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D. Rohr, J. Nesković, V. Lindenstruth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

An Autonomic Performance Environment for Exascale
K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler . . . . . . . . . . . . . 49

Visualization for Exascale: Portable Performance is Critical
K. Moreland, M. Larsen, H. Childs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Case for Energy-Efficient Acceleration of Graph Problems using Embedded FPGA-
based SoCs
P. Moorthy, N. Kapre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.



Foreword to the Special Issue

of International Journal of Supercomputing Frontiers
and Innovations

The first, inaugural conference “Supercomputing Frontiers 2015” took place in Singapore on

March 17–20, 2015. The objective was to celebrate our soon to be launched Singapore National

Supercomputing Centre, which will, for the first time, deliver Petascale computational resources

to Singaporean scientists, academics, students and industrial researchers.

Additionally, we wished to bring some of the most highly recognised Supercomputing au-

thorities to our community of users — to expose our community to the past achievements and

to the visionary ideas of those exceptional trendsetters. The conference was designed to explore

global trends and innovations in high performance computing in convolution of the following

important areas:

1. Supercomputing applications in domains of critical impact and especially those requiring

computer resources approaching Exascale;

2. Big Data science merging with Supercomputing with associated issues of I/O, high band-

width of networking, storage, workflows and real time processing;

3. Architectural complexity of Exascale systems with special focus on supercomputing inter-

connects, interconnect topologies and routing, and interplay of interconnect topologies with

algorithmic communication patterns for both numerically intensive computations and Big

Data; and

4. Any other topics that push the boundaries of Supercomputing to Exascale and beyond.

The conference has gathered more than 390 attendees. There were 50 speakers from around

the globe including Australia, Brazil, Canada, China, France, Germany, Japan, Korea, Poland,

Russia, Switzerland, Singapore and the United States. The conference featured outstanding

keynote speakers including J. Dongarra, A. Gara, J. Gustafson, R. Harrison, S. Klasky, S. Mat-

suoka, T. Sterling, and R. Stevens.

All conference speakers were invited to submit their work to be considered for publication in

the International Journal of Supercomputing Frontiers and Innovation (IJSFI). Fifteen papers

were pre-selected by the Conference organisers, and submitted to the IJSFI editors for the

final round of rigorous peer review by the independent journal referees. Eventually, out of all

submitted papers, seven best papers are included in this special issue of the journal. We hope

you enjoy it.

“Supercomputing Frontiers 2015” was a very succesful event, and subsequently, encouraged

by a positive feedback and favourable recommendations, we decided to turn it into an annual

event.

“Supercomputing Frontiers 2016” will be held on March 14–18, 2016, in Singapore again.

We promise a very interesting program with many outstanding speakers. We welcome your

participation.

Marek Michalewicz

Yuefan Deng
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Data Exploration at the Exascale

Hank Childs 1

c© The Author 2017. This paper is published with open access at SuperFri.org

In situ processing — i.e., coupling visualization routines to a simulation code to generate

images in real-time — is predicted to be the dominant form for visualization on upcoming super-

computers. Unfortunately, traditional in situ techniques are largely incongruent with exploratory

visualization, which is an important activity to enable understanding of simulation data. In re-

sponse, a new paradigm is emerging: data is transformed and massively reduced in situ and then

the resulting form is explored post hoc. The fundamental tension in this approach is between the

extent of the data reduction and the loss in integrity in the resulting data. However, new oppor-

tunities, in terms of increased access to data, may blunt this tension and allow for both sufficient

data reduction and also more accurate analysis. With this paper, we describe the trends behind

“data exploration at the exascale” and also summarize some recent results that confirmed that

this new paradigm can produce superior results compared to the traditional one.

Keywords: scientific visualization, high-performance computing, Lagrangian flow analysis.

Introduction

This paper describes the fundamental challenges behind “data exploration at the exascale,”

the strategy behind the proposed solution, and some recent evidence that supports the merits

of this strategy. It is organized as follows:

• Section 1 provides background. Specifically, Section 1.1 describes the high-performance

computing trends that will compel the usage of in situ processing and Section 1.2 describes

the importance of data exploration and why the traditional approach for this exploration

is incongruent with in situ processing.

