rate tensor. In terms of physical processes simulating, the

EARSM models are intermediate between the DRSM and LEVM approaches and can adequately

describe some of the physical phenomena beyond the Boussinesq hypothesis.

Non-linear extensions of Boussinesq models (Non-linear Eddy Viscosity Models, NLEVM)

can also be referred to as the Reynolds stress models, since their final stress tensor relations

have the same form as in EARSM. The most popular in this family is a modification of the

Spalart–Allmaras model – SA QCR [20], which uses a quadratic function from the strain rate

and vorticity tensors to model the Reynolds stress tensor. This model, although slightly more

complicated, allows a better simulation of corner flows. The present work considers a nonlinear

modification of the SST turbulence model – the SST NL model proposed by Garbaruk and

Matyushenko [9]. To determine the Reynolds stresses, it combines the linear part from the SST

model and the nonlinear part from the S BSL EARSM model [10].

The purpose of this paper is to test the SST NL model both on model test cases and on con-

figurations of interest for practical applications. The paper is organized as follows: Section 1

presents the formulation of the SST NL model [9] and a brief description of the EWT-TsAGI

program used. Section 2 presents the results of the test calculations: turbulent flow in a square

duct, wing-fuselage junction flow separation on the NASA Juncture Flow model [19], transonic

wing flow on the NASA CRM model [13]. The conclusions are given in the final section.

1. Methodology

The expression for the Reynolds stresses in the SST model [11] has the following form:

τij =
2

3
kδij − 2νtSij , (1)

where νt =
a1k

max (a1ω, SF2)
is the turbulent eddy viscosity, S =

√
2SijSij – strain rate invariant,

F2 – SST blending function, and a1 = 0.31.

The S BSL EARSM model proposed in [10] is a development of the WJ EARSM [24]. The

Reynolds stresses are defined using the anisotropy tensor:

τij =
2

3
kδij + kaij . (2)

The anisotropy tensor is expanded in terms of the tensor basis as follows [15]:

aij = β1T1,ij + β3T3,ij + β4T4,ij + β6T6,ij . (3)

According to [10], the tensor basis can be expressed in a modified (compared to [15]) form:

T1,ij = S∗ij , T3,ij = Ω∗ikΩ∗kj − 1
3II
∗
Ωδij , T4,ij = S∗ikΩ∗kj − Ω∗ikS

∗
kj ,

T6,ij = S∗ikΩ∗klΩ
∗
lj + Ω∗ikΩ∗klT1,ij − 2

3IV
∗δij − II∗ΩS∗ij . (4)

Here S∗ij = τSij and Ω∗ij = τΩij are dimensionless strain and vorticity tensors, and

τ = max
[
1/(β∗ω), 6

√
ν/(β∗kω)

]
is the turbulent time scale. The coefficients β are expressed

through the tensor invariants II∗S = S∗mnS
∗
nm, II∗Ω = Ω∗mnΩ∗nm, IV ∗ = S∗mnΩ∗nkΩ∗km as follows:

β1 = −N
Q
, β3 = −2IV ∗

NQ1
, β4 = − 1

Q
, β6 = − N

Q1
, (5)
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where

Q =
(
N2 − 2II∗Ω

)
/A1, Q1 = Q

(
2N2 − II∗Ω

)
/6, N = C ′1 + 9

4

√
2β∗II∗S . (6)

The SST NL model [9] is a combination of the SST and S BSL EARSM models. Its expression

for the Reynolds stresses τij contains two terms: a linear term taken from the SST model (1),

and a nonlinear term based on the S BSL EARSM model (2):

τij =
2

3
kδij − 2νtSij + k (β4T4,ij + β6T6,ij) . (7)

Compared to the S BSL EARSM model, the nonlinear component has two simplifications: it

does not use the term T3,ij , and it uses the simplified expression τ = 1/(β∗ω) as the turbulent

time scale. The model constants appearing in (6) are β∗ = 0.09, A1 = 1.8, C ′1 = 1.8.

The SST NL model is implemented in the TsAGI in-house CFD program Electronic Wind

Tunnel (EWT-TsAGI [2]). In the presented simulations, a linearized implicit finite-volume

scheme which is second-order in space and first-order in time is used for all equations. The

convective fluxes are computed using the exact Godunov solution of the Riemann problem. So-

lution reconstruction in each cell is performed according to the MUSCL scheme. Diffusion fluxes

are approximated by a modified second-order central difference scheme. The turbulence model

source terms are computed using an unconditionally stable approximation analyzing the signs

of the eigenvalues of the corresponding Jacobi matrix. More details on the numerical scheme, as

well as validation results of EWT-TsAGI solver can be found in [3]. The code works with multi-

block structured meshes and is parallelized using the MPI standard. All calculations discussed

further in this paper have been performed using from 32 to 256 cores.

2. Test Cases

2.1. Flow in a Square Duct

A fully developed turbulent flow in a square duct is considered. The calculation of such

a flow is a commonly used test for evaluating the ability of turbulence models to correctly

describe the flow in corners, as it demonstrates the effect of turbulence anisotropy on the main

flow, leading to significant changes in the flow structure. The width and height of the duct are

100 mm, the flow has the following parameters: density ρ = 1.2 kg/m3, pressure p = 101325 Pa,

temperature T = 294.15 K, average velocity U = 3 m/s. The Reynolds number, calculated from

the average velocity and duct width, is Reb = 21400. Simulation is performed for the duct length

L = 600 mm with periodic boundary conditions that combine the inlet and outlet of the duct. To

maintain a steady flow and compensate for the gas momentum losses caused by wall friction, a

uniform pressure gradient is added by introducing an additional term into the equation system

being solved. To compensate for the heating caused by friction, a constant wall temperature

is set equal to the initial gas temperature Tw = T = 294.15 K. A structured grid containing

240 cells across the duct uniformly spaced (y+ ≈ 1.25) and 480 cells along the duct were used for

the simulations. Due to symmetric formulation of the task, a quarter of the duct was simulated.

The calculations performed using the linear SST model, its non-linear modification SST NL

and the DRSM model are compared with the results of the authors of the SST NL model [5]

and DNS data [5, 16]. The differential Reynolds stress model used for the simulations was

SSG/LRR-ω [4]. This model combines the Speziale–Sarkar–Gatski pressure-strain model in free
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turbulent regions with the Launder–Reece–Rodi formulation near the wall by means of a blend-

ing function similar to that in SST model. The SSG/LRR-ω model was designed primarily

for aerodynamic applications in the cases where anisotropic and three-dimensional effects are

important.

The qualitative assessment of the simulation of secondary flows is performed by comparing

the pattern of isolines of the longitudinal velocity profile in the duct cross section. Quantitative

estimation is performed by comparing the longitudinal and transverse velocity profiles along the

diagonal section of the duct. In Fig. 1 the numerical results of the considered flow using the

SST and SST NL turbulence models are compared with the DNS results [5, 16]. The contours

of the longitudinal velocity component and streamlines of a secondary flow are shown. It can

be seen that the linear SST model significantly distorts the field of the longitudinal velocity

component due to the absence of a secondary flow in the solution (see Fig. 1c). At the same

time, the results obtained using the SST NL model predict the presence of a secondary flow and

describe the longitudinal velocity field much better (Fig. 1b).

Figure 2 shows the distributions of the longitudinal and transverse velocity components

along the diagonal of the duct cross section, which characterize the accuracy of the secondary

flow intensity prediction. The figure compares EWT data (SST, SST NL, DRSM) with the

results of the SST NL authors [5] and DNS data [16]. The graphs demonstrate that despite the

relatively low values of the secondary flow velocity (∼ 1 % of the average flow rate), it has a

considerable influence on the flow structure. At the same time, the SST NL turbulence model

provides a significant increase in the accuracy of the main flow calculation in comparison with

the linear SST model. The difference of the longitudinal component of the flow velocity for the

DNS and SST NL does not exceed 5 % and this difference reaches 20 % in the case of SST.

(a) DNS (b) SST NL (c) SST

Figure 1. Comparison of longitudinal velocity distributions obtained using SST and SST NL

turbulence models with DNS results [5]

2.2. Separated Flow in the Wing-body Junction

Validation of the SST NL turbulence model implementation was carried out by computing

a separated flow at the NASA Juncture Flow model. This test confirms the ability of the tested

turbulence model to correctly predict the presence of separation at the wing-body junction of

an aircraft, as well as its dimensions. The model geometry and the experimental results are

available on the official website [19]. In NASA experimental work, a detailed investigation of

the flow around the model with a shortened DLR F6 wing (fuselage length of 4.84 m, wingspan

of 3.4 m, see Fig. 3a) was performed to verify numerical methods within the Juncture Flow

workshop. These experiments investigated separation generation at the wing-fuselage junction
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Figure 2. Distributions of the longitudinal and transverse velocity components along the diagonal

of the duct cross section (DNS [16], SST NL [5], EWT)

and measured the longitudinal and transverse dimensions of the separation regions in various

flow regimes, see Fig. 3b.

A multiblock structured grid with 85 million cells was used in calculations (Fig. 4). There

were 324 cells per wing chord, boundary layer resolution was 64 cells, and the height of the

first near-wall cell was 5 · 10−6 m (y+ ≈ 1.0). Because of the symmetry of the problem, only

half of the geometry was used. To estimate the errors associated with the discretization of the

computational domain, the calculations were performed on a series of 3 grids generated from

the base one by coarsening by a factor of 2 and 4 in each index direction. The following free

flow parameters are considered: velocity U = 64.4 m/s, angle of the attack α = 5◦, pressure

p = 99000 Pa, temperature T = 288.84 K. The quality of the corner flow simulation is assessed

by comparing the numerical and experimental sizes of the separation region in the wing root.

(a) General view of the model (b) The separation at the wing root

Figure 3. NASA Juncture Flow test case [6]

Figure 5 shows the friction coefficient Cf distributions obtained with the linear and non-

linear SST models. The linear version of the SST model predicts a developed diffuser separation

at the wing-fuselage junction. In calculations with the SST NL turbulence model, the size of the

separation region is much smaller compared to the SST.

Figure 6 shows the predicted separation sizes (length and width) as a function of N−2/3,

where N represents the number of grid cells. The power −2/3 refers to the second-order spatial

accuracy: the results should vary linearly as the grid is refined (N−2/3 → 0). The plots show that

the solution predicted using the SST model depends on the grid resolution. The separation zone

grows as the grid resolution increases, so on the finest grid, the separation size is significantly
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Figure 4. The surface mesh of the Juncture Flow model

Figure 5. Distributions of the friction coefficient Cf obtained for the linear and nonlinear SST

models

overestimated comparing to the experimental results [18]. The SST NL model, in general, permits

to predict the longitudinal size of the separation zone more accurately: the discrepancy of

numerical and experimental data is less than the experimental inaccuracy. However, the width of

the separation zone in SST NL calculations with the finest grid is significantly underestimated.

This fact requires additional computational investigations to study the influence of the grid

resolution.

2.3. Transonic Wing Flow

Validation of the SST NL turbulence model at transonic flow regimes was performed on the

well-known NASA Common Research Model (CRM). The model was developed for wind tunnel

testing (NASA AMES 11-foot transonic wind tunnel, NASA National Transonic Facility). As

a result, a database of experimental results has been obtained, that is used in CFD code vali-

dation benchmarks, such as AIAA Drag Prediction Workshop (DPW). The model geometry as

well as the results of the experiments in different wind tunnels are available and can be found

on the official website [17].
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Figure 6. Predicted size of separation region at α = 5◦ on different grids (N is the number of

grid cells) in comparison with experimental data [18]

The CRM model consists of a contemporary supercritical transonic wing and a fuselage that

is representative of a widebody commercial transport aircraft. The model is designed for a cruise

Mach number of M∞ = 0.85 and a corresponding design lift coefficient CL = 0.5. Leading edge

sweep angle is 35◦, the wing reference area is S = 0.280 m2, the wing span is b = 1.5866 m, and

the mean aerodynamic chord is c = 0.18914 m.

The present study was performed using a series of multiblock structured computational

grids prepared by the Royal Netherlands Aerospace Centre (NLR) as part of the AIAA 7th Drag

Prediction Workshop. The provided grids take into account the aeroelastic deformations of the

wing for each angle of attack. The geometries considered in this paper correspond to α = 2.5◦,
3◦, 3.5◦, and 4◦. The outer size of the computational domain was 150 m. The computational

grid contains 1408 blocks, 36.3 million cells and correctly describes model geometry and flow

around the model. There were 112 cells along the aircraft wingspan, 64 cells along the wing

chord, 420 cells along the length of the fuselage (Fig. 7). In order to simulate the boundary layer

correctly, 32 cells were placed in the near-wall layer of blocks, the dimensionless parameter of

the first cell height near the solid surface y+ did not exceed 1 for the whole model.

Figure 7. CRM surface grids
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It is necessary to note the following observation made during work with the NLR series

of grids. The linear dimensions of the model (wingspan, fuselage length, etc.), for which the

grids were constructed, are smaller than the dimensions of the original CRM model by about

1.06 times. Therefore, all results presented in this paper were obtained on the grids scaled up

by a factor of 1.06.

Numerical investigation was performed at the Reynolds number Rec = 20 · 106 and Mach

number M = 0.85. Six angles of attack were specified between 2.5◦ and 5.0◦ deg at 0.5◦ incre-

ments. For simulations with angles of attack α = 4.5◦ and 5◦, mesh on deformed geometry for

angle α = 4◦ was used. The results obtained with the original SST model and its non-linear

modification SST NL are compared.

Figure 8 shows isentropic Mach number fields and streamlines on the upper wing surface at

the angle of attack α = 5◦. It is evident that the obtained flow patterns differ significantly. The

main difference is associated with the side of body (SOB) separation in the angular flow at the

junction of the wing and fuselage. This separation appears in the SST calculations at α = 4◦

and grows as the angle of attack increases. In the results obtained using the SST NL model,

SOB separation does not appear.

Figure 8. Isoentropic Mach number and streamlines on the model surface, M = 0.85, α = 5.0◦

Another significant effect introduced by the nonlinear SST NL model is the upstream shift of

the shock wave. Given at the Fig. 9 difference of the pressure coefficient values (∆Cp = Cnl
p −Csst

p )

illustrates the variations in the flow over the wing. At the angle of attack 3◦, there is no SOB

separation and the only difference in the flow is associated with a slight shift of the shock

wave. As the angle of attack increases, the differences become more significant: in the SST

solution SOB separation appears; in the SST NL solution shock wave shift increases. As a result,

these differences lead to discrepancy in the aerodynamic characteristics, in particular, the lift

coefficient CL (Fig. 10). As can be seen in the figure, the discrepancy in the values of CL is

approximately 0.02.

Conclusion

The paper presents the results of simulation of anisotropic turbulent flows using the nonlinear

model SST NL. Three tests are considered: flow in a square duct, corner flow separation at a
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Figure 9. Difference in pressure coefficient values ∆Cp = Cnl
p − Csst

p , α = 3◦ and 5◦

Figure 10. CRM wing-body lift and drag polar, M = 0.85, Re = 20 · 106

(experimental data [22])

wing-body junction, and transonic wing flow. The square duct flow calculations show that, in

contrast to the linear SST, the SST NL model can simulate the secondary flow and therefore

provides a significant increase in the accuracy of the main flow calculation. The test with juncture

flow shows that the SST model tends to overestimate the separation size, which is typical

for linear eddy viscosity models. On the contrary, the SST NL model correctly predicts the

separation length, but underestimates its width. The results of the test with transonic wing flow

do not allow drawing an unambiguous conclusion. On the one hand, the nonlinear model makes

it possible to eliminate the false corner flow separation at the wing-body junction and thus to

achieve a qualitative improvement in the simulation results. On the other hand, the nonlinear

model predicts an upstream shifted location of the shock wave on the upper surface of the wing,

which leads to underestimation of the lift force. This problem requires further investigation,

possibly with a subsequent recalibration of the nonlinear term of the model.

Nevertheless, it can be concluded that the nonlinear model SST NL allows to significantly

improve the quality of anisotropic flows simulation compared to linear SST model. Moreover,

the SST NL model does not require a significant increase in computational cost as compared to

the conventional SST. Tests have shown that the number of iterations required for convergence

does not change, while the computation time of one iteration increases by 4–5 %.
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Adapting a Scientific CFD Code to Industrial Applications
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The NOISEtte heterogeneous parallel code for simulating turbulent flow and aerodynamic

noise is considered. In our previous works, high acceleration and parallel efficiency in scientific

scale-resolving simulations using GPUs were reported. For parallelization, the MPI, OpenMP and

OpenCL standards are used, the latter allows using GPUs from different vendors. However, the

further transition to industrial-oriented applications brought more trouble. Instead of discussing

the parallel algorithm, this work will focus on the problems that are not so obvious at first

glance, which arise when developing a heterogeneous simulation code. How to deal with numerous

simulation algorithm components, all those bells and whistles like wall functions, mixing plane

and sliding interfaces, synthetic turbulence generators, a variety of boundary conditions, etc., that

either need to be ported to the GPU side or incorporated directly from the CPU side? How to

maintain and modify the OpenCL code in a growing number of source files? How to arrange the

modularity of a complex heterogeneous software package? How to preserve reliability and fault

tolerance, especially in the case of numerical schemes of increased accuracy, but reduced social

responsibility? These issues are discussed here and some solutions will be proposed.

Keywords: heterogeneous code, computational fluid dynamics, turbulent flows, scale-resolving

simulation, CPU+GPU, MPI+OpenMP+OpenCL.

Introduction

Computational fluid dynamics (CFD) software is one of the main burners of supercomputer

time (as well as the associated electricity and taxpayers’ money). Due to the high resource inten-

sity, the efficient use of hybrid systems is critical, and GPU computing has long been widespread

in CFD applications. CFD codes are constantly evolving in the use of hybrid supercomputers,

improving scalability, enabling multi-GPU and heterogeneous computing capabilities. Many suc-

cessful examples can be found in both scientific and commercial codes, see e.g. [1–3, 8] among

many others, or specifications of commercial codes capable of multi-GPU computing, such as

Simcenter STAR-CCM+, Ansys Fluent multi-GPU solver, GPU-optimized Altair software, in-

cluding AcuSolve or its LBM-based flow solver ultraFluidX [6].