• Section 2 gives an overview of the new paradigm for achieving data exploration with in

situ.

• Section 3 describes a success story using this new paradigm. One of the main lessons from

this example is that increased access to data can lead to more accurate analysis and also

reduced storage costs.

1. Background

1.1. In Situ

The justification for in situ [6] is discussed extensively in the Report for the DOE ASCR

2011 Workshop on Exascale Data Management, Analysis, and Visualization [2]: the ability to

generate data is going up much faster than the ability to store it, with the limitations in storage

being both in I/O bandwidth and in power costs due to data movement. This summary presented

here focuses mostly on the I/O costs, as the the I/O subsystem is undergoing a significant change

on upcoming supercomputers.

As supercomputers get ever larger, the cost of achieving sufficient I/O bandwidth is, un-

surprisingly, increasing. But supercomputing architects have been experimenting with a new

approach to decrease this cost. Where the typical approach has a simulation write data directly

to a parallel file system (i.e., “spinning disk”), the new approach introduces an additional par-

ticipant, solid state drives (SSDs) and has the simulation write data to the SSDs instead. The

1University of Oregon, Eugene, USA
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simulation can then immediately resume, while, concurrently, the data is copied from the SSDs

to the file system, shielding the simulation from slow parallel file system performance. Although

the SSDs introduce a new cost, they lessen the importance of I/O bandwidth, allowing for the

SSDs to be coupled with a slower (and less expensive) parallel file system, providing an overall

cost reduction.

To applications, this I/O configuration appears to have two distinct bandwidth characteris-

tics. On write, the bandwidth appears to be good, since it is be accelerated by SSDs. On read,

however, the bandwidth will be poor, since the reads are backed by a slower parallel file system

and the presence of SSDs can not accelerate this activity.

The write performance on exascale machines, relative to data size, is expected to be compa-

rable to that of petascale machines (taking into accounts SSDs). But the read performance will

be at least one order of magnitude less. Further, as shown in [7], I/O is already the bottleneck

on massive data sets. As a result, the I/O bottleneck will be even more extreme at the exascale

for visualization programs that attempt to load data at its full resolution.

As a result of these trends, in situ processing has become increasingly popular with many

successful usages in recent years [8, 12, 14, 17, 20]. Further, an additional advantage of in situ

processing is that it can access all of the simulation data, which has never previously been

possible with post hoc analysis. Phrased another way, where supercomputing trends are leading

simulations to store data less often, in situ processing allows for dramatic increases in temporal

frequency, equal to that accessible in the simulation code itself.

1.2. Data Exploration

Bergeron argued in [4] that visualization and analysis usage falls into three categories: de-

scriptive, analytical, and exploratory. Bergeron defined descriptive visualization as useful “when

the phenomena represented in the data is known, but the user needs to present a clear visual

verification of this phenomenon (usually to others).” He described analytical visualization (or

directed search) as “the process we follow when we know what we are looking for in the data.”

Finally, he defined exploratory visualization (or undirected search) as the process we follow when

“we do not know what we are looking for; visualization may help us understand the nature of

the data by demonstrating patterns in that data.”

Descriptive and analytical use cases can often benefit from a priori knowledge, making them

ideal for in situ processing. But exploratory visualization can not benefit from a priori knowledge:

it is for when “we do not know what we are looking for.”

Exploratory analysis is an iterative process. An analyst forms a hypothesis, poses a ques-

tion to analysis software, interprets the result, and then forms new hypotheses and/or additional

questions. The analyst is the part of this loop and his/her decision making process (i.e. forming

questions and hypotheses and interpreting results) is the part of the total time to do the explo-

ration. The time spent by the analyst varies greatly: it is sometimes seconds or minutes, but

it is more frequently hours, days, or weeks, and it is not uncommon for an analyst to study a

simulation for months. Time scales beyond seconds are clearly not a match for in situ process-

ing, since the exascale machine is such an expensive resource to “hold hostage.” But exploratory

analysis is too important to marginalize when doing exascale computing, as this category is the

one responsible for new scientific insights: it directly leads to “new science.”