In the present work, a typical supercomputer time burner is considered, namely, the

NOISEtte heterogeneous code for modeling turbulent flow and its aerodynamic noise. The par-

allel algorithm and performance on various GPU-based hybrid systems were already presented

in detail in [4]. Here the focus will be not on the parallelization itself but on the problems that

are not so obvious at first glance, which arise when developing a heterogeneous simulation code.

The article is organized as follows. Section 1 outlines numerical methods and algorithms.

Section 2 is devoted to complexities of industrial applications. In Section 3, the modular archi-

tecture is presented. Section 4 is devoted to code reliability. Conclusions summarize the study.

1. Numerical and Parallel Framework

The turbulent flow of a viscous compressible gas is governed by the Navier–Stokes (NS)

equations. The numerical algorithm is based on higher accuracy schemes on unstructured mixed-

element meshes, hybrid RANS-LES approaches for turbulence modeling, implicit time integra-
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tion. More information on our simulation technology and all its components can be found in [5]

and references therein. For parallelization, the MPI, OpenMP and OpenCL standards are used,

which allows us to cynically occupy an excessively large number of hybrid cluster nodes and

to engage GPUs from different vendors. Two-level mesh partitioning is used for distribution of

workload between cluster nodes and devices inside nodes. Overlapping computations and com-

munications helps to achieve better parallel efficiency. Comprehensive information regarding

the parallel algorithm is presented in [4]. The parallel performance demonstrated there includes

CPU-only systems using up to about 10 thousand cores, GPU-based hybrid clusters using several

dozen GPUs, obtaining the equivalent of about 150 to 200 CPU cores per GPU. The considered

simple test cases were limited to an external flow on a static mesh.

2. Industrialization

When it comes to industrial problems, there are more components of the numerical method-

ology involved, for instance, wall functions, mixing plane and sliding interfaces, synthetic tur-

bulence generators (STG) and sponge layers, a variety of boundary conditions (BC), deforming

meshes, immersed boundary methods, more complex equations of state, among many others.

Many of these components may seem insignificant as on CPUs they are responsible for a very

minor fraction of the overall computing time, some even below 1%. Because of this “insignif-

icance”, there is a temptation to leave this functionality on the CPU side, since porting it to

the GPU is no easier than the main parts of the simulation algorithm. But that does not work,

since the GPU is an order of magnitude faster, hence the weight of the things left on the CPU

becomes an order of magnitude bigger, respectively. The need to exchange extra data with the

GPU enlarges this weight several times more. Thus, such small components, especially if there

are many, can easily take up more than half of the computational time. It is easy to conclude

that most of the effort has to be spent on such “insignificant” things in order to deal with

industrial applications.

Porting so many things, in turn, imposes more problems related with maintainability and

modifiability of so many OpenCL kernels. The OpenCL source code becomes organized in plenty

of files. These files, when passed to the compiler at runtime of the CPU program, are concate-

nated with each other and with runtime-generated preprocessor definitions. This makes the

compiler log hard to interpret, since the line numbers it reports are irrelevant. To solve this

issue, the program module responsible for the OpenCL part tracks the number of lines in files

and the assembly order of the source code, then it parses the compiler log and restores the actual

files and line numbers, as explained in [4].

Apart from the code complexity, the time step in stationary RANS simulations typical of

industrial applications is much bigger as it is not limited by the dynamics of turbulent structures

in scale-resolving simulations. This, in turn, needs a more powerful linear solver for the Jacobi

system in the implicit time integration. To mitigate this problem, our preconditioned BiCGSTAB

solver had to be upgraded with slightly more complex preconditioners than the basic block Jacobi

method. To prevent the solver from breaking down at large time steps, preconditioners based on

the multicolor Gauss–Seidel (GS) method, typical for GPU computing, have been implemented

in a heterogeneous way, combining MPI, OpenMP for CPUs and OpenCL for GPUs. This

required notable additional effort, and to go further, it may be even necessary to use a multigrid

approach and connect external solvers capable of working with sparse block matrices.
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Finally, here are some particular examples. Boundary conditions used to take about 1–2%

of the overall time when running on CPUs. When running on GPUs, leaving the BCs on the

CPU side results in a cost of about 20%, where most of the time, around 3/4, is spent on the

extra traffic between CPU and GPU devices (due to the need for transferring Jacobi matrix

blocks). Porting the BCs to the GPU side, which is rather laborious, has reduced the cost to

2–3%, that is, an order of magnitude less. Similarly, on CPUs, the STG was consuming about

3%. Being too lazy to port it to the GPU also costs about 20%, where 1/4 goes to traffic, 3/4

to computational expenses. Porting the STG has shrinked its contribution to 4%. Regarding

the linear solver upgrade, heterogeneous implementations of multicolor variants of GS-based

preconditioners (GS, SGS, SOR, SSOR) demonstrate as high acceleration as for the block Jacobi

method, which is about 8 times on NVIDIA V100 vs. 16-core Intel Xeon Gold.

3. Modularity

The ongoing expansion of functionality and complication of the code required a transition to

a modular architecture. The code has been split into the core part and connectable modules and

libraries, as shown in Fig. 1. The core contains the basic infrastructure and numerical methods.

Libraries

External third party modules

Noisette core – main library  

CoreNumerics – base numerical methods: vertex-centered EBR 

schemes, Riemann solvers; viscous terms; element-centered 

discretization; explicit and implicit time integration; turbulence models, …

Noisette modules – some of connectable modules

MPI module – halo update and reduction communications

OpenCL module – handling initialization, devices, kernels, buffers, 

consistency, data transfer, OpenCL version of core numerical algorithms

MeshMotion – moving/deformable meshes with constant topology

Turbomachinery – rotor-stator, mixing planes, non-matching interfaces

IBC module – immersed boundary, motion by flow-induced forces 

LinAcoustics – linear acoustic propagation for azimuthal modes 

BaseLib – base infrastructure: parallel IO, 

containers, input parser, stack tracer, 

timer, memory manager, …

LinAl module – SLAE solvers for block sparse matrices

Parallel preprocess – mesh  tools, 

converters, partitioning…  

Parallel postprocess – mesh data, spectral 

data, visualization data, FWH acoustics, … 

Opti – mesh adaptation Sliding module – sliding meshes, non-stationary rotor-stator

OctreeSDF – octree representation of 

solid bodies, fast distances calculation

Simulation 

flow  solver

LIMNS – explicit-iterative time integration

MCFL – MultiComponent Flow, 

chemical reactions

Heat module – conjugate heat transfer

…

…

Toy problems – exact solutions, accuracy analysis, model cases

Special schemes – extra numerical schemes: DG, polynomial, spectral,

External libraries
MPI, OpenCL, ParMetis, FFTW, 

KD-tree, LZMA, QD – quad precision, 

Eigen, Clipper… 

Motion – solid body motion

…

GUI – user input 

forms, QT-based

Turbulence – extra models, generators, sponge layer, LT-transition

Figure 1. Modular structure of the simulation code

The infrastructure includes such things as parallel IO, containers for mesh data, user input

parser, internal memory manager, stack tracer, timer, etc. The computing core contains basic

numerical methods: the convective part of the NS equations, including vertex-centered EBR

schemes and its cell-centered variants, Riemann solvers, low-Mach preconditioner; methods for

calculating the viscous terms; explicit and implicit time integration; basic RANS and LES
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turbulence models, etc. Modules contain extra functionality that works on a base of the core.

Libraries, in contrast to modules, do not use the core. The code can be built without any

library or module (even without MPI, OpenMP and OpenCL). Simply removing the source code

folder of a module or library eliminates all of its functionality from the code. The build system

automatically adapts to the available code configuration and sets the necessary definitions.

In the core simulation algorithm, functions are equipped wherever needed with connection

points simply on a base of function pointers, allowing modules to override a function with its

own implementation or to add its function calls into a function. If an operation has different

options, such as different reconstructions, various Riemann solvers, etc., multiple-choice switches

select the option defined by the user input. Such switches can be extended with more options

using a special template class that stores more options, each given by a function pointer and

a corresponding text label for user input (only the one selected by the user is active). Thus,

modules can add their functions wherever needed, override basic ones, add more options, add its

data to checkpoint records, visualization etc. For ideas on how this works, see Fig. 2. It appeared,

that this very simple approach with function pointers allows to implement rather complex things

without introducing changes into the core, such as multi component flows, chemical reactions,

conjugated heat transfer, etc.

// Connection points to some function
typedef void (*tSomeFunc)(); // function pointer of some particular type
tSomeFunc ExtVersion=NULL; // external version of some function 
vector<tSomeFunc> ExtActions; // external actions inside some function
void OverrideSomeFunction(tSomeFunc f){ ExtVersion = f; }
void AddActionToSomeFunction(tSomeFunc f){ ExtActions.push_back(f); }

void SomeFunction(){
if(ExtVersion) return ExtVersion(); // replacement with an external version
SomeBasicFunctionality();
for(size_t i=0; i<ExtActions.size(); ++i) ExtActions[i](); // external actions

}

// Extensible implementation options
enum tBaseEnum{ BaseOption1 = 1, BaseOption2 = 2 };
tExtEnum<tBaseEnum, tSomeFunc> SomeChoice; // extensible enum wrapper
void SomethingWithVariousOptions(){

switch((tBaseEnum)SomeChoice){
case BaseOption1: return BaseFunction1(); // one of basic options
case BaseOption2: return BaseFunction2(); // one of basic options
default: // one of registered external options chosen in user input 

return SomeChoice.GetExtOption();
}

}

// Registering module’s functionality at initialization
void MyModuleInit(){

OverrideSomeFunction(MyVersionOfSomeFunction); 
SomeChoice.RegisterOption(MyOptionForSomeChoice1, “myoption1”);    
SomeChoice.RegisterOption(MyOptionForSomeChoice2, “myoption2”);

}

Figure 2. An illustration of how connecting a module works

The last thing regarding modules is how to manage what is implemented for the GPU,

what can be incorporated from the CPU, and what is not available for GPU computing. A

special function checks this compatibility of the actual code configuration with the given user

input and available implementations. If a module is requested in a GPU-enabled execution, and

there is no GPU implementation available, the execution aborts with the information on what

is missing and what should be changed to make it run. Note that it also takes some extra effort

to implement and maintain such a compatibility check.
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4. Reliability

Implementation consistency across different architectures is critical to heterogeneous soft-

ware reliability. Additional measures, rather laborious, have been taken to protect the code

from inconsistencies and errors. Such measures include expanding the quality assurance suite

with tests covering all GPU-enabled features and implementing internal consistency checks in-

side the code. Internal checks are performed each time a GPU-enabled simulation is started by

running several time integration steps on both the CPU and GPU. First, per-kernel CPU vs

GPU version check for each OpenCL kernel involved in a particular numerical algorithm ensures

that its CPU counterpart produces the same results (with some specified round-off tolerance).

Second, a full time step check ensures that the whole time step algorithms are consistent by

comparing mesh function after several time steps.

Another important issue is the fault tolerance of the simulation algorithm itself, regard-

less of the devices on which it is executed. Non-physical flow instabilities can appear due to

insufficient mesh quality or resolution in the case of a low-dissipation scheme, too big time step

size, insufficient linear solver accuracy, etc. To prevent simulation breakdown, the flow fields

are checked every certain number of time steps to detect problems such as too high or too low

density or pressure (these limits are case specific and are set by user depending e.g. on the

actual Mach number), incorrect numbers, etc. In the case if flow fields turn out to be incorrect,

the simulation automatically returns to the previously stored in memory restart checkpoint and

adjusts the relevant parameters such as the time step size, solver tolerance, upwind and central

difference weights, etc. When GPU computing is enabled, such checkpoints are stored in CPU

memory to save scarce GPU memory. This requires additional transfers of mesh functions and

processing routines in the GPU-enabled algorithm.

Conclusions

In CFD applications, GPUs increase performance by an order of magnitude compared to

an equivalent number of CPUs. For this, the simulation algorithm must be adapted to the more

restricted parallel paradigm used on GPUs. Reducing memory consumption is also critical for

GPU computing. The underlying computational algorithm then needs to be efficiently imple-

mented for the GPU architecture. But besides these obvious things, it turned out that there

are still many problems that need to be solved, and a lot of work that needs to be done in

order to effectively use a heterogeneous code in practice. This short communication provides a

summary of such problems and how to solve them. A significant expansion of functionality to-

wards industrial applications required a transition to a modular architecture. Porting additional

components of the simulation algorithm to OpenCL, even those that take a negligible amount

of computational time when running on the CPU, appeared to be unavoidable. Otherwise, the

performance would be about twice as low. The growing amount of OpenCL code required ad-

ditional measures to improve reliability. The need for stationary RANS simulations required

the linear solver upgrade in the implicit time integration scheme. Eventually, the code seems to

have become applicable for stationary and scale-resolving CFD simulations, including cases with

synthetic turbulence; mixing-plane rotor-stator interfaces; various boundary conditions for solid

surfaces, inflow, outflow; rotating coordinate system; various turbulence modeling approaches

and models, etc. Practical performance on GPUs gives us the equivalent of 100 to 200 CPU

cores per device, which is well worth the effort.
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Penalized Wall Function Method for Turbulent Flow Modeling

Natalia S. Zhdanova1 , Oleg V. Vasilyev1

c○ The Authors 2022. This paper is published with open access at SuperFri.org

A novel penalized wall function method for simulations of wall-bounded compressible tur-
bulent flows is proposed. The new approach is based on the Reynolds-averaged Navier–Stokes
(RANS) equations to model the outer region of the turbulent boundary layer, while the inner
part is approximated by the equilibrium wall function model. The differential formulation to
match the external and the wall function solutions is reformulated in a form of the generalized
characteristic-based volume penalization method to model the transfer of the shear stress from the
outer region of the boundary layer to the wall and to impose the wall-stress boundary conditions
on the RANS solution. The exchange location is specified implicitly through a localized source
term in the boundary layer equation, written as a function of the normalized distance from the
wall. The wall-stress condition is determined by solving an auxiliary equation for the wall-stress,
ensuring the correct matching of the RANS and the wall function solutions at the exchange layer.
The proposed method noticeably reduces the near-wall mesh resolution requirements without sig-
nificant modification of the RANS solver and removes the ill-defined explicit matching procedure,
commonly used by traditional wall function-based methods. The penalized wall function approach
is implemented using the vertex-centered control volume method on unstructured computational
grids. The effectiveness of the developed penalized wall function method is demonstrated for two-
dimensional bump-in-channel flow for the Spalart–Allmaras turbulence model.

Keywords: turbulence modeling, wall function, wall-bounded compressible turbulent flow, vol-
ume penalization.

Introduction

Accurate modeling of turbulent flows of engineering interest remains to be one of the major
challenges of computational fluid dynamics. Due to prohibitively expensive computational cost of
the direct numerical simulations (DNS) of large Reynolds number turbulent flows [24], a number
of lower fidelity eddy-resolving approaches are currently actively being pursued. These methods
are based either on the Reynolds-averaged Navier–Stokes (RANS) equations [14, 16, 31, 35] or
on hybrid approaches [15, 36], in which the flow in the near-wall region is simulated using RANS-
type models, while in regions far from the walls the Large Eddy Simulation (LES) method is used.
The hybrid class of methods also includes detached eddy simulation (DES) methods [30, 32, 33]
with a smooth transition from RANS to LES solutions.

Despite relatively moderate near-wall resolution requirements of RANS, hybrid RANS-LES,
and DES approaches, these requirements are still significant and impose strict limitations on
the computational resources, considerably increase the computation time, and complicate the
computational grid construction.

Mesh resolution restrictions can be substantially reduced if the boundary solution is approx-
imated by a wall function and only external RANS solution is simulated [11, 27]. This can be
achieved by replacing no-slip wall boundary conditions with off-the-wall boundary conditions at
the exchange location away from the wall. Alternatively a weak wall function formulation can be
used to transfer the shear stress from the outer region of the boundary layer to the wall and to
impose the wall-stress boundary conditions on the RANS solution [5, 13]. A weak wall function
formulation is more preferable from the computational point of view due to its flexibility, but
it does not guarantee an exact correspondence of the boundary layer displacement thicknesses,
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mainly due to approximate nature of the solution in the near-wall region with the slip velocity
and turbulent viscosity extrapolated from the outer region of the solution, which results in a
decrease of the displacement thickness compared to the RANS solution with no-slip boundary
conditions.

In traditional wall function approaches [25] the boundary conditions are determined by
solving nonlinear equations at the matching (exchange) location, which is not known a priori
and is implicitly defined by the normalized distance from the wall, which, in turn, is a function
of the wall shear stress. For this purpose, the solution at the exchange location, is interpolated
from the nearest computational mesh points [7]. It should be noted that wall functions can
be used in conjunction with immersed boundary methods, where additional constraints at the
immersed mesh points are imposed to ensure the boundary conditions on the surface of the
obstacle [6, 10, 12].

The main idea of the proposed approach, hereinafter referred to as the Penalized Wall Func-
tion (PWF) method, is to replace the nonlinear algebraic matching condition between the exter-
nal and wall function solutions by a differential formulation based on a generalized characteristic-
based volume penalization method [8, 19] to transfer the shear stress from the outer region of the
boundary layer to the wall, while specifying exchange locations implicitly through the localized
source term in the boundary layer equation, written as a function of the normalized distance
from the wall. Such an approach, makes it possible to completely eliminate the need to explic-
itly find the exchange location, and, more importantly, reduces the system of partial differential
equations with nonlinear algebraic constraints to a system of partial differential equations with
differential feedback loop provided by characteristic penalty functions. The latter property makes
it feasible to generalize the approach to problems with flow separation based on differential equi-
librium [7, 20] and non-equilibrium [21, 26] wall functions. In general, the developed approach
noticeably reduces the near-wall mesh resolution requirements without significant modification
of the RANS solver. Note that the developed PWF method should be distinguished from hybrid
approaches utilizing immersed boundary methods to set boundary conditions on the surface of
the obstacles [6, 10], since it uses characteristic-based volume penalization to match external
and wall function solutions. Furthermore, the PWF method can also be generalized for complex
geometry flows, based on the already developed volume penalization methods [2, 8, 19, 22, 23, 37].