Data Exploration at the Exascale
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2. New Paradigm: In Situ Reduction and Post Hoc Exploration

The new paradigm resembles the traditional post hoc model, in that the simulation writes

data to disk and stand-alone programs visualize this data by reading it from disk. However, the

new paradigm introduces a key new step to this model: it substantially reduces the data using in

situ processing before writing it to disk (see fig. 1). With enough reduction, the amount of data

to store for post hoc processing can become tractable, although actual sizes that are “tractable”

will depend on the details of each individual supercomputer.

Figure 1. The new paradigm for exploring exascale simulation data via in situ transformation

and reduction and post hoc analysis

Of course, the goals of data reduction and data integrity are in tension. Thinking of a simple

compression scheme, too much reduction can sacrifice data integrity, while requiring high data

integrity often leaves opportunities for only minimal reduction. So our community must perform

significant research to find techniques that balance these tensions. Further, we must constrain

ourselves to only considering reduction operators that are viable in an exascale setting.

This new paradigm will represent a significant change for users. Users often distrust any

reduction in data; many users believe the integrity of their data can only be preserved if it is

displayed or analyzed at its full and native resolution. But this desire is not realistic for exascale

computing. I/O and power limitations will restrict how much data can be read in and how

much can be stored for subsequent analysis. Given these limitations, users will not be able to

continue with “business as usual.” This new paradigm is responsive to the fundamental issues,

but, ultimately, users will need to accept tradeoffs and guide how decisions are made. Further,

significant research is needed to enable users to make informed decisions, e.g., “this level of data

integrity comes at the cost of this much time, storage, and power.”

More and more research has been devoted to this new paradigm in recent years [11, 15, 16,

18, 19]. A particularly noteworthy research result in this space is ParaView Cinema [3]. With

this work, the in situ reduction comes from extracting many explorable images, and the post

hoc exploration is on these images, often in forms that feel interactive for users.

In the following section, we present another research result following this new paradigm,

specifically targeting flow visualization. This research result is somewhat different from the

other results described previously, in that it makes use of the opportunity provided by in situ

processing to access more data than ever before, enabling it to create more accurate answers

than are possible with a strictly post hoc approach.

H. Childs
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3. Lagrangian Flow

Doing flow analysis with Lagrangian flow is a relatively new concept for visualization. So,

this section begins with an overview of the traditional method for flow analysis (Eulerian flow) in

Section 3.1, for the sake of comparison. Section 3.2 then describes the new, Lagrangian method,

and Section 3.3 describes results, contrasting them with the traditional method.

3.1. Traditional Method

Particle advection — calculating the trajectory a massless particle follows in a flow field —

is foundational for many flow visualization and analysis techniques. McLouglin et al. recently

surveyed the state of the art in flow visualization [13], and the large majority of techniques

they described, such as line integral convolution [5], finite-time Lyapunov exponents [9], and

streamsurfaces [10], depended on advection. Advection assumes access to a vector field, i.e., a

continuous function over a four-dimensional domain. If x is the spatial location of a point and t

is a time, then the vector field v maps the tuple (x, t) to its velocity as v(x, t).

Advection constructs integral curves, which are continuous functions tangential to the vector

field. Each integral curve is called a pathline, and it encodes the trajectory of a single mass-less

particle. The path of an integral curve I is the solution to an ordinary differential equation, and

is represented as:

d

dt
I(t) = v(I(t), t) (1)

where I(t0) = x0, for a seed point at time t0 and location x0.

For some approaches, visualization techniques focus on the special case of stationary flows

which vector fields do not vary over time (“steady state”). With this research, the focus was on

the general case: transient flows, where the vector fields are time-varying (“unsteady state”).

The traditional method for calculating particle trajectories is not particularly well-suited

to exploratory analysis. With post hoc analysis, simulations write time slices of data to disk

and then this time slice data is explored afterwards. But solving the advection equation requires

evaluating the velocity field at many temporal locations. Oftentimes, the necessary time locations

are not the ones saved out, so the visualization program instead does a temporal interpolation.

This temporal interpolation introduces an error, making the particle follow the wrong trajectory.

Further, the increased access provided by in situ processing cannot be leveraged by this model

when doing data exploration — since the required particles are not known ahead of time, the

necessary velocity evaluations cannot be performed, and so the only data that can be used is

the time slice data stored for traditional post hoc processing.