The rest of the paper is organized as follows. In Section 1 the governing equations of the
numerical simulations, including the Favre-averaged Navier–Stokes equations for compressible
flows and the evolution equations for turbulence models are introduced. The penalized wall
function method for turbulent flow modeling is formulated in Section 2. The numerical method
used to implement the PWF approach is briefly described in Section 3. The 2D bump-in-channel
flow configuration and the corresponding simulation results using the PWF method are presented
and discussed in Section 4. Concluding remarks are given in Section 4.1.

1. Governing Equations

1.1. Favre-averaged Navier–Stokes Equations

Compressible RANS equations are formulated in terms of Reynolds-averaged and Favre-
averaged dependent variables. Denoting Reynolds-averaging and Favre-averaging operations as
⟨𝜑⟩ and {𝜑} = ⟨𝜌𝜑⟩/⟨𝜌⟩, respectively, where 𝜑 stands for a generic physical variable, the method
involves Reynolds-averaged density ⟨𝜌⟩ and pressure ⟨𝑝⟩, together with Favre-averaged veloc-
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ity {𝑢𝑖}, temperature {𝑇}, and total energy per unit mass {𝑒}. For the sake of clarity, the cor-
responding operator symbols hereafter are omitted in the notations of Reynolds/Favre-averaged
primitive variables and simple symbols 𝜌, 𝑝, 𝑢𝑖, 𝑇 and 𝑒 are used hereafter to denote the
Reynolds-averaged density, pressure, and Favre-averaged velocity, temperature, and total en-
ergy per unit mass. Therefore, the Favre-averaged Navier–Stokes equations for the conservation
of mass, momentum, and energy in compressible flows for calorically perfect gas after incorpo-
ration of modeled turbulent terms using the Boussinesq eddy viscosity, eddy-conductivity, and
constant turbulent Prandtl number assumptions can be written in the following general form:

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑗)

𝜕𝑥𝑗
= 0, (1)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = − 𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

, (2)

𝜕𝜌𝑒

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[(𝜌𝑒+ 𝑝)𝑢𝑗 ] =

𝜕

𝜕𝑥𝑗
[𝑢𝑖𝜏𝑖𝑗 − 𝑞𝑗 ] , (3)

where

𝑝 = 𝜌𝑅𝑇, (4)

𝑒 =
1

2
𝑢𝑖𝑢𝑖 +

𝑝

𝜌(𝛾 − 1)
, (5)

𝑞𝑗 = −𝑐𝑝
(︂

𝜇

𝑃𝑟L
+

𝜇T

𝑃𝑟T

)︂
𝜕𝑇

𝜕𝑥𝑗
, (6)

𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 + 𝜏𝑖𝑗 ,

𝜏𝑖𝑗 = 2𝜇T𝑆𝑖𝑗 , (7)

𝑆𝑖𝑗 = dev(𝑆𝑖𝑗) = 𝑆𝑖𝑗 −
1

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 ,

𝑆𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
.

In the equations above, the parameter 𝑅 stands for the gas constant, while 𝑐𝑣 and 𝑐𝑝 are the
specific heat constants at constant volume and pressure, respectively. The specific heat ratio
𝛾 = 𝑐𝑝

𝑐𝑣
≡ 1.4 for diatomic gases is assumed. The term 𝑞𝑗 is the sum of both the laminar and the

modeled turbulent heat flux vectors, with 𝑃𝑟L = 0.72 and 𝑃𝑟T = 0.9 being the laminar and the
turbulent Prandtl numbers, respectively. The turbulent eddy viscosity is denoted by 𝜇T, which is
unknown and needs turbulence models for closure. The term 𝜏𝑖𝑗 is the sum of the molecular and
the Reynolds stress tensors, while 𝜏𝑖𝑗 is the Reynolds stress tensor, 𝑆𝑖𝑗 is the mean strain-rate
tensor, and 𝑆𝑖𝑗 is the deviatoric part of 𝑆𝑖𝑗 . For simplicity of consideration, constant dynamic
molecular viscosity 𝜇 is assumed, which is a good approximation for low Mach number flows
considered in this paper.

1.2. Turbulence Model Equations

Without loss of generality, the Spalart–Allmaras (S-A) turbulence model [31] is used to
illustrate the developed penalized wall function approach. The S-A model is widely used as a
turbulence model closure for the equations (6) and (7), including high-velocity flows with a
significant effect of compressibility [4].
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The standard Spalart–Allmaras model [31] in terms of 𝜌𝜈 can be written as follows:

𝜕𝜌𝜈

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝜈𝑢𝑗) = 𝑐𝑏1(1 − 𝑓𝑡2)𝑆𝜌𝜈 −

[︁
𝑐𝑤1𝑓𝑤 − 𝑐𝑏1

𝜅2
𝑓𝑡2

]︁
𝜌

(︂
𝜈

𝛿

)︂2

+
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇

𝜎
+
𝜌𝜈

𝜎

)︂
𝜕𝜈

𝜕𝑥𝑗

]︂
−
(︂
𝜇

𝜎𝜌
+
𝜈

𝜎

)︂
𝜕𝜌

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
+ 𝑐𝑏2

𝜌

𝜎

𝜕𝜈

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
,

(8)

where the eddy viscosity is computed by

𝜇T = 𝜌𝜈𝑓𝑣1, (9)

and auxiliary variables are defined as:

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3𝑣1
,

𝜒 = 𝜈/𝜈,

𝑆 = max

[︂
0.3
√︀

2Ω𝑖𝑗Ω𝑖𝑗 ,
√︀

2Ω𝑖𝑗Ω𝑖𝑗 +
𝜈

𝜅2𝛿2
𝑓𝑣2

]︂
, (10)

Ω𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
,

𝑓𝑣2 = 1 − 𝜒

1 + 𝜒𝑓𝑣1
,

𝑓𝑤 = 𝑔

[︂
1 + 𝑐6𝑤3

𝑔6 + 𝑐6𝑤3

]︂1/6
,

𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟),

𝑟 = min

[︂
𝜈

𝑆𝜅2𝛿2
, 10

]︂
, (11)

𝑓𝑡2 = 𝑐𝑡3 exp(−𝑐𝑡4𝜒2),

where 𝜈 is kinematic molecular viscosity, 𝛿(x) is the distance from the field point to the nearest
wall, and to improve the stability of calculations the variable 𝑆 is bounded from below by the
quantity 0.3

√︀
2Ω𝑖𝑗Ω𝑖𝑗 . The constant coefficients are prescribed as 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622,

𝜎 = 2/3, 𝜅 = 0.41, 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1, 𝑐𝑤1 = 𝑐𝑏1
𝜅 + 1+𝑐𝑏2

𝜎 . Note that this “standard”
version of the S-A model does not have the trip term “𝑓𝑡1” and, hence, it is argued that 𝑓𝑡2 is
not necessary, i.e., 𝑐𝑡3 = 0 is assumed.

The following boundary condition on the wall surface

𝜈 = 0 (12)

is used for consistency. When modeling external flows the constant turbulent viscosity 𝜈 = 3𝜈∞
is assumed at the inflow boundary.

2. Penalized Wall Function Method

The considerably lower computational cost of eddy-resolving approaches compared to DNS or
LES, makes RANS-based methods to be a method of choice for high Reynolds number turbulent
flow simulations in aerospace industry. However, despite relatively moderate near-wall resolution
requirements of RANS [14, 16, 31, 35], hybrid RANS-LES [15, 36], and DES [30, 32, 33] ap-
proaches, the direct resolution of flow structures of the RANS equations (1)–(3), (8) results in a
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considerable computational cost associated with a large number of mesh points in the near-wall
region. Mesh resolution restrictions can be substantially reduced if instead of resolving the solu-
tion in the vicinity of the wall, it is approximated by a wall function and only external RANS
solution is obtained [11, 27]. This can be achieved by replacing no-slip boundary conditions on the
wall with the matching conditions between the wall function and the outer turbulent boundary
layer solutions:

𝑢‖(x)
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

= 𝑢𝜏𝑓
(︀
𝛿+EL
)︀
, (13)

where the matching (exchange) location is determined from the following condition:

𝛿(x) =
𝜈

𝑢𝜏
𝛿+EL, (14)

𝑢‖(x) is the velocity component parallel to the surface at point x, �̃� and 𝑦 are generalized coordi-

nates along and normal to the wall, 𝑦+ = 𝑢𝜏𝑦/𝜈 is the normalized coordinate, 𝑢𝜏 =
(︀
𝜏w/𝜌

)︀1/2 is
the friction velocity, 𝜏w is the wall stress, 𝛿+EL is the normalized distance to the exchange location,
and 𝑓(𝑦+) is the wall function, defined as a function of the distance from the wall, normalized
by the viscous length scale. Note that Eq. (14) can be viewed as a non-linear algebraic equation
for determining the exchange location for a given coordinate �̃� on the wall. For the sake of sim-
plicity, let us start by formulating the method for two-dimensional flows. The generalization of
the method to three-dimensional flows will be provided at the end of the section.

For a given external velocity field 𝑢‖(x) and for a given normalized distance 𝛿+EL the matching
condition (13) is a non-linear algebraic equations for determining 𝑢𝜏 . A linear approximation of
Eq. (13) for the friction velocity correction 𝛿𝑢𝜏 can be written as

𝑢‖(x)
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

+
𝜕𝑢‖(x)

𝜕n

⃒⃒
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

(︂
−𝜈𝛿

+
EL
𝑢2𝜏

𝛿𝑢𝜏

)︂
≈ 𝑢𝜏𝑓

(︀
𝛿+EL
)︀

+ 𝛿𝑢𝜏𝑓
(︀
𝛿+EL
)︀
, (15)

where the normal n is defined in terms of the distance function 𝛿(x): n = ∇𝛿(x). Note that the
second term on the left hand side of Eq. (15) arises due to the change of the distance 𝛿(x) of
the exchange location when 𝑢𝜏 changes and 𝛿+EL is fixed. The solution of Eq. (15) for the friction
velocity correction 𝛿𝑢𝜏 is given by

𝛿𝑢𝜏 ≈ 𝑢𝜏

𝑢‖(x)
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

− 𝑢𝜏𝑓
(︀
𝛿+EL
)︀

𝑢𝜏𝑓
(︀
𝛿+EL
)︀

+
𝜕𝑢‖(x)
𝜕n

⃒⃒
⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

𝛿(x)
. (16)

When a strong wall function formulation is used, the friction velocity correction (16) can be used
in Newton’s method to iteratively obtain the solution of the matching condition (13).

For the weak wall function formulation, the discrete friction velocity correction (16) can be
replaced by temporal relaxation of the solution 𝑢𝜏 (�̃�, 𝑡) on the time scale 𝜂𝑓 at each point of the
generalized coordinate �̃�, defined along wall:

𝜕𝑢𝜏
𝜕𝑡

=
𝑢𝜏
𝜂𝑓

𝑢‖(x)
⃒⃒
𝛿(�̃�)= 𝜈

𝑢𝜏
𝛿+EL

− 𝑢𝜏𝑓
(︀
𝛿+EL
)︀

𝑢𝜏𝑓
(︀
𝛿+EL
)︀

+
𝜕𝑢‖(x)
𝜕n

⃒⃒
⃒
𝛿(�̃�)= 𝜈

𝑢𝜏
𝛿+EL

𝛿(�̃�)
, (17)

where for greater clarity the exchange location, implicitly defined by the equation (14), is ex-
plicitly written as 𝛿(�̃�), while the no-slip boundary condition for the velocity u at the wall is
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replaced by the no-penetration condition for the normal velocity component 𝑢⊥(x) = u · n:

𝑢⊥|𝑦=0 = 0 (18)

and the wall shear stress condition:

(𝜈 + 𝜈T)
𝜕𝑢‖
𝜕n

⃒⃒
⃒⃒
𝑦=0

= 𝑢2𝜏 (�̃�, 𝑡). (19)

For consistent wall function formulation of the Spalart–Allmaras model, the turbulent viscosity
from the outer flow region is transfered to the boundary, which can be easily achieved by replacing
the distance function 𝛿(x) in the Eqs. (8), (10) and (11) by

𝛿(x) = max

(︂
𝛿(x),

𝜈

𝑢𝜏
𝛿+EL

)︂
(20)

and changing the boundary condition (12) for turbulent viscosity to

𝜕𝜈

𝜕n

⃒⃒
⃒⃒
𝑦=0

= 0. (21)

The equation (13) with an implicit determination of the exchange location 𝛿(�̃�) complicates
the solution of the problem, since, in general, exchange locations do not coincide with mesh
points and the tangential velocity component 𝑢‖ from the nearest mesh points needs to be
interpolated to the exchange location, e.g., see [7]. The problem can be greatly simplified and
the need to interpolate the tangential velocity to exchange locations can be completely eliminated
by introducing an auxiliary friction velocity field 𝑢𝜏 (x, 𝑡), defined in the entire domain and not
only on the wall, and by replacing Eq. (17) for 𝑢𝜏 (�̃�, 𝑡) on the wall by the following partial
differential equation for the field 𝑢𝜏 (x, 𝑡):

𝜕𝑢𝜏
𝜕𝑡

−ℋ
(︁
𝛿+EL − 𝑢𝜏

𝜈
𝛿(x)

)︁ 𝑙𝑠
𝜂𝑠

𝜕𝑢𝜏
𝜕n⏟  ⏞  

transfer of 𝑢𝜏 to the wall

= 𝜒
𝛿

(︃
𝛿+EL − 𝑢𝜏

𝜈 𝛿(x)

𝜎+

)︃
𝑢𝜏
𝜂𝑓

𝑢‖(x) − 𝑢𝜏𝑓
(︀
𝛿+EL
)︀

𝑢𝜏𝑓
(︀
𝛿+EL
)︀

+
𝜕𝑢‖(x)
𝜕n 𝛿(x)⏟  ⏞  

temporal relaxation of 𝑢𝜏 in an exchange layer

+𝜈n∆𝑢𝜏⏟  ⏞  
smoothing

,

(22)

where 𝑙𝑠 and 𝜂𝑠 are, respectively, the characteristic length and time scales of transferring the
solution from the exchange layer to the wall, ℋ(𝜉) is the Heaviside function that disables the
transfer of 𝑢𝜏 in the outer region of the turbulent boundary layer, 𝜒

𝛿
(𝜉) is a localized exchange

layer masking function, for example, the Gaussian function

𝜒
𝛿
(𝜉) = exp(−𝜉2/2), (23)

𝜎+ is the normalized thickness of the exchange layer, and 𝜈n∆𝑢𝜏 is the numerical diffusion used
to smooth out the auxiliary field 𝑢𝜏 . Note that in Eq. (22), the matching condition (13) is
provided by temporal relaxation term in the spatially localized exchange layer, from which 𝑢𝜏 is
transferred to the wall for the subsequent use in the boundary condition (19). The second term
on the left hand side of Eq. (22) corresponds to the characteristic penalty function [8, 9, 19],
which on the time scale 𝜂𝑠 transfers the friction velocity to the wall.
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In order to improve the convergence of the method in the earlier stages of the transient
solution, the term 𝜕𝑢‖(x)

𝜕n in the Eq. (22) can be approximated by differentiating the wall function
solution:

𝜕𝑢‖(x)

𝜕n
≈ 𝑢2𝜏

𝜈
𝑓 ′
(︂
𝑢𝜏𝑦

𝜈

)︂
. (24)

Substituting Eqs. (14) and (24) into Eq. (22) the following stabilized penalized wall function
equation can be obtained:

𝜕𝑢𝜏
𝜕𝑡

−ℋ
(︁
𝛿+EL − 𝑢𝜏

𝜈
𝛿(x)

)︁ 𝑙𝑠
𝜂𝑠

𝜕𝑢𝜏
𝜕n⏟  ⏞  

transfer of 𝑢𝜏 to the wall

=
1

𝜂𝑓
𝜒

𝛿

(︃
𝛿+EL − 𝑢𝜏

𝜈 𝛿(x)

𝜎+

)︃
𝑢‖(x) − 𝑢𝜏𝑓

(︀
𝛿+EL
)︀

𝑓
(︀
𝛿+EL
)︀

+ 𝑓 ′
(︀
𝛿+EL
)︀
𝛿+EL⏟  ⏞  

temporal relaxation of 𝑢𝜏 in an exchange layer

+𝜈n∆𝑢𝜏⏟  ⏞  
smoothing

.

(25)

The equation (25) is the basis of the penalized wall function method. Note that despite the
fact that the developed approach has been demonstrated only in the context of the Spalart–
Allmaras model, the PWF method can be used in conjunction with any turbulence model that
allows transfer of shear stress from the outer region of the boundary layer to the wall. Note that
the choice of the exchange location 𝛿+𝐸𝐿 can affect the accuracy and efficiency of the simulations.
In general the exchange location should be chosen to be outside of the viscous sublayer region
to improve the near-wall resolution requirements and below the law-of-the-wake region, which is
problem dependent.

For three-dimensional flows, the problem can be rewritten in local two-dimensional coor-
dinates, where the coordinate �̃� along the body surface corresponds to the direction of the
tangential velocity component at the corresponding exchange location. In this case, the equa-
tion (25) can be used without modification under the assumption that the direction of the wall
shear is aligned with the tangential velocity vector at the corresponding exchange location, and
the variable 𝑢‖(x) =

⃦⃦
u‖(x)

⃦⃦
corresponds to the magnitude of the parallel velocity component

u‖(x) = u− (u · n)n. Then the boundary conditions (18) and (19) can be rewritten as follows:

u · n|𝑦=0 = 0 (26)

(𝜈 + 𝜈T)
𝜕u‖
𝜕n

⃒⃒
⃒⃒
𝑦=0

=

(︃
u‖
𝑢‖

⃒⃒
⃒⃒
𝑦=0

)︃
𝑢2𝜏 (�̃�, 𝑡). (27)

3. Numerical Method

The penalized wall function method, proposed in this paper, is implemented in the NOISEtte
flow solver [17, 18]. The system of equations (1)–(3), (8) are discretized using vertex-centered
finite-volume method, combined with quasi-one-dimensional variable reconstruction along a mesh
edge (EBR-scheme) [3], used to increase the order of accuracy. The approximation of the viscous
terms is based on Galerkin finite element method with linear basis functions. For time integra-
tion, an implicit three-layer 2nd order time integration method is used. At each stage of the
time integration the spatially discretized system of nonlinear equations is solved using Newton’s
method with the linearized space-difference system of equations at each Newton’s iteration solved
using stabilized bi-conjugate gradient method (BI-CGSTAB) [34].

Each time integration step of the main system of equations (1)–(3), (8) is preceded by
an implicit first-order time integration of Eq. (25), which for efficiency is discretized using first-
order upwind-biased finite-difference method. The Gaussian function (23) is used for the localized
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(a) Boundary conditions (b) Computational mesh in the vicinity of the bump
(mesh 2)

Figure 1. 2D Bump-in-channel flow problem

exchange layer masking function. The values of the normalized thickness of the exchange layer 𝜎+,
the length scale 𝑙𝑠, the relaxation parameters 𝜂𝑓 and 𝜂𝑠, and the initial value of 𝑢𝜏 used in the
simulation are discussed in Section 4.

4. Simulations and Results

4.1. 2D Bump-in-channel Flow

To demonstrate the effectiveness and accuracy of the proposed approach, the penalized wall
function method is applied for the two dimensional simulation of compressible turbulent flow
around a bump, also known as 2D bump-in-channel flow. The flow configuration is identical to
the NASA turbulence model verification case [1]. The simulation results are compared with the
reference solution [1], obtained using the CFL3D structured grid code [29] with the Spalart–
Allmaras model [31].

The problem is non-dimensionalized identically to the reference case [1] using the following
characteristic scales: the density of the undisturbed flow 𝜌∞, the inflow velocity 𝑈∞, the molec-
ular viscosity at the inflow 𝜇∞, and the unit length 𝐿. The 2D bump-in-channel flow problem
is solved for the Reynolds number 𝑅𝑒 = 3 × 106 and the Mach number 𝑀 = 0.2. A viscous
compressible flow around an infinitely thin plate with an origin at the point (0, 0) and a dimen-
sionless length of 1.5 with the bump of the height of 0.05 is considered. The geometry of the
bump is described as

𝑦 =

⎧
⎨
⎩

0.05
{︀

sin
(︀
𝜋𝑥
0.9 − 𝜋

3

)︀}︀4 if 0.3 < 𝑥 < 1.2,

0 if 𝑥 <= 0.3 and 𝑥 >= 1.2.
(28)

The problem set up and the boundary conditions are shown in Fig. 1a. The boundary
conditions are as follows. No-slip, adiabatic, zero eddy viscosity condition (12) are imposed
at the solid plate surfaces for the RANS simulations using Spalart–Allmaras model [31]. For the
penalized wall function method the no-slip and zero eddy viscosity conditions are replaced by
no-penetration condition (18), wall shear stress condition (19), and condition (21) for the eddy
viscosity.

The penalized wall function method is implemented as follows: the friction velocity field 𝑢𝜏
is defined in the entire computational domain with initial value of 𝑢𝜏 = 4 × 10−2. The PWF
equation (25) is integrated as a preprocessing step before each time integration step of the main
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(a) RANS simulations with S-A model (b) PWF simulations

Figure 2. Distribution of the skin friction coefficient on the bump for two different resolutions

system of RANS equations (1)–(3), (8). The updated values of 𝑢𝜏 are subsequently used in
the boundary condition (19) and the distance function definition (20) when solving the RANS
equations for the next time step. The PWF equation (25) is solved for the localized exchange
layer masking function 𝜒

𝛿
defined as the Gaussian function (23) with the normalized exchange

layer thickness 𝜎+ = 50, the normalized distance at the exchange location is 𝛿+𝐸𝐿 = 100, the
nondimensional characteristic length scale 𝑙𝑠 = 1 and time scales 𝜂𝑠 = 10−2 and 𝜂𝑓 = 10−2, and
the Reichardt’s law of the wall [28] for the wall function:

𝑓Rei
(︀
𝑦+
)︀

=
1

𝜅
ln
(︀
1 + 𝜅𝑦+

)︀
+ 7.8

[︂
1 − exp

(︂
−𝑦

+

11

)︂
− 𝑦+

11
exp

(︂
−𝑦

+

3

)︂]︂
, (29)

where 𝜅 = 0.41 is the von Kármán constant.
The simulations are carried out on structured meshes with the longitudinal grid size

∆ℎ‖ ≈ 10−2, which ensures the adequate resolution of the bump curvature. The wall normal
mesh size is exponentially increasing with the growth factor of 𝑞 ≈ 1.2 and mesh resolution in
the vicinity of the wall ∆ℎ⊥.

To demonstrate the convergence of the PWF method, the simulations are carried out for
two different near-wall resolutions: ∆ℎ⊥ = 1 × 10−5 and ∆ℎ⊥ = 1 × 10−4.

The mesh resolutions are chosen so that the RANS simulations with S-A model are well
resolved for the first case, denoted as mesh 1, and unresolved for the second case, denoted as
mesh 2. The zoomed-in view of the computational mesh in the vicinity of the bump, corresponding
to the unresolved case, is shown in Fig. 1b, where for better visual perception every tenth vertical
line is shown.

The results of the PWF simulations are compared with the reference solution [1] and with
the results of the RANS simulations with the Spalart–Allmaras model [31], which are carried
out on the same computational meshes using the same solver, but with no-slip and zero eddy
viscosity (12) boundary conditions instead of the no-penetration condition (18), wall shear stress
condition (19), and condition (21) used in the PWF method.

The effect of the wall model is demonstrated in Fig. 2, where skin friction coefficient 𝐶𝑓

distribution on the bump for two different resolutions is shown for both the RANS and PWF
simulations. As can be seen in Fig. 2a, the results of the resolved RANS simulations are in good
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(a) RANS simulations with S-A model (b) PWF simulations

Figure 3. Streamwise velocity profiles at 𝑥 = 0.75 for the 2D bump-in-channel flow problem for
two different resolutions

agreement with the reference CFL3D solution [1], while for the second case the skin friction
coefficient is significantly underestimated due to insufficient resolution of the boundary layer,
required by the S-A model. In contrast, as can be seen in Fig. 2b, the skin friction coefficient
distributions for the PWF simulations are practically identical for both resolutions and are
in good agreement with the results of the resolved RANS simulations, which highlights the
substantially lower near wall resolution requirements for the penalized wall function method
compared to the resolved RANS simulations with S-A turbulence model. Note that the deviations
of the skin friction coefficient at the leading and trailing edges of the plate are related to geometric
singularities caused by the sudden application of either no-slip or wall shear stress conditions on
the plate for the RANS and PWF simulations, respectively.

A similar trend is observed when considering velocity profiles. A comparison of the streamwise
velocity profiles in the wall-normal direction at 𝑥 = 0.75 is given in Figs. 3a and 3b, where the
results of the RANS and PWF simulations, respectively, are shown. As can be seen in Fig. 3a the
resolved RANS simulations with S-A model are in good agreement with the reference CFL3D
solution [1], while for the unresolved case (mesh 2) the velocity profile is wrong. Substantially
lower wall resolution requirements of the PWF method are demonstrated in Fig. 3b, which shows
good agreement between the results of PWF simulations for all resolutions both in the boundary
layer and in the outer region. Moreover, as can be seen in Fig. 3b, the PWF solution in the
outer region, marked by the exchange location, is in excellent agreement with the results of the
resolved RANS simulation with S-A turbulence model.

The distribution of relative turbulent viscosity 𝜈+T = 𝜈T/𝜈 in the wall-normal direction at
𝑥 = 0.75 is shown in Figs. 4a and 4b for RANS and PWF simulations, respectively. As can be
seen in Fig. 4a the value of turbulence viscosity is substantially higher for the unresolved case,
compensating for the lack of wall normal resolution. The results of the resolved RANS simulations
with the S-A turbulence model are slightly higher then the reference CFL3D solution [1], which is
due to slightly lower resolution compared to the reference case. The eddy-viscosity for the PWF
simulations for both resolutions are identical and in the outer region (𝑦+ > 𝛿+𝐸𝐿) are slightly
lower compared to the eddy-viscosity of the resolved RANS simulation with the S-A turbulence
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(a) RANS simulations with S-A model (b) PWF simulations

Figure 4. Eddy-viscosity profiles at 𝑥 = 0.75 for the 2D bump-in-channel flow problem for two
different resolutions

model. This discrepancy is related to limiting the wall distance according to Eq. (20), which, in
turn, results in almost constant eddy-viscosity in the inner region (𝑦+ < 𝛿+𝐸𝐿).

Conclusions

A novel penalized wall function method is proposed for simulations of wall-bounded com-
pressible turbulent flows. The new approach, similar to classical wall function methods, is based
on the Reynolds-averaged Navier–Stokes (RANS) equations to model the outer region of the
turbulent boundary layer, while approximating the inner part by an analytic wall function. The
differential formulation to match the outer and wall function solutions is reformulated in a form of
a generalized characteristic-based volume penalization method for the friction velocity to model
the transfer of the shear stress from the outer region of the boundary layer to the wall and to
impose the wall-stress boundary conditions on the RANS solution. The exchange location in the
new formulation is specified implicitly through a localized source term in the boundary layer
equation, which eliminates the need to interpolate the solution to the exchange location as well
as the need to explicitly determine the position of the exchange location. The wall-stress condi-
tion is determined by solving an auxiliary equation for the friction velocity, ensuring the correct
matching of the RANS and the wall function solutions at the exchange layer. The penalized
wall function method is demonstrated for Reynolds-averaged Navier–Stokes equations with the
Spalart–Allmaras turbulence model, but can be used in conjunction with any turbulence model
that allows transfer of shear stress from the outer region of the boundary layer to the wall.

The proposed method noticeably reduces the near-wall mesh resolution requirements without
significant modification of the RANS solver. The formulation of the penalized wall function
method is general and can be used in context of any numerical method based on either structured
or unstructured meshes.

The effectiveness of the developed penalized wall function method is demonstrated for two-
dimensional bump-in-channel flow, which is characterized by the presence of a significant lon-
gitudinal pressure gradient without flow separation. The simulations demonstrate the sufficient
accuracy of the PWF solution on grids with 10 times coarser near wall resolution compared to
the resolution required by the the Spalart–Alamaras model with no-slip boundary conditions.
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Further development of PWF method includes its generalization to problems with strong
pressure gradients and flow separation, which would require the reformulation of the method in
terms of differential equilibrium and non-equilibrium wall functions.
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A novel hybrid dynamic mesh redistribution – immersed boundary method for simulation

of turbulent flows around rotating obstacles of complex geometry and analysis of tonal acoustics

is proposed. The feasibility of the approach is demonstrated by considering a drone propeller

problem. The results of three-dimensional Reynolds-averaged Navier–Stokes simulations using the

proposed approach are compared to the results of body-fitted unstructured simulations in non-

inertial reference frame. The dynamic mesh redistribution method allows the reposition of mesh

points taking into account the shape of the moving body while retaining the mesh topology. The

cell size and quality of the dynamically redistributed mesh strongly depend on the curvature of the

body surface. The position and shape of the moving obstacle is prescribed by a distance function

defined on an adaptive octree. The results of simulations using the proposed method are in good

agreement with both the results of body-fitted simulations and the experimental data.

Keywords: moving adaptive mesh, immersed boundary method, drone rotor, rotor acoustics,

unstructured mesh, turbulent flow.

Introduction

The problem of flow simulation around moving obstacles or body parts is of high importance

in computational aerodynamics and aeroacoustics. There is a number of different modeling tech-

niques and mesh changing methods that are currently being developed to approach the above-

described problem. Most popular approaches preserve the classical body-fitted (BF) meshes,

requiring boundary nodes to coincide with the obstacle surface. For instance, mesh deformation

method, based on quasi one-dimensional elastic media [6], is the least computationally expensive

body-fitted approach, which allows efficient deformation of the computational mesh governed

by the body motion. The main disadvantage of the mesh deformation method is its inabil-

ity to handle large obstacle displacements leading to mesh deterioration and/or entanglement.

An alternative approaches based on mesh recomputation [7] or adaptive mesh refinement [8],

regardless of their computational efficiency, introduce interpolation errors and significantly com-

plicate the process of parallelization, since the topology and mesh size can change over time.

The Chimera methods [9] utilizing two or more superimposed computational meshes also require

interpolation and data exchange between the meshes.

This paper describes a novel hybrid dynamic mesh redistribution – immersed boundary

method (DMR-IBM), capable of simulating compressible flows around arbitrary number of ob-

stacles, either moving according to their own laws or displaced under the action of aerodynamic

forces. The feasibility of combining the immersed boundary method with the dynamic mesh

redistribution is evaluated for the acoustic simulations of a compressible flow around an iso-

lated drone rotor. The immersed boundary approach is based on the Brinkman penalization

method [1–5], where the obstacle is modeled by introducing additional source terms into the
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governing equations describing the evolution of compressible viscous flow. These sources define

the body as a continuous porous medium with low permeability. The source terms are non-zero

inside the moving obstacle and zero – outside. Thus, the use of the immersed boundary method

makes it possible to define the external flow problem in a simply connected domain, which opens

up the possibility of using the dynamic mesh redistribution method to position mesh points in

the vicinity of the surface of the moving obstacle, while maintaining the mesh topology. In this

paper, we consider the problem of aeroacoustics simulation of a drone propeller taken as an

example of a rotating body of a very complex geometry. The hybrid DMR-IBM was previously

formulated for two-dimensional flows and tested for the rotating projection of the propeller [5].

In this paper, the DMR-IBM is generalized to three dimensions and is verified for the problem

of tonal acoustics of a propeller by comparing the results of the simulations against the data

obtained using the classical body-fitted approach in non-inertial frame of reference. The DMR-

IBM implemented for a propeller located inside of a puck-shaped domain with the mesh points

dynamically redistributed to follow the motion of the propeller and to resolve the boundary

layer around it. Such an approach would allow, in future, to use DMR-IBM for simulation of

flows around multiple rotating objects located within its own puck-shaped subdomian belong-

ing to a larger computational domain, while approximating fuselage using a body-fitted mesh

approach. An example of such a problem would be a flow around vehicle with several rotors,

e.g., a quad-copter.

A complex geometry of the propeller is characterized by sharp corners, very thin parts

of blades, and high curvature regions. To provide a sufficiently high resolution mesh near the

rotating propeller surface by means of dynamic mesh redistribution method is quite challenging

problem. To overcome this challenge, a number of novel methods has been developed. To start,

the initial mesh with high node density in the region of the propeller rotation is constructed.

Then the control mesh adaptation metric is developed. This metric depends on the distance

function and its gradient as well as on parameters of the immersed body (i.e. propeller) and its

surface, such as curvature and distances to the internal and external medial axes.

The article is organized as follows. Section 1 gives the information on the problem for-

mulation. In Section 2 we discuss the choice of the mathematical model for two approaches.

Section 3 contains information about the computational set-up, including details of the numeri-

cal method, computational meshes, mesh adaptation algorithm and its parallel implementation

in corresponding subsections. Section 4 is devoted to the numerical results of aerodynamics and

acoustics. Conclusion summarizes the study and points directions for further work.

1. Problem Formulation

The problem considered in this paper is similar to the APC Slow Flyer 10x4.7 problem,

namely, the small-scaled UAV rotor problem studied in [10]. Similar to Ref. [11], the drone

problem with the rotor and hub radii of R = 0.127 m and r = 0.0127 m, respectively, is studied.

The blade of the rotor is based on the Eppler E63 airfoil (blade inner part) and Clark-Y airfoil

(near blade tip) with non-linear twist and chord spanwise distribution (Fig. 1). The propeller

is designed for 2 000–20 000 rotations per minute (RPM), while the regime under consideration

is 4 000 RPM, which corresponds to the tip velocity Vtip = 53.2 m/s. In the computational

setup, the size of the propeller is normalized by the maximum length of the chord of the blade

b = 0.0287m. The Reynolds number, defined using the blade tip velocity and the blade maximum

chord, is Re = ρ0Vtipb/µ0 ≈ 105, where ρ0 = 1.204 kg/m3 and µ0 = 1.815 × 10−5 Pa · s
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corresponding to the parameters of the air at temperature of T0 = 293.15K. The tip Mach

number is M = Vtip/
√

γRT0

M = 0.156, where γ is the adiabatic index, R is the gas constant and

M is the molar mass of the gas.

Figure 1. The rotor geometry

2. Mathematical Model

Large Reynolds number, high velocity flows are typical for aviation applications. Direct

Numerical Simulation (DNS) of such flows requires high resolution computations both in space

and time that are beyond the current realm despite the continuing growth of the performance of

supercomputers. There is a number of approaches which can be applied to model turbulent flow

near propeller, including RANS, LES and hybrid RANS-LES approaches. It should be mentioned

that there is no full understanding yet that correct modeling of aerodynamics using presented

technique is feasible. We are aiming to simulate rotor acoustics. So, differences that [12] presents

by comparing RANS and RANS-LES for simulation of flow around rotating propeller do not

make big differences in terms of our aims. For that reason, the turbulent flow simulation uses

compressible Reynolds-averaged Navier–Stokes (RANS) equations with the Spalart–Allmaras

turbulence model [13]. The system of RANS equations is written in the form of conservation

laws for the vector Q of conserved variables

Q = (ρ, ρu, E, ρν̃)T ,

where u = (u1, u2, u3) is the velocity vector, ρ is the density, E = ρu2/2 +ρε is the total energy,

ε is the specific internal energy, p is the pressure defined by ideal gas equation p = ρε(γ − 1),

γ = 1.4 is the adiabatic exponent, ν̃ is the evolutionary variable which is used to determine the

turbulent viscosity µT according to the Spalart–Allmaras model:

µT = ρν̃
χ3

χ3 + 357.911
, χ =

ρν̃

µ
,

where µ is the coefficient of dynamic molecular viscosity.

The system of Reynolds-averaged Navier–Stokes equations can be written in the following

vector form:
∂Q

∂t
+∇ · (FC(Q)−FD(Q,∇Q)) = S(Q,∇Q). (1)

System (1) includes composite vectors FC and FD, each component of which FCi and FDi
in coordinate direction xi (i = 1, 2, 3) represents the convective transport and diffusion flux

vectors, respectively. Operator (∇·) is the divergence operator.
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The convective transport flux vector is given as a function of the physical variables ρ, u, p

FCi (Q) = (ρui, ρuiu + pI, (E + p)ui, ρν̃ui)
T , (2)

where I is the identity matrix. The diffusion flux vector is defined as a function of physical

variables and their gradients as

FDi (Q,∇Q) =

(
0, τi1, τi2, τi3, τijuj + qi,

3

2
(µ+ ρν̃)

∂ν̃

∂xi

)T
, (3)

where the components of the viscous tensor of viscous stresses and the heat flux vector can be

written as follows:

τij = (µ+ µT )

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ui
∂xi

)
, qi =

(
µ

Pr
+

µT
PrT

)
∂ε

∂x
, (4)

where δij is the Kronecker symbol, µ is the molecular viscosity coefficient, Pr = 0.72 and PrT = 1

are the molecular and turbulent Prandtl numbers, respectively.

Vector S (Q,∇Q) is a source term describing the influence of the external forces that are

not related to the transfer processes of the target variables Q:

S (Q,∇Q) = (0, 0, 0, Pν (Q,∇Q)− Yν (Q,∇Q) + 0.992∇ν̃ · ∇ν̃)T . (5)

The detailed definition of terms Pν (Q,∇Q) , Yν (Q,∇Q) describing respectively the gen-

eration and dispersion of turbulence is given in paper [13].

Let us formulate the immersed boundary condition for system (1). At the boundary between

a solid ΩB and a medium Ωf there is a no-slip condition:

u|∂ΩB
= V. (6)

Condition (6) is defined by Brinkman penalization method [1]. The Brinkman penalization

modifies the right-hand side of the system (1) by adding the extra source terms so that the new

vector of source term becomes as:

Spenal (Q,∇Q) = S (Q,∇Q) +

(
0,

χ

η
ρ(ui − uBi),

χ

η
ρui(ui − uBi), 0

)
, (7)

where χ defines the body location at every time moment as follows:

χ(t) =

{
1, x ∈ ΩB(t)

0, x ∈ Ωf (t).
(8)

Parameter η determines the rate of the relaxation of the flow velocity to the velocity of the

moving body. In this paper the penalization parameter is equal to 10−4. When we use the

standard body-fitted approach to simulate the flow over the rotating propeller we solve the

RANS equations in non-inertial frame of reference [14]. Let V = (V1, V2, V3)T = (ω × r) be

the peripheral propeller speed determined by angular velocity vector ω and radius vector of the

point in medium. Following this notation, the system of RANS equations (1) can be rewritten

as
∂Q

∂t
+∇ · (FC(Q)−FR(Q)−FD(Q,∇Q)) = S̃(Q,∇Q), (9)
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where FR is the rotation transport flux with the components

FRi (Q) = (ρVi, ρuiV, EVi, ρν̃Vi)
T . (10)

Source term (5) is now dependent on angular velocity:

S̃ (Q,∇Q) = (0, ρω × u, 0, Pν (Q,∇Q)− Yν (Q,∇Q) + 0.992∇ν̃ · ∇ν̃)T . (11)

From the point of view of an observer in the inertial coordinate system, the system of

equations (9)–(11) with flux vectors (2) and (3) describes the change in conservative variables

due to their convective and diffusive transport in a medium rotating at speed V, the influence of

the pressure gradient and the rotation of the velocity vector at the azimuthal angle ψ(t) = − |ω| t.

3. Computational Set-up

3.1. Numerical Method

The system of RANS equations (1) is solved using the fifth order Edge-based Reconstruc-

tion (EBR5) scheme [15–17]. The higher accuracy is achieved through the quasi-one-dimensional

reconstructions of variables on the extended stencils oriented along the mesh edges. The approx-

imation is built in such a way that being applied to translationally invariant meshes (i.e., meshes

that transform into themselves when translated by an edge vector) the EBR5 scheme provides

the fifth order of accuracy.

The EBR scheme for the Euler equations presents a vertex-centered method with physical

and conservative variables defined at the mesh vertices around which the computational cells of

the dual mesh are built. Thus, a finite-volume approximation of convective flows is constructed

for dual mesh cells acting as finite volumes. The viscous terms of the RANS equations are

approximated using the finite-element method with the linear basis functions.

For the time integration, the implicit second-order scheme with Newton iterations is used to

solve the nonlinear system of algebraic equations resulting from the space discretization. At each

Newtonian iteration, the corresponding system of linear equations is solved using the stabilized

biconjugate gradient method.

3.2. Dynamic Mesh Redistribution Method

To build a dynamic mesh redistribution method, we consider a computational mesh as

an elastic material which is deformed when zones of mesh compression follow the boundaries

of moving obstacles. The time-dependent elastic deformation is defined by a special mapping

x(ξ, t) : Rd × R → Rd. Let C define the Jacobian matrix of mapping x(ξ, .), where cij =
∂xi
∂ξj

.

Let xn(ξ) denote the mapping of the initial mesh onto the mesh at time tn.

We consider the mapping of a regular tetrahedron Ti with the vertices coordinates h0, h1,

h2, h3 in Lagrangian domain Ωξ to a tetrahedron with Eulerian coordinates of the vertices

p0, p1, p2, p3 in domain Ωx. The Eulerian coordinates are the desired coordinates in the

computational domain. For our problem formulation Ωξ is some speculative domain that consists

of regular tetrahedrons and vol(Ωξ) = vol(Ωx). At the time moment t for each vertex of the

tetrahedron Jacobian matrix of this mapping can be written as ∇ξx(ξ, t)H−1, where ∇ξx(ξ, t) =

(p1−p0, p2−p0, p3−p0) and H = (h1−h0, h2−h0, h3−h0). Here ξ are local barycentric

coordinates inside parametric tetrahedron.

V.G. Bobkov, T.K. Kozubskaya, L.N. Kudryavtseva, V.O. Tsvetkova

2022, Vol. 9, No. 4 73



To keep track of moving body we consider metric in Eulerian coordinates which depends

on body geometry and time. Let G(x, t) denote metric tensor and Q = Q(x, t) be an arbitrary

matrix factorization of metric tensor G(x, t), defined by

QTQ = G(x, t), detQ > 0.

To introduce the variational problem for mesh optimization one can assume that xn(ξ) is

a quasi-isometric piecewise affine one-to-one mapping. We find the mapping of the initial mesh

onto the mesh at time t = tn+1 as minimizer of this semi-discrete functional

F (x(ξ, t),xn(ξ)) =
∑

i

∫

Ti

W (Q(xn(ξ), t)∇ξx(ξ, t)H−1) detHdξ, (12)

where C = Q∇ξx(ξ, t)H−1 is the Jacobian matrix of mapping from regular tetrahedron Ti to

i-th tetrahedron in metric space.

In functional (12) function W (C) defines polyconvex elastic potential (internal energy),

which is a weighted sum of the shape distortion measure and the volume distortion measure:

W (C) = (1− θ)
1

d
tr(CTC)

detC2/d
+

1

2
θ

(
1

detC
+ detC

)
. (13)

In most cases we set θ = 4/5. The elastic potential is minimum when the deformation is isometric,

meaning that only rotation and translation are allowed. The details of the current variational

approach are written in [18].

To use the mesh vertices effectively, the adaptation should be anisotropic. At the same time,

it is necessary to qualitatively capture the surface of the body and its features. The correct defi-

nition of the adaptation metric requires normal and tangential directions at each point p which

are defined by the isosurface of signed distance function u(x, t) passing through p and stretch-

ing coefficients σi along these directions. When σi is large, the local cell size in correspondent

direction is small. Function σ1 = σnormal(x, t) = φ(u(x, t)) defines the mesh stretching in the

normal direction to the body and σ2 = σ2,tangential(x, t) and σ3 = σ3,tangential(x, t) define the

spatial distribution of the anisotropy. We require the highest anisotropy in a thin boundary layer

near the body, then the anisotropy is partially reduced to zero away from the body. Here 1D

function φ(·) : R1 → R1 is a hyperbola, which defines the mesh density in normal direction and

guarantees transition from small mesh cells to large mesh cells with the prescribed rate of growth

of mesh cell size. The definitions of σ2 and σ3 require extra information about the body shape

such as principal curvatures, principal normal directions, and distances to the medial axis. All

this volumetric data is gained during the preprocessing stage. Parameters σ2 and σ3 are used for

defining of the control metric, so that mesh cells are close to isotropic near the sharp edges and

anisotropic in the tangential surface near the regions close to a plane. The complete procedure

of geometry preparation and the algorithm for constructing the anisotropic mesh adaptation

metric is described in detail in [19].

We solve our adaptation mesh problem in a small cylinder that encompasses propeller geom-

etry. Vertices on the boundary of this small cylinder are fixed. To achieve a good mesh refinement

at all the edges of the propeller geometry and provide continuity of point distribution through

the fixed boundary, the initial mesh is specially deformed. The vertices in the small cylinder are

slightly redistributed to follow up the features of the body shape: an area near the hub and
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the region where the tip of the blade moves have higher mesh density as shown in Fig. 2. To

account for that nonuniformity, the background metric is introduced. The background metric is

a spherical metric where the eigenvalues are defined as cubic root of a ratio of average adjacent

cell volume in parametric space to the correspondent volume in physical space. So now there

are two metrics: background metric and adaptation metric Gx. For the metric interpolation the

log-Euclidian framework [20] is used. The paper [20] proposes introducing the metric logarithm

and the commutative logarithm addition.

Figure 2. The initial mesh in a puck-shaped domain to start the adaptation to the propeller
surface

Metric tensor Gx is evaluated in the mesh vertices which is crucial to the stability of very

thin and highly compressed mesh layers. To solve the optimization problem on the each time step,

we apply the preconditioned gradient descent technique [21] where the minimization direction is

computed via an approximate solution of the linear system with the reduced Hessian matrix of

the functional. The final mesh increment along the minimization direction is computed via the

1D search technique. The full description of the variational approach of the adaptation algorithm

is presented in [18].

3.3. Computational Meshes

3.3.1. Mesh for body-fitted approach

The computational mesh for the body-fitted approach is a cylinder with radius 10R and

height 30R (Fig. 3). R is the propeller radius. Propeller was placed in the center of the compu-

tational domain. The mesh near the rotor surface is filled with prismatic elements to resolve the

boundary layer. A height of the near-surface element is chosen to meet y+ < 1 criteria in the

CFD simulation, meaning the viscous sublayer is resolved. y+ is the dimensionless wall distance

defined as y+ =
yuτ
ν

, where uτ =

√
τω
ρ

is friction velocity, τω is the wall shear stress, y is the

absolute distance and ν is the kinematic viscosity.

The rest space between prismatic mesh on the rotor surface and the outer domain boundaries

is filled with tetrahedrons. As a result, the unstructured mixed-element mesh is build with 2.6

million nodes and 9.9 million elements.

3.3.2. Adaptive mesh for immersed boundary method

To facilitate the mesh adaptation with the metric depending on the distance function the

triangulated surface of the propeller is prepossessed and a k-d tree and an octree are built for
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Figure 3. The mesh for the BF approach

fast calculations of the exact and approximate signed distance values, respectively. When pos-

sible approximate distance is used, which is calculated by interpolating exact values stored in

the octree nodes [22]. In addition to interpolation of the signed distance function the octree is

also used to access some shape parameters of the propeller such as principal curvatures, prin-

cipal normal directions, and distances to internal (Fig. 4 and Fig. 6) and external (Fig. 5 and

Fig. 7) medial axes, which are used to define the adaptation control metric. These parameters

are found at the vertices of the triangulated surface and then they are extrapolated to the nodes

of the interpolation grid (octree) based on the nearest distance. The algorithm for the curva-

ture calculation is described in [23]. The medial axes are approximated using the PowerCrust

algorithm [24].

Figure 4. The approximate internal medial axes

Figure 5. The approximate external medial axes
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Figure 6. The distances from the surface vertices to the internal medial axes

Figure 7. The distances from the surface vertices to the external medial axes

The initial tetrahedral mesh is built in a cylinder-shaped domain with same sizes as in the

BF approach with large number of vertices placed near the propeller surface. The total mesh

size is 4.4 million vertices with the majority of vertices concentrated in a puck-shaped domain

covering the propeller motion region.

The propeller geometry is virtually impossible to reproduce correctly on a simply connected

mesh without grid adaptation, since the resolution of thin blade edges requires a significant

mesh refinement in the vicinity of the propeller surface.

Figure 8. XZ plane section of the DMR-IBM simulation mesh near the propeller (top) and
fragments of the adapted mesh near the hub and near the blade tip (bottom)

The mesh redistribution method is then applied to refine the grid to approximately one

tenth of the initial mesh size. For the resulting mesh y+ ∼ 200, which corresponds to the log-law

region. Figure 8 shows a fragment of the adaptive mesh in XZ section and a more detailed image
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of the mesh near geometry features: the hub and its connection with the blade and the end of

the blade. In the presented figures all the points belonging to the body are circled in red. Mesh

elements sizes depend on the shape of the body: the mesh is more isotropic near corners and in

high curvature regions. Figure 9 presents the body shape in DMR-IBM simulation.

Figure 9. The propeller shape in the DMR-IBM simulation (only the cells with all the vertices
inside the body are drawn)

The application of mesh redistribution method is complicated by the presence of thin edges.

The distance between the walls of the blade is extremely small and sharp corners produced by

these walls are not always well refined using the developed mesh adaptation approach. In the

current paper the problem of narrow walls was practically avoided by using a slightly anisotropic

initial mesh inside a small cylinder. However, the mesh adaptation algorithm to very narrow

parts would need to be further investigated.

3.4. Technology of Acoustics Measurements

To measure and compare the propeller acoustics characteristics in the near field, a set of

probes are placed around the rotor. The probes are radially distributed with angular step 10◦ in

plane of rotor rotation (XY ) and in XZ plane (Fig. 10). The Y Z plane is not considered since,

due to the symmetry of the case setup, it is equivalent to the XZ plane.

Figure 10. Acoustic probes location: XY plane (black) and XZ plane (blue)
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Thus, the following four sets of probes are used: two sets at planes XY , XZ at distance

2R from rotor center and two sets at planes XY , XZ at distance 3R from rotor center. The

azimuthal angle in plane XZ is measured from Ox axis: positive azimuthal angle corresponds

to the upper hemisphere and the negative – to the lower (downstream) one.

3.5. Parallel Implementation

All algorithms are implemented in the CFD in-house code NOISEtte. It has MPI+OpenMP

parallelization for supercomputers made of multi- and manycore processors. A detailed de-

scription of the parallel algorithm is given in [25]. The dynamic mesh adaptation also follows

MPI+OpenMP parallelization model. The parallel algorithm uses spacial mesh decomposition.

Since degrees of freedom which define mesh deformation are mesh vertices, we build a consistent

partitioning of mesh cells and vertices: computational domain is split into connected subdo-

mains consisting of full mesh cells. Mesh vertices belonging to boundaries between subdomains

are distributed between subdomains. Parallel BiCGStab-based iterative solver with ILU2 pre-

conditioner is used [21]. Input data for this solver are right hand side partitioned into blocks and

sparse matrix partitioned into block rows. Each block precisely corresponds to the partitioning of

mesh vertices. The implementation of iterative scheme is based on extended subdomains defining

two cell-wide subdomain overlap. We have found that one minimization iteration was enough in

order to make mesh precisely follow domain boundaries with prescribed compression. Moreover,

it was found that mesh generator can predict mesh deformation with time step exceeding that of

RANS solver. In that case on the intermediate time steps mesh is obtained using interpolation

technique without any high-load operations. The interpolation sharply improves computational

efficiency of mesh deformation solver, which is described in [26].

It should be mentioned that the CFD/RANS simulation of the current problem allows for us-

ing the time step exceeding maximal adaptation step. Thus, for the problem under consideration,

the adaptation solver was called at each CFD step, while the size of this CFD step was restucted

to meet the requirements of the adaptation method. This fact coupled with non-optimal paral-

lel implementation of adaptation solver resulted in rather low efficience of DMR-IBM solution.

So far, the current performance of the DMR-IBM method is 8.7 times more expensive than

the BF-approach on identically sized meshes with the same time step. The optimized parallel

implementation is currently ongoing.

4. Numerical Results

4.1. Validation of BF and DMR-IBM Results on Aerodynamic

Characteristics

The flow field in the both DMR-IBM and BF simulations looks similar Fig. 11. There is a

jet-type flow downstream the rotor induced by the rotation with the maximum velocity below

the blade tips. The tip vortices are well resolved up to 1.5 revolutions and, due to the high

mesh resolution in the propeller rotation region in the DMR-IBM case, the tip vortex in the

DMR-IBM simulation is resolved better than in the BF case.

In both BF and DMR-IBM simulation the rotor thrust coefficient ct and power coefficient cp

are compared against the experimental data [11].
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Figure 11. The flow field: velocity magnitude, streamlines in ZX section with Q-criterion
isosurfaces for the BF case (left) and DMR-IBM case (right)

Table 1. Aerodynamic coefficients comparison with the reference data

Reference BF δ, % DRM-IBM δ, %

Thrust coefficient ct 0.1158 0.1178 1.7 0.0947 –18.3

Power coefficient cp 0.0466 0.0465 –0.2 0.0451 –3.2

The result of comparison of aerodynamic coefficients with the experimental data is presented

in the Tab. 1 where the relative difference is calculated as δ =
(
ct|p − creft|p

)
/creft|p ·100%. As seen

from the Tab. 1, the aerodynamics coefficients are noticeably underestimated in the DMR-IBM

simulation. It may be a result of a poor mesh resolution of the boundary layer on the rotor blade

surface. Another possible reason of this shortcoming could come from not taking into account

the Lagrangian convection in the Brinkman penalization term in (7).

4.2. Comparative Analysis of Acoustic Characteristics

As mentioned above, the primary goal of the work is to study the near-field acoustics

generated by the rotating propeller modelled using BF and DMR-IBM approaches. Among

the acoustic characteristics, we consider the spectra of pressure pulsation and the directivity

diagrams of the pressure pulsation obtained using the above-described probes at the blade

passing frequency (BPF). Figure 12 represents the specific spectra of pressure pulsations in two

probes – one in the plane of rotation XY with azimuthal position 0◦ (Fig. 12, left) and the other

in the plane XZ with azimuthal position 40◦. The presented spectra are built with sampling

frequency 6.65 Hz.

As expected, the spectra maxima in both BF and DMR-IBM simulations are reached at the

BPF frequency and its multiples. The difference between the BF and DMR-IBM results at first

BPF amplitude is about 2.1 dB for the first probe and 1dB for the second one. It is noticeable

that the amplitudes of the harmonics that are multiples of the BPF frequencies in the rotation

plane obtained in the DMR-IBM simulation are much closer to the results of the BF simulation

than in the other azimuthal position.
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Figure 12. The spectra of pressure pulsation at the probes XY plane azimuth 0◦(left), XZ
plane azimuth 40◦ (right)
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Figure 13. The directivity diagram of the first BPF pressure pulsation at the probes at distance
2R

In Fig. 13 and Fig. 14 the directivity diagram of the first BPF for the XY and XZ planes

are presented for distances 2R and 3R. It is seen that in the plane of rotation the maximum

difference between BF and DMR-IBM computation is less than 2.9 dB for 2R and 2.2 dB for

3R. On the other hand, in the XZ plane for azimuthal positions −75◦ < ϕ < 75◦ the maximum

difference is less than 2 dB for both distances. It should be noted that the pressure pulsation

measured at the rotation axes should theoretically be zero. In our case, it is not so (it is about

40–60 dB) solely because of the asymmetric setup. This fact is confirmed by our simulation of

a single blade with the periodicity condition in azimuthal direction where it is really zero (see

Ref. [14]). Note also that in the DMR-IBM simulation the asymmetric setup is aggravated by

the slightly dynamically changing geometry of the blade.

Conclusion

The paper discusses a feasibility of simulating turbulent flow around rotating bodies of

complex geometry and the associated acoustics using the developed hybrid dynamic mesh re-
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Figure 14. The directivity diagram of the first BPF pressure pulsation at the probes at distance
3R

distribution – immersed boundary method with mesh metric based on distance function to the

obstacle surface. In this paper, we consider the problem of simulation of aeroacoustics of a drone

propeller taken as an example of a rotating body of complex geometry. In addition to evaluating

the developed method on a representative case, the problem of a single-rotor acoustics has an

obvious extension important for a wide range of applications. The current results can be viewed

as building block for simulation of the acoustics of multi-rotor machines, the use of which in

the daily life is steadily increasing. Although in terms of tonal acoustics the results obtained by

the developed hybrid dynamic mesh redistribution – immersed boundary method look promis-

ing, the quality of aerodynamic results is not satisfactory and calls for further investigation.

One direction that can improve the results of the DMR-IBM simulations to increase the near

wall mesh resolution to better represent the immersed solid. Another area of future research is

to use wall-functions to decrease the near-wall mesh resolution requirements of the DMR-IBM

simulations.
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The major points in the development of the parallel multiplatform multipurpose numeri-

cal code solving the full unsteady Navier–Stokes equations are presented. The developed code

is primarily designed for running on multi-GPU computational devices but can also be used on

traditional multicore CPUs and even on manycore processors such as Intel Xeon Phi. Physical

models include calorically perfect inert gas, single- and multi-temperature approaches for chem-

ically reactive flows and an Euler–Euler model for gas-particle suspensions. Main details of the

implementation are described. Shock capturing TVD and WENO schemes in general curvilinear

coordinates are used for spatial approximation. Explicit, semi-implicit and fully implicit schemes

are employed for advancing solution in time. The code is written in C++ with CUDA API and

opensource libraries, such as MPI, zlib and VTK. A few examples of numerical simulations are

briefly described to provide general idea of the numerical code capabilities. They include a super-

sonic flow past a wedge, a jet exhausting from a square nozzle, a heavy gas bubble descending in

a lighter medium and a heterogeneous detonation in gas-particle suspension.

Keywords: Navier–Stokes equations, numerical simulation, compressible flows, DNS, thermo-

chemical non-equilibrium, GPGPU, CUDA.

Introduction

Currently numerical simulation has become one of the main tools for conducting scientific

research. Fluid dynamics of compressible flows is one of the areas where numerical tools are

particularly ubiquitous. However, the compressibility of the flow is associated with the presence

of shock waves and other hydrodynamic discontinuities and, therefore, requires rather sophisti-

cated and computationally expensive shock-capturing numerical schemes. Additionally, modern

fundamental problems of interest are associated with a wide range of considered scales, includ-

ing transitional to turbulent and fully turbulent flows, chemically reactive flows, and multiphase

flows. And despite the fact of extensive use of parallel computations, such simulations can take

hundreds of hours of computational time even on high-performance clusters.

There is a large number of high-performance codes developed for numerical simulations

of compressible flows. In particular, in Russia well-known research codes are NERAT [1],

Noisette [2], EWT-TsAGI [3], NTS [4], Flowmodellium [5], VP2/3 [6], Jet3D [7], SINF [8]

as well as more industry-oriented codes LOGOS [9] and FlowVision [10].

These and many other codes implement different physical models for laminar, turbulent,

inert and chemically reactive flows, use different computational meshes and numerical schemes

and parallelization techniques. The latter include traditional MPI-based approach, more recent

OpenMP application programming interface and even rather exotic OpenCL framework. For any

of the numerical tools mentioned above, physical models, numerical techniques, parallelization
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methods and programming solutions used in a code reflect the research fields of interest, personal

experience and specific needs of its developers and users.

One of the reasonable ways to increase efficiency and significantly reduce computational

wall-clock time is to employ modern general-purpose graphics processing units (GPGPU) with

high computational efficiency and data throughput (see, e.g., [11–13]). The present paper sum-

marizes the main details of the HyCFS-R numerical code [14–17] developed at the Laboratory of

Computational Aerodynamics of Khristianovich Institute of Theoretical and Applied Mechanics

and designed to run on hybrid CPU/GPU computational systems. The code solves the full un-

steady Navier–Stokes equations using modern shock capturing high-order schemes. In this paper

we describe governing equations and discuss some details of the implementation including the

problems specific for hybrid and heterogeneous computations.

The rest of the paper is organized as follows: Section 1 describes governing equations and

numerical techniques of their solution, in Section 2 the details of the program implementation

are given, including general architecture, data structures etc., and in the last section examples

of performed numerical simulations are presented.

1. Governing Equations

The code solves the full 3D unsteady Navier–Stokes equations for inert and chemically

reactive multispecies mixtures on a structured mesh in general curvilinear coordinates:

∂Q

∂t
+
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
=
∂Fv,x

∂x
+
∂Fv,y

∂y
+
∂Fv,z

∂z
+ S, (1)

Q = (ρu, ρv, ρw,E, ρ, ρ1, . . . , ρN , ρi1Ev1
, . . . , ρiMEvM

, ρν̃, ρpup, ρpvp, ρpwp, Ep, ρp)
T , (2)

where Q is the pseudo-vector of conservative variables, F, G, H are convective fluxes, Fv, Gv,

Hv are viscous fluxes, and S denotes source terms.

Options for physical models in numerical simulation include:

• A mixture of N calorically perfect gases for laminar and turbulent regimes. Specific heats

for each species are constant, i.e., do not depend on the temperature and are calculated

in accordance with the number of the molecular degrees of freedom.

• A thermally perfect gas mixture with the single-temperature model for finite-rate chemical

kinetics. In this case gas mixture thermodynamic properties are calculated using widely

employed approach based on the polynomial approximations with coefficients taken from

one of the available sources: the database by Alexander Burcat [18], the NASA database

[19] or approximations used by Gupta [20].

• A multi-temperature model with equations for the vibrational energies of molecular species

and finite-rate chemical kinetics. In this case, we assume that thermodynamic properties of

the translational-rotational mode of the species are given by the relations for the calorically

perfect gas, so the specific heats are constant and depend only on the number of degrees

of freedom. The rate of translational-vibrational exchange is calculated using either the

classical Landau–Teller equation [21], or new model [22], which was obtained using the

rigorous methods of the kinetic theory of gases.

• An Euler–Euler model for the chemically reactive gas-particle suspension. The model is

based on the concept of interpenetrating continua. The governing equations that describe
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the detonation flow in polydisperse gas suspensions of aluminum particles are based on

the works of Fedorov and Khmel [23–25].

The pressure of the gas mixture in all cases is calculated using Dalton’s law from the partial

pressures of components. The transport coefficients of the gas mixture are calculated from those

of the individual species using the Wilke mixing rule. Dynamic viscosities of individual species

can be calculated using the power law, the Sutherland law or via Ω-integral approximations of the

kinetic theory. The thermal conductivities are given by the Eucken formula with Hirschfelder

correction [26]. Finally, the option of adding an external field of gravitational force is also

available in the code.

2. Numerical Techniques

All spatial approximations in the code are based on the shock capturing TVD (total variation

diminishing) and WENO (weighted essentially non-oscillatory) schemes formulated in general

curvilinear coordinates. The high-order TVD schemes are implemented using MUSCL (Mono-

tonic Upstream-centered Scheme for Conservation Laws) approach initiated in [28, 29]. More

specifically we use the 2nd/3rd order MUSCL formula proposed in [30] along with the min-

mod slope limiter to reconstruct flow variables on cell boundaries from their cell-centered

values. Numerical fluxes are calculated using one of the approximate Riemann solvers im-

plemented in the code. The list of available Riemann solvers include HLLE [31] (Harten–

Lax–van Leer–Einfeldt), HLLC (Harten–Lax–van Leer–Contact) [32] with an estimate for the

contact-wave speed from [33], Roe [34], and a few solvers from the AUSM (Advection Up-

stream Splitting Method) family: AUSM-Van Leer [35, 36], AUSM-up [39], AUSM+(P) [37],

and AUSMPW+ [38]. Alternatively, for the simulation of a calorically perfect gas the WENO

scheme of the 5th order by Jiang and Shu [27] with either local or global Lax–Friedrichs flux

splitting can be used. Convective terms for the disperse phase continuum are calculated using

the MUSCL reconstruction combined with the dusty gas Riemann solver from [40]. Diffusive

terms are calculated using the central differences of the 2nd order.

The solution is advanced in time using explicit, semi-implicit or implicit schemes. Explicit

time integration is based on the so-called Runge–Kutta TVD schemes of the 1st through the 3rd

order [41], or the low-storage Runge–Kutta–Gill scheme of the 4th order [42]. In the additive

semi-implicit Runge–Kutta scheme of the 2nd order (ASIRK2C) [43] stiff chemical source terms

are evaluated implicitly while for the convective terms more efficient and simpler explicit methods

are used. The implicit DPLUR (Data Parallel Lower-Upper Relaxation) scheme [44] available

for non-reacting flows allows one to integrate equations in fully implicit manner in parallel

computations.

2.1. Boundary Conditions

The imposition of boundary conditions in the HyCFS-R code is implemented using the so-

called ghost cells technique. The computational domain is surrounded by three rows of virtual

cells, in which flowfield variables are calculated according to the type of boundary condition.

Generally speaking, the number of the ghost-cell rows depends on the size of the stencil, but

HyCFS-R always uses three layers, corresponding to the 7-point stencil in high-order schemes.

The following boundary types are implemented in HyCFS-R: supersonic inflow and outflow,

pressure-constant inlet and outlet, periodic boundaries, and solid boundaries, such as inviscid,
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no-slip isothermal and no-slip adiabatic walls. Additionally, special boundary conditions for

superposing disturbances onto the flow are implemented: in the form of eigenfunctions of the

linear stability problem, white gaussian noise and periodic thermal fluctuations. The last three

conditions are typically used for flow forcing when simulating transition to turbulence in shear

flows.

It should be mentioned, that the code employs specific scheme of boundary conditions

imposition. In most papers this stage of numerical algorithm is described very briefly and it

is usually implied that values in ghost cells are recalculated at the beginning of the new time

step based on the values in the internal cells. In HyCFS-R boundary conditions for inviscid

and viscous numerical fluxes are imposed separately, to ensure conservation of mass at the solid

boundaries.

3. Details of the Program Implementation

The program is written in C++ and uses only open-source tools, libraries and technologies

and in-house utilities, such as GNU/Linux, GCC, OpenMP, MPI, zlib, VTK, to avoid vendor-

lock situations often encountered when using commercial solutions. The primary computational

platform of the code are hybrid CPU/GPU clusters and all numerical procedures in the code are

implemented with SIMD (single instruction multiple data) execution in mind. It should be noted

that computations of numerical fluxes and source terms in the Navier–Stokes equations mostly

consist of uniform-length loops with fixed-size stencils and small number of conditional operators.

Such computations match the aforementioned SIMD architecture quite well and straightforward

implementation of numerical routines provides sufficient efficiency.

For the maximum flexibility of the code it can be compiled to run on conventional multicore

CPUs using a special compile-time wrapper for the C preprocessor, which converts GPU-specific

entities to OpenMP syntax. In this approach each OpenMP thread is interpreted as a GPU

thread. Just as GPU kernel function is executed by each CUDA thread, the converted CPU

version of the kernel is executed on each OpenMP thread. The only difference is that OpenMP

threads are not forced on a hardware level to be executed synchronously, i.e., in a SIMD manner.

However, it is not important in our computations. This technique allows one to significantly

increase the number of supported computational architectures and also simplifies debugging of

the code when using conventional C++ development tools, such as GDB debugger, Valgrind

framework for code dynamic analysis and so on.

3.1. Input and Output Files

Internal formats are used for all input data: mesh, flowfields, chemical mechanisms descrip-

tion and general configuration options. Mesh and flowfields are stored in simple ASCII or binary

files, compressed with zlib library to reduce storage space. General configuration is processed

using a special configuration reader, also developed at the Laboratory of Computational Aero-

dynamics at ITAM SB RAS. The reader is based on the “key-value” scheme. The parameters

are divided into groups corresponding to its type and/or parent data structure. The reader also

supports #include directives, allowing to directly insert contents of one file into another, like

in a typical C/C++ code, for additional flexibility of the configuration. The reader stores both

the list of all keys supported by the solver and the list of the keys actually read from the input

files and checks if the parameter values fall out of the required range. Preprocessing tools for
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importing files from third-party programs are also included in the code, e.g., tools for reading the

description of chemical reaction mechanisms in CHEMKIN format, for the mesh in FlowLogic

format and some others.

Postprocessing utilities implemented in the code allow one to export flowfields in ASCII and

binary Tecplot format, and legacy ASCII VTK formats, calculate integrated and mean values

of any variable, extract distributions from arbitrary line segment, and calculate integrated and

distributed aerodynamic characteristics on the solid walls.

Most aerodynamic characteristics are based on the following normalized and integrated

quantities at the solid wall surface: the pressure pw, the frictional stress τw = µw(∂us/∂n) and

the heat flux qw = κw(∂T/∂n). Here n and s are the directions normal and tangent to the wall,

respectively. Normal and tangent components of velocity are calculated from Cartesian velocity

components stored in the flowfields. Then derivatives along the normal and tangent directions

are transformed to the derivatives in general curvilinear coordinates. The quantities, such as

velocity u, dynamic viscosity µ, heat conductivity κ and Jacobian of transformation J between

Cartesian and curvilinear coordinates are extrapolated to the wall with the 1st or 2nd order of

accuracy. After calculation of the distributed characteristics the integrated characteristics are

obtained by summation of local values multiplied by the surface element areas.

3.2. Data Structures

3.2.1. cContainer class

Because the HyCFS-R code contains various physical models with different number of equa-

tions, which can be switched at runtime, the data structures used for flowfields storage should

also have an adjustable list of variables and means to access these variables in a convenient

way. Conventional containers from C++ STL (Standard Template Library) cannot be used on

GPU devices, so one has to implement custom container for the flowfields. The HyCFS-R uses

a class cContainer with a simple array of floating point values at its core, extended with a few

extra features, such as a “CPU/GPU” flag (indicating in which memory the data is allocated),

a list of variables names, functions for accessing values by the number of cell and the name

or the number variable, possibility to store in a cell not only a list, but also a full matrix of

parameters. The latter is useful when dealing with various Jacobians and other matrices used

in implicit methods.

3.2.2. Mem class

When developing large complex codes for the numerical simulation, the programmers have

to change the list of parameters of various functions on a regular basis. Additional parameters are

introduced when programming new numerical methods, physical models or new implementations

of existing functions. Naturally, any change in the list will require revisions in every occurrence

of the function call. To avoid or at least reduce the amount of this tedious work, in the HyCFS-R

we store all variables and pointers to arrays in a single structure Mem, instances of which are

stored in both the CPU and GPU memories. We avoid the word ‘copies’, because for each Mem

class member we specify explicitly in which memory (CPU or GPU) it will be allocated. It allows

us to minimize the array duplication.

A pointer to Mem structure passed to the functions as an argument provides the access

to all data available in a computation. One of the advantages of this approach is that most of
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the memory allocation routines are limited to methods of a single class, allowing to simplify the

control of memory consumption and prevention of memory leaks and corruption.

When using domain decomposition, each partition has its own dedicated pair of CPU and

GPU instance of Mem class.

3.2.3. BSegment and condition classes

When imposing boundary conditions, the boundary of the domain is divided into partitions

we call segments. They are rectangular in the {ξ, η, ζ}-space and, generally speaking, can overlap.

Geometrical parameters of each segment and the type of boundary conditions assigned to this

segment are stored as object of the dedicated class BSegment. Physical parameters of boundary

conditions are stored as separate Condition objects, referenced by one of the segments. The

conditions contain wall temperature, free-stream flow parameters and so on. This mechanism

of splitting of geometrical and physical parameters of a boundary condition allows one to re-

use the segments for organization of inter-block exchange in a multiblock structured mesh. For

this case the segments also store a multiblock interface identificator and exchange buffers of

an appropriate size. Figure 1 shows a schematical example of domain boundary divided into

segments, including a multiblock partition.

Figure 1. Schematic of boundary segments

3.2.4. Element and reaction classes

The physical and chemical properties of the species and descriptions of chemical reactions

are stored in the dedicated structures. And since CUDA platform puts certain limitations on

C++ features, inheritance is used mostly to separate subsets of parameters describing gas and

condensed phases. So, the hierarchy of the classes is as follows: the classes Gas and Con-

densed are both inherited from the basic class BaseElement and the classes GasReaction

and HeterogenousReaction are both inherited from the class BaseReaction.
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3.3. Parallelization

In the most general case the HyCFS-R uses a multi-level parallelization based on the CUDA

API, OpenMP threads and the MPI protocol. There are 2 variations of the numerical algorithm:

one is used for domains with simple geometries and regular meshes and the other is used for

complex domains with structured multiblock meshes. In both cases the whole computational

domain is divided into a number of partitions, corresponding to the number of used GPUs.

Each GPU performs computations in cells of its sub-domain and after each step exchanges data

with neighboring sub-domains. GPUs on one computational node are controlled using OpenMP

threads and exchanges are made via the CPU memory. Inter-nodal exchanges are performed

using the MPI protocol.

The difference is that in the simple variant the domain is partitioned along the k-index

(ζ-axis) as shown in Fig. 2. As a result, neighboring previous and subsequent partitions are

unambiguously defined from the current partition index. Another benefit of this scheme is that

cells with the same index on the ζ-axis are in a continuous memory segment and do not require

extra buffers for exchange.

As for the multiblock exchange, it requires not only the description of every block-block

connection via the segment mechanism, but also a special configuration file assigning each block

to a GPU device and to an MPI node.

Figure 2. Scheme of multi-level parallelization

The multilevel approach described above allows one a hybrid parallelization when both

GPUs and multicore CPUs are used as computational units. Hybridization is achieved by em-

ploying OpenMP for multicore CPUs in the same way as CUDA threads are used on GPUs. The

source code is the same on all platforms, which, combined with a proper compile-time wrapper,

ensures that all computations are performed in the same way. Execution and data exchange are

done using the MPI library. Figure 3 shows an example of devices configuration in a hybrid com-

putation. In this example the domain is divided into 8 partitions, represented by gold and green

blocks at the bottom of the scheme, where the gold partitions are computed on GPU, and green

are computed on CPU, respectively. The configuration consists of 2 nodes with single 10-core

CPU and 2 GPUs on each node. The MPI processes with ranks 0 and 1 control the GPUs and

the rest of processes control CPU computations with OpenMP threads. This example illustrates
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a typical situation when using hybrid CPU/GPU clusters, where the number of CPU cores is

significantly higher than the number of GPU devices.

In practice such hybrid computations are rarely performed because most of the popular job

schedulers lack features to manage resources for them. And it also should be noted that complex

computations require to balance the load of a computational devices, e.g., by matching the size

of each partition to the performance of the device.

Figure 3. Example of hybrid CPU-GPU parallelization scheme. 6 MPI, 8 domains: 4 GPU +
4×4 OpenMP(CPU)

3.3.1. Service and debugging options

Development of any CFD program is associated with thorough testing for correctness, ac-

curacy and performance of the code. For these purposes, all calls of computational routines are

surrounded by wall-time measuring functions and followed by special inspecting routines, which

allow one to check all affected flowfields for any changes.

The timers are implemented in a simple class based on the standard gettimeofday function

and std::map<string,double> container. They provide simple statistics for the execution time

between two given lines of code and can be switched off at runtime using the configuration file.

This statistics is sufficient for initial assessment of hot spots and bottlenecks in the code. A more

detailed analysis can be done using external tools such as valgrind/kcachegrind, gperftools,

Intel VTune and so on.

As for the inspection, it is enabled at compile time and is only used in the debug-build of the

code. This build uses not only inspection routines but also specific build flags for the detection

of floating point exceptions, enabling faster search for the problematic fragments.

4. Some Examples of Numerical Simulations

This section contains a brief description of a few numerical studies performed using the

developed numerical code, which illustrate some typical problems of the compressible flow gas

dynamics and the capabilities of the code.
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4.1. Supersonic Flow Past a Wedge

A supersonic flow of pure argon past a 46◦ wedge for the conditions of experiment by

Hornung and Smith [47] was simulated numerically and compared with the data from [45]. The

mesh size is identical to that used for Navier–Stokes computations in [45], namely 360×200 cells.

Results are shown in Fig. 4, where the comparison of temperature and density distributions

are depicted. As can be seen, the HyCFS-R solution is in excellent agreement with the data

from [45] in terms of the shock wave stand-off distance. This test verifies spatial approximation

and boundary conditions at the solid walls.

(a) Temperature isolines (b) Temperature and density distributions along

the stagnation line

Figure 4. Supersonic argon flow past a 46 degree wedge

4.2. Jet Exhausting from a Square Nozzle

A 3D numerical simulation of the development of instabilities was carried out for a supersonic

perfectly-expanded jet exhausting from a nozzle of the square cross-section into an ambient

stream. The simulations were performed for the jet Mach number Mj = 2.5 and the co-flow

Mach number Ma = 1.5 at the Reynolds number Re = 5000. The computational domain had

the hexahedral shape. The computational grid was refined around the jet core and its near field.

The computations were carried out on the grid 1152 × 330 × 330 ≈ 125 million cells. The jet

instability was excited by superimposing disturbances in the form of a white Gaussian noise

onto the main flow velocity components.

Figure 5 shows isosurfaces and contours of density in a central cross-section. As can be

clearly seen, at the initial stage, near the inflow boundary, the instability develops in the form

of a typical chain of the Kelvin–Helmholtz vortices. This development of instability is quite

expected for the considered values of the ambient and jet flow Mach numbers. Downstream,

the vortex motion starts to dominate the entire jet core. Overall, the results of these numerical

simulations allowed us to identify specific features of the instability development in a supersonic

rectangular jet with a supersonic co-flow.
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Figure 5. Rectangular jet with Mach number Mj = 2.5 exhausting into ambient coflow with
Mach number Ma = 1.5. Density contours in middle cross-section (a) and density isolines colored
with local Mach number values (b)

4.3. Instability of a Gas Bubble in a Gravitational Field

Numerical simulations of the instability of cylindrical and spherical volumes of argon sur-

rounded by helium in the field of gravity were carried out. The volume diameter was set equal

to 20 m, the initial temperature in all domain T = 300K. The gravitational acceleration was

equal to g = 1000 m/s2. The barotropic distribution of density and pressure was set both inside

the volume and in the surrounding light gas. The pressure at the bottom wall was about 1 Pa.

Three cases were considered and 2D, axisymmetric, and 3D computations were carried out

for the following domain and mesh sizes. The 100×200 m domain with 800×1600 grid was

used for two-dimensional computation, the domain was halved along the axis of symmetry in

axisymmetric computation down to 50×200 m with mesh containing 400×1600 cells. In 3D

simulation 100×100×200 m domain with 280×280×560 ≈ 43.9 million cells was used.

The results of various computations were compared with each other (see Fig. 6). The volume

in all simulations changed shape from round in cross section becoming close to semicircular, and

then transforming into a crescent-like structure, with cusps pointing upwards. These cusps begin

to twist, a secondary instability develops on them. At first the cusps and then entire bubble start

to break down, mixing with the ambient gas. In all geometries the instability emergence and

development as well as the breakdown process have their own characteristics. The fastest mixing

and the breakdown of the heavy gas bubble was observed in the 3D simulation while the mixing

process in the 2D simulation was the slowest, because of its cylindrical shape.

4.4. Heterogeneous Detonation in Al/O2 Gas-particle Suspension

In this test case a detonation wave propagating through a channel filled with oxygen and

10 µm aluminum particles suspension is investigated numerically. Gas phase parameters corre-
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Figure 6. Instability of an argon bubble in helium. Argon molar fraction contours in 2D, ax-
isymmetric and 3D NS computations shown at different time instants

spond to the standard atmospheric conditions with the pressure of 101325 Pa and the density of

1.28 kg/m3. Detonation is initiated by a localized ignition at the left boundary of the computa-

tional domain. The 22.5 m × 1 m × 1 m channel was simulated as 3 separate 7.5 m long sections

each with the spatial resolution of 2400 × 350 × 350 ≈ 300 million of cells. The computations

were carried out using 8 Nvidia Tesla V100 GPUs and took 96 hours of wall-time.

Figure 7b shows the history of maximum pressure in the form of isosurfaces and distributions

on the channel lateral sides, imitating the soot-covered foils from the real experiment. The

latter also illustrate the process of transformation of the initial blast wave into a regular cellular

structure. Additional code features were used to measure the speed of detonation wave front

and also capture its shape.

(a) Isosurface in the flowfield of history of max-

imum pressure

(b) Numerical “soot-foil” records on the channel walls

Figure 7. Heterogeneous detonation in a rectangular channel filled with Al/O2 gas-particle
suspension
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Conclusion

The HyCFS-R numerical code for solving the compressible Navier–Stokes equations on par-

allel hybrid computational systems equipped with multiple GPUs or manycore co-processors

has been developed. The developed code can be used to simulate gaseous flows including flows

of thermally non-equilibrium and chemically reacting gases and gas mixtures as well as multi-

phase gas-particle suspensions. Modern shock-capturing TVD and WENO schemes on structured

muiltiblock meshes are used for spatial approximation, while the time stepping is performed

with explicit RK TVD, semi-implicit ASIRK2c and implicit DPLUR schemes. The descriptions

of flowfields, boundaries and boundary conditions, physical and thermodynamic properties of

the gases, chemical kinetics, are stored as simple C++ classes and structures compatible with

CUDA API. Multilevel parallelization of the HyCFS-R code is achieved via a set of techniques,

namely MPI, OpenMP and CUDA technologies. Third-party software tools such as GNU Data

Debugger, valgrind/kcachegrind, and Intel VTune are used for debugging and code opti-

mization, zlib library is used for flowfields data compression and VTK library is used for data

visualization.

The HyCFS-R code has been employed to simulate a number of subsonic and supersonic

flows: a flow past a wedge, a jet exhausting from a square nozzle, a bubble of heavy gas

descending in a lighter medium, a heterogeneous detonation in a rectangular channel. Numerical

grids containing up to 300 million of cells has been used. The results of numerical simulations

presented in the paper give evidence that the developed code is capable to efficiently simulate a

wide range of compressible flows.
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Numerical Study of Fuselage Impact on Acoustic

Characteristics of a Helicopter Rotor∗
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The paper presents the results of the simulation of unsteady turbulent flow generated by

helicopter main rotor in the presence of the fuselage with an emphasis on the analysis of the

influence of the fuselage on the rotor-induced flow and the rotor-generated acoustic field. The

Reynolds-averaged Navier–Stokes equations with the Spalart–Allmaras turbulence model are used

to simulate the Caradonna–Tung rotor and ROBIN fuselage interaction in hovering flight. The

governing equations are discretized using the vertex-centered control volume method on mixed-

element unstructured meshes with the sliding mesh technology to treat the rotor. The acoustic

field generated by the rotor+fuselage interaction is comparatively analyzed against the case of an

isolated rotor. It is found that the presence of fuselage significantly changes the rotor-generated

acoustics. In particular, the presence of the fuselage noticeably distorts the directivity of acoustic

radiation and increases the overall sound pressure level under the fuselage up to 20 dB, emphasizing

the importance of the influence of fuselage on the helicopter acoustics.

Keywords: rotorcraft, CFD, rotor-fuselage interaction, RANS, sliding mesh, supercomputer.

Introduction

A growing number of publications [1–5] focusing on the influence of fuselage on the helicopter

rotor aerodynamcis demonstrate the importance of the subject. Recently, due to increasingly

stringent International Civil Aviation Organization (ICAO) requirements on the permissible

noise levels produced by aircrafts, including helicopters, the focus of research has shifted from

rotor aerodynamics to the acoustics generated by the rotor in the presence of fuselage [6–9]. The

simulation of the acoustics of the entire helicopter including the fuselage presents a challenge as

it requires substantial computational resources and efficient parallel algorithms.

Due to significant difference in the relative fuselage and blade velocities the aerodynamic

noise generated by the flow around fuselage is negligible compared to the sound of helicopter

rotor. However, the fuselage can strongly influence the rotor acoustics and its directivity dia-

gram. This paper focuses on the numerical investigation of the influence of a fuselage on the

tonal acoustics of the helicopter main rotor. For that purpose a higher-accuracy method for

aeroacoustic simulations of rotor-fuselage interaction is developed.

The hovering helicopter flight is modelled by the Caradonna–Tung rotor [10] and ROBIN

fuselage [11, 12], scaled to be compatible with the rotor radius. The choice of the helicopter

model is motivated by the availability of detailed geometrical descriptions, experimental results,

and prior experience simulating these separate cases [13].

When developing a method for numerical simulation of rotor-fuselage interaction the ap-

proach should be capable of modeling flows in the presence of both stationary and mov-

ing/rotating objects. The flow over an isolated helicopter rotor can be easily simulated in a

non-inertial reference frame associated with the rotor [14, 15] using non-deformable fixed com-

putational mesh. The simultaneous presence of moving (helicopter rotor) and stationary (fuse-

lage) components makes it impossible to use a mono-block mesh. A standard solution is to
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use sliding meshes, i.e., the decomposition of mesh into two or more subdomains with sliding

non-overlapping interfaces one of which (the one containing the fuselage) being stationary in ab-

solute reference frame while the rest of them rotating with rotors. In the present work, we exploit

this approach placing the main rotor into the rotating puck-shape subdomain. Despite the fact

that the approach is widely used [14, 16, 17], the application of vertex-centered higher-accuracy

schemes brings additional difficulties in approximating the fluxes at the sliding interfaces. To

handle this problem, an earlier developed technique presented in [18] is used.

In this work, turbulent flow over an isolated rotor and a rotor interacting with a fuselage

in hovering flight including the near field acoustics for both cases is considered. The results are

compared, and the influence of the fuselage on the acoustic field is evaluated.

The paper is organized as follows. In Section 1, the problem of fuselage influence on the rotor

tonal acoustics in hovering mode is formulated. The geometry of both components (i.e., the rotor

and fuselage) are described, all the physical parameters are given. The governing mathematical

model, the numerical methods in use and the computational set-up are presented in Sections 2,

3 and 4 respectively. Section 5 is devoted to the discussion of the obtained numerical results and

to their comparative analysis. The concluding remarks and the acknowledgements are given at

the end of the paper.

1. Problem Formulation

Turbulent flow over two-component configuration, consisting of two-bladed rotor and scaled

fuselage model (Fig. 1) is considered. The rotor is modelled by the widely known Caradonna–

Tung model [10], while the fuselage is approximated by the scaled version of ROBIN fuselage

model [11, 12].

(a) Rotor and fuselage geometry (b) Rotor and fuselage surface mesh

Figure 1. The case geometry and surface mesh

The rotor radius is R = 1.143 m. The blades are based on the NACA 0012 airfoil and

are untwisted and untapered. The blade chord is 0.1905 m and the collective pitch angle is 8◦.
A length of the ROBIN fuselage is scaled to 2R. The distance between the rotor plane and

the fuselage center of mass is 0.35 m. The gap between the fuselage pylon top and the rotor

plane is about 0.125 m. The hovering flight is considered with the rotor rotation frequency

650 RPM , corresponding to the tip velocity 77.8 m/s. The Reynolds number defined in terms

of rotor radius, tip velocity, the reference density ρ0 = 1.2046 kg/m3, and molecular viscosity

µ0 = 1.8148× 10−5 Pa · s is Re = 5.9× 106.

In addition to the aerodynamic characteristics, the pressure pulsation is measured in three

sets of probes, namely the probes azimuthally distributed with angular step 10◦ in three planes

including the rotor rotation plane (Fig. 2). The distance from each point to the rotor center is

2R.
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Figure 2. The sets of probes for acoustic field measurements: red – XY plane, green – XZ plane,

blue – YZ plane

2. Governing Equations

The turbulent flow over the helicopter rotor is modelled by the unsteady Reynolds-averaged

Navier–Stokes (RANS) equations with the closure model following the Boussinesq hypothesis. To

simulate the turbulent flow near the rotor or rotor interacting with fuselage, the computational

domain is decomposed in two subdomains, namely, a fixed subdomain considered in the absolute

frame of reference (AFR) and a subdomain in the rotating frame of reference (RFR) that includes

the rotor. The rotation velocity of RFR is taken equal to the angular velocity of rotor such that

the rotor stationary in this frame of reference. In the fixed subdomain, the flow is governed by

the RANS equations written in the AFR. To simulate the flow over the rotor, the unsteady

RANS equations written in the RFR with the angular velocity ω in terms of velocity vector

defined in the AFR are solved. Both systems are closed by the Spalart–Allmaras turbulence

model [19] governing the evolution of effective coefficient of turbulent viscosity. The unsteady

RANS equations both in the AFR with ω = 0 and the RFR with ω 6= 0 have the following form:

∂ρ

∂t
+ div ρ (u−V) = 0,

∂ρu

∂t
+ Div ρ (u−V)

⊗
u +∇p = DivP− ρ (ω × u) ,

∂ρE

∂t
+ div ρ (u−V)E + divup = divq + divPu,

∂ρν̃

∂t
+ div ρν̃u = Dν +Gν − Yν ,

(1)

where u is the velocity vector, ρ is the density, E = u2

2 + ε is the total energy, ε is the specific

internal energy, p is the pressure defined by ideal gas equation p = (γ − 1) ρε, γ = 1.4 is the

specific ratio, d is the distance to the solid wall. In the system (1) V denotes the linear tangential

velocity defined as ω × r where r is the radius-vector. P is the viscous stress tensor defined by

the strain rate tensor S according to the Boussinesq hypothesis in the following way:

Pij = 2µeff

(
Sij −

1

3

∂ui
∂xi

δij

)
, Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,
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where the effective viscosity coefficient µeff equals to the sum of the coefficient of molecular

viscosity µ and the turbulent eddy viscosity µT . Vector q defines the internal energy flux as2

qi =
µeff
γ Pr

∂ε

∂xi
,

where Pr = µeffCp

λ is the Prandtl number.

The coefficient of molecular viscosity µ is prescribed by the Sutherlands law

µ = µ0
T0 + S

T + S

(
T

T0

) 3

2

, S = 120◦K,

where µ0 and T0 are the molecular viscosity and the free stream temperature.

The last equations of system (1) describe the evolution of the variable ν̃ used to calculate

turbulent eddy viscosity µT = ρfν1ν̃. A specific form of the terms Dν , Gν and Yν describing

the diffusion, turbulence generation and turbulence destruction as well as the definitions of the

damping function fν1 and corresponding constants can be found, for instance, in [19].

For further considerations, it should be noted that, from the standpoint of an observer in the

stationary frame of reference, the system of equations (1) describes the evolution of conservative

variables due to their transport in the rotating (with velocity V) media, the pressure gradient

and the velocity vector turn to the angle equal to ωt (implemented by the term – ρ (ω × u)

in the momentum equation). Note that in the numerical implementation of this system, the

rotation velocity can be interpreted as the velocity of moving mesh.

To simplify further approximation within finite-volume approach, the system of Reynolds-

averaged Navier–Stokes equations (1) can be written in the following vector form with respect

to the vector of conservative variables Q = (ρ, ρu, E, ρν̃)T :

∂Q

∂t
+∇ ·

(
FC (Q)−FR (Q)−FD (Q,∇Q)

)
= S (Q,∇Q) . (2)

System (2) includes the composite vectors FC , FR and FD, each component of which FCi ,

FRi and FDi in coordinate direction xi (i = 1, 2, 3) represents the convective transport, rotation

transport and diffusion flux vectors, respectively. Operator (∇·) is the divergence operator.

The convective transport, rotation transport and diffusion flux vectors are given as a function

of the physical variables ρ, u, p, ν̃ and their gradients

FCi (Q) = (ρui, ρuiu + pI, (E + p)ui, ρν̃ui)
T ,

FRi (Q) = (ρVi, ρuiV, EVi, ρν̃Vi)
T ,

FDi (Q,∇Q) =

(
0, Pi1, Pi2, Pi3, Pijuj + qi,

3

2
(µ+ ρν̃)

∂ν̃

∂xi

)T
,

where I – is the identity matrix.

Vector S (Q,∇Q) is a source term describing the influence of the external forces that are

not related to the transfer processes of the target variables Q:

S (Q,∇Q) =
(

0, ρ (ω × u) , 0, Gν (Q,∇Q)− Yν (Q,∇Q) +
cb2
σ
∇ν̃ · ∇ν̃

)T
.

2We consider polytropic gas, so the specific heat cV does not depend on temperature and, consequently, the

internal energy is a linear function on temperature, i.e., ε = cV T .
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Here cb2 = 0.622 and σ = 2/3 according to the [19]. Note that the definition of diffusion term

Dν of the Spalart–Allmaras equation uses the square of the gradient of variable ν̃ which is of

non-divergent form. Due to the last detail, we include this term to the source in the conservation

law (2).

3. Numercial Method

The space discretization of the Navier–Stokes equations is based on the vertex-centered

formulation implying that all the variables are defined at the vertices of hybrid unstructured

mesh. The mesh vertices are the centers of the dual mesh cells. The approximation of the

convective fluxes of the Navier–Stokes equations is built within the finite-volume approach. A

cell of the dual mesh serves as control volume for which the discrete conservation laws are written.

Thus, each control volume contains only one mesh vertex and belongs to the agglomeration of

mesh elements containing this vertex.

Note that the mesh in each subdomain in corresponding reference frame is considered sta-

tionary, i.e., a geometry of each mesh element and respective control volume are fixed in time.

Since the rotating subdomain is described in the RFR, the mesh there is also fixed and rotates

with the rotor as a single entity.

The Navier–Stokes equations (2) are approximated using the integral form of these equa-

tions. The integral form of the system (2) for the control volume (or computational cell) Ki

associated with the vertex i in the vertex-centered formulation can be written in the following

form:
∫

Ki

dQ

dt
dV +

∫

∂Ki

(
FC (Q) · n− (V · n)Q

)
dS =

∫

∂Ki

∇ · FD (Q,∇Q) dV +

∫

∂Ki

S (Q,∇Q) dV,

(3)

where ∂Ki is the boundary of control volume (or cell) Ki, n is the unit external normal to the

boundary ∂Ki.

Let |Ki| be the volume of computational cell, ∂Kij = Ki ∩ Kj is the common part of

boundaries of cells Ki and Kj (or segment), N1 (i) is a set of nodes neighboring to the vertex

i, Qi is the integral average of variable Q on the cell Ki. The approximation of the convective

part of the Navier–Stokes equations (3) can be considered as an approximation of the Euler

equations written in a form of conservation laws:

dQi

dt
= − 1

|Ki|

∫

∂Ki

(
FC (Q) · n− (V · n)Q

)
dS =

∑

j∈N1(i)

∫

∂Kij

(
FC · n− (V · n)Q

)
ds

≈
∑

j∈N1(i)

hij
(
QL
ij ,Q

R
ij

)
|nij |,

where hij
(
QL
ij ,Q

R
ij

)
is the numerical flux approximating the flux through the square of segment

∂Kij on the base of Godunov-type schemes, and |nij | is the absolute value of oriented square of

segment

nij =

∫

∂Kij

n dS. (4)
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The normal velocity of rotation (or, the velocity of moving mesh) is approximated an average

on the segment as

Vij =
1

|nij|

∫

∂Kij

V · n dS. (5)

The value of variables Q
L/R
ij taken from the left and right from segment ∂Kij are determined

by the quasi-one-dimensional edge-based reconstruction on the extended stencil [20–22] that

results in increasing the accuracy order of approximation of convective fluxes. The extended

stencil contains 2n + 1 points, and not all of them coincide with the mesh nodes. In the last

case, the values in such points are found by the linear interpolation on the corresponding faces

of mesh elements which have the intersection with the straight edge ij – containing line.

The approximation of viscous fluxes given by the volume integral
∫
∂Ki
∇ · FD (Q,∇Q) dV

in the Navier–Stokes equation (3) is implemented by the Galerkin method basing on the linear

polynomials. The integral of source term S in the system (3) is approximated as a volume average

as ∫

Ki

S (Q,∇Q) dV ≈ |Ki|S (Qi, (∇Q)i),

where the derivatives of variables (∇Q)i including to the source S are approximated by the

discrete nodal gradients defined as a weighted sum of gradients on the mesh elements having

the common vertex in node i [23].

The time integration is carried out using the implicit three-layer scheme of the second ap-

proximation order followed by the Newton linearization of the space-discretized equations. At

each Newton iteration to solve the system of linear equations we use the stabilized method of bi-

conjugate iterations (BiCGSTAB) [24]. The details of this approach and its usage in simulations

are discussed in [25].

The presence of the stationary fuselage and the rotating blades results in the necessity to use

two mesh blocks containing stationary and moving objects correspondingly and, consequently,

to provide a proper interaction between these blocks.

A standard solution in this situation is the usage of sliding meshes, i.e., the decomposition

of the mesh in two or more subdomains, one of which is at rest in the AFR while the rest of

them rotate with the rotors they contain.

For the element-centered finite-volume methods assuming the variable averaging over un-

structured mesh elements, the formulation providing the mesh sliding can be written without

significant loss of accuracy. For the vertex-centered schemes assuming the variable averaging

over dual cells, it is much harder to develop a method without any loss of accuracy on the

interface. For the vertex-centered schemes for unstructured meshes in the general case, there is

no known solution capable to preserve the high accuracy on sliding meshes. Nevertheless, a loss

of accuracy can be compensated by a better scheme resolution and local mesh refinement near

sliding interfaces. The following two versions of sliding mesh interfaces [18] have been developed:

• interface separating fixed and rotating mesh blocks is plane (for instance, a circle, an

annual segment or a plane);

• interface separating fixed and rotating mesh blocks is a lateral surface of a finite straight

round cylinder.

As a result, the rotating domain can be a finite straight round cylinder that includes both

possible types of interface, or, in other words, can have a puck-shaped configuration. Within the

developed approach, the control volumes (dual cells) are built in a way that the agglomerations

of cells in the fixed and rotation subdomains do not overlap and have the curvilinear sliding
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surface as the only common part. The cell faces belong to the lateral surface and thereby have

its curvilinear shape. After the dual cells are defined, we calculate the values of nij and Vij

following the formula (4) and (5) with account for possible curvilinear shape of the cell faces.

4. Computational Set-up

As it is mentioned above, two types of simulations are performed, namely, the simulation

of the isolated rotor in the cylindrical rotating region with the sliding interface (rotor simula-

tion (RS)) and the simulation of the same rotor supplemented by the fuselage (rotor+fuselage

simulation (RFS)).

(a) overall view (b) fuselage mesh

Figure 3. The unstructured mesh used in RFS case

For all the simulations, we build the mixed-element unstructured mesh consisting of tetra-

hedrons, prisms, pyramids and hexahedrons. In all the cases, the rotor surface mesh and the

boundary layer prismatic mesh is the same, and the first surface cell height is chosen to meet

the y+ < 1 criteria. The sliding meshes represent two topologically separated mesh blocks: the

outer fixed unstructured mesh block (Fig. 3a) and the inner rotating unstructured mesh block

containing the rotor (Fig. 3b). The rotating puck-shaped domain is a cylinder with radius 1.5 m

and height 0.3 m. The maximum size of the mesh element inside the rotating region is limited

by 15 mm. The computational domain in both simulations is a cylinder with radius 30 m and

height 60 m. The mesh sizes for both cases are represented in the Tab. 1.

Table 1. Computational mesh sizes

Case Number of nodes Number of cells

RS 6 820 497 21 360 814

RFS 7 156 503 21 773 730

The height of the mesh elements in the location of acoustic probes (see Sec. 1) is 8–10 cm

that well resolves the BPF frequencies.
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5. Numerical Results

5.1. Aerodynamic Characteristics of Isolated Rotor

The aerodynamic characteristics of Caradonna–Tung rotor in hover simulated in the RFR

were predicted in our previous work [13]. The results showed a good agreement with the exper-

imental data for pressure coefficient distribution and the tip vortex trajectory. Here we validate

the AFR with sliding mesh approach on the same cases and obtain practically the same good

results with respect to the available experimental data. Figure 4 demonstrates the pressure

coefficient distribution in a set of the rotor blade sections.
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Figure 4. The pressure coefficient distribution: RS simulation in AFR vs. the experiment

5.2. Simulation of Turbulent Flow near Rotor+Fuselage Configuration

The flow field obtained in the RS presents a typical axial flow near a helicopter rotor

(Fig. 5a–7a). The figures show the flow field and the wake behind the hovering rotor. The flow

downstream the rotor is symmetrical as expected for the hovering mode. Besides, one can notice

the slow vortex near the blades roots. The maxima of the velocity magnitude corresponds to the

region of tip vortices with the downstream shift to the rotation axis.

(a) RS case (b) RFS case

Figure 5. The velocity magnitude field with streamlines in YZ section

Figure 5b shows that presence of the fuselage strongly affects the flow structure downstream

the rotor. The flow becomes asymmetrical, and the most significant impact is the induced

flow slowdown under the fuselage. The vorticity field indicates the intensive vortex shedding
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downstream the fuselage body and the effect of interaction between the rotor tip vortices with

the fuselage nose and its tail boom (see Fig. 6b, 7b).

(a) RS case (b) RFS case

Figure 6. The vorticity magnitude field with streamlines in YZ section

As seen Fig. 7 with the Q-criterion visualization, both RS and RFS capture two revolutions

of the wake spiral downstream the rotor.

(a) RS case (b) RFS case

Figure 7. The velocity magnitude field with streamlines in YZ section and the Q-criterion iso-

surface colored in the vertical flow velocity

5.3. Impact of Fuselage on Rotor Acoustics

The acoustic characteristics estimated basing on the simulation results are the spectra of

pressure pulsation in the probes, and the directivity diagrams of blade passing frequency (BPF)

sound pressure level (SPL) and overall sound pressure level (OASPL). The OASPL is determined

by the pressure pulsations spectrum P (x, f) in the particular probes. The pressure pulsation

spectrum is given by the Fourier transform of the function p(x, t) normalized by the quantity

p0 = 2× 10−5 Pa:

P (x, f) =
1

2π

∫ +∞

−∞

p (x, t)

p0
e−i2πfdt.
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The total energy of the spectrum is calculated as the integral of the spectral power S (x, f) =

P 2 (x, f): as

E (x) =

∫
S (x, f) dt,

where the integration is performed over all the resolvable frequencies. The OASPL measured in

decibels is found by the formula

OASPL = 10 log10E (x).

All the spectra presented are built using the fast Fourier transform on the probes pressure

signals with 2 Hz sampling frequency.

It should be noted that RANS method used in paper is capable to capture only the tonal

acoustics, i.e., the acoustic harmonics at BPF and its multiples. In the setup for two-bladed

rotor at 650 RPM , the BPF value is 21.6 Hz. The obtained spectrum of pressure pulsation in

the probes confirms that the peak tonal frequencies are reached at the multiples of BPF (see

Fig. 8). As expected, in plane XY of the rotor rotation the amplitudes of pressure pulsation in

all the probes at BPF and its multiples have the same values (see Fig. 8a and Fig. 9a).
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Figure 8. The pressure pulsation spectra measured in the probes obtained in RS

Figure 9 shows the directivity diagram of first BPF SPL in absence and presence of the

fuselage at three orthogonal planes. The fuselage impact on the near-field acoustics is clearly

seen. It should be noted that for the isolated rotor in hovering mode the pressure pulsation

measured at the rotation axes must be zero theoretically. In our case, it is not so (it is about

40–45 dB) solely because of the asymmetric computational setup. This fact is confirmed by our

simulation of a single blade with the periodicity condition in azimuth where it is really zero

(see [15]). The presence of the fuselage makes the configuration asymmetrical and it results in

a slight asymmetry in the directivity diagram in planes XZ and YZ near the rotation axes. A

noticeable SPL increase in comparison with the case of isolated rotor is also detected there.

One can see up to ∼ 7 dB amplitude growth at the ±20◦ direction from the rotation axis in

YZ plane and ∼ 7 dB increase at azimuth 260◦ < ϕ < 290◦ in XZ plane. The difference in the

directivity diagrams of first BPF SPL in the cases of isolated rotor and rotor with the fuselage

is insignificant for the rest of azimuths.

Figure 10 demonstrates the directivity diagram of OASPL in absence and in presence of the

fuselage in different planes. The asymmetry of the OASPL diagram in XZ and YZ planes due to
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Figure 9. The directivity diagram of first BPF SPL

the fuselage presence becomes stronger in comparison with BPF SPL measurements. The OASPL

near the rotation axes increases even more which can indicate a greater contribution of multiple

frequencies. In YZ plane, the maximum difference observed on the azimuth 220◦ < ϕ < 300◦

and it reaches ∼ 20 dB. In the XZ, plane the maximum difference observed on the azimuth

240◦ < ϕ < 300◦ and it reaches ∼ 19 dB. Most likely, the reason of this OASPL symmetric

growth is the blade interaction with the fuselage nose and tail boom at the azimuthal blade

positions near 180◦ and 0◦ respectively (see Fig. 10a) that results in strengthening of scattering

effects and, consequently, of acoustic radiation at multiple frequencies. In particular, it is seen

that the azimuthal size of deformation of the directivity diagram is directly linked with the

azimuthal size of the fuselage (see Fig. 10b, 10c).
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Figure 10. The OASPL directivity diagram

Conclusion

The paper presents the results of numerical simulation of tonal noise generated by the heli-

copter rotor and, which is more interesting, evaluates the impact of the fuselage on the generated

acoustic field. It is shown that the presence of fuselage may significantly strengthen the acoustic

radiation in the direction towards the ground and noticeably deform its directivity diagram. In

particular, the most significant influence of the fuselage is detected at the probes in the low

half of the diagram measured at two radiuses from the rotor center in vertical planes where
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the OASPL growth reaches 20 dB. The discovered phenomenon of the possible amplification of

acoustic radiation towards the ground due to the presence of the fuselage is of great importance

for controlling the sound level generated by the helicopter. This result undoubtedly requires

further study, and its thorough verification and validation.

The considered configuration “main rotor + fuselage” is an example of problems that are

difficult to study in detail in wind tunnels. Field experiments related to the determination of

the acoustic properties of entire helicopters are expensive and associated with the difficulties of

accurate measurements in real operating conditions. In this situation, computational experiments

may be in high demand. However, a natural obstacle on this way is the large computational

resources required to compute such problems. This difficulty can be overcome or significantly

mitigated by using modern high-performance systems with high efficiency, provided, for example,

as in this work, by the efficient heterogeneous CPU + GPU parallelization model. The benefit

of using HPC systems is further enhanced by the usage of higher-accuracy numerical methods

and well-tuned mathematical models to accurately predict unsteady turbulent flows along with

the generated acoustic fields.
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