3.2. Lagrangian Method

Fluid mechanics considers two frames of reference for an observer watching a flow field:

Eulerian and Lagrangian. With the Eulerian frame of reference, the observer is at the fixed

position and observes flow going by. This is the traditional frame of reference for visualization

(i.e., Section 3.1). With the Lagrangian frame of reference, the observer is attached to a particle

and moves through space and time. The concept of the Lagrangian frame of reference can be

applied to visualization by taking a basis of known trajectories (Lagrangian flows), and then

interpolating new particle trajectories from this basis.

Data Exploration at the Exascale
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Agranovsky et al. [1] explored the Lagrangian approach in the context of in situ reduction

and post hoc exploration (i.e., the new paradigm described in Section 2). The in situ transforma-

tion and reduction operator placed “basis” particles in the Eulerian vector field and calculated

their corresponding trajectories. The storage costs were proportional to the number of particles,

so storage reductions could be achieved by limiting the number of these particles. Critically,

unlike the traditional/Eulerian method, the Lagrangian method made use of all spatio-temporal

data, specifically when calculating the trajectories that their “basis” particles followed. As a

result, the spatio-temporal data was encoded into the trajectories, and so subsequent explo-

ration — which happened by interpolating between trajectories — was able to make use of the

spatio-temporal data.

3.3. Experiments

Here, we describe experiments comparing Lagrangian and Eulerian techniques. The results

presented extend the previous study done by Agranovsky et al.

Three data sets were considered:

• Arnold-Beltrami-Childress (ABC): A three-dimensional analytic vector field from dynam-

ical systems theory, on a regular grid of dimensions 256× 256× 256 with 3000 time steps.

• Double Gyre: A common two-dimensional benchmark of two counter-rotating gyres with

perturbations over time, on a regular grid of dimensions 512 × 256 with 3000 time steps.

• Jet: A three-dimensional simulation of a high-speed jet entering a medium at rest, on a

regular grid of dimensions 260 × 520 × 260 with 2000 time steps.

Although the frequency a simulation saves state can vary based on many factors, our exper-

iments made the simplifying assumption that a simulation would save at regular intervals, i.e.,

“every N th cycle.” We then considered six different scenarios for how often the simulation code

saved state: 10, 20, 30, 40, 50, and 60 cycles. We refer to the rate a simulation saves its data as

the “storage frequency.”

For a given data set and a given storage frequency, we calculated the following information:

• Lagrangian basis trajectories. Particles were placed at even spatial intervals and allowed

to advect for the duration of the storage frequency. The resulting displacement (from start

to end) was then saved.

• Eulerian time slices, i.e., traditional vector field information at the current time slice.

• Baseline particles. Particles were placed in the flow and their trajectory was calculated.

These particles, although calculated in the same way as the Lagrangian basis trajectories,

were kept separate, to serve as a baseline.

Then we wanted to compare error between the Lagrangian and Eulerian techniques against

the baseline particles. We defined an error metric, which was set to be the difference between

the calculated end position (whether Lagrangian or Eulerian) versus the actual end position for

that baseline particle. The distances were normalized by the scale of the mesh into units of cells

of sizes.

Fig. 2 contains the results of the study. While error increases for both methods as the storage

frequency gets larger, the Lagrangian technique is consistently more accurate than its Eulerian

counterpart. Further, the Lagrangian technique is still more accurate when reducing the number

of basis flows used, meaning that the technique can be both more accurate and take less storage

compared to the traditional Eulerian approach.

H. Childs
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Figure 2. Comparison of Eulerian and Lagrangian techniques

The study varies over three factors: data set, storage frequency, and the number of La-

grangian basis flows. The graphs are organized by data set, and then grouped left-to-right by

storage frequency. Traditional Eulerian advection is colored red. When the number of Lagrangian

basis flows takes the same storage as the Eulerian method does for saving time slices, then we

denote this as “Lagrangian Full” and color the results green. When there are half as many basis

flows, and so the storage costs are half that of the Eulerian method, then we denote this “La-

grangian Half” and color the results blue. One-quarter and one-eighth variants are purple and

cyan, respectively. In all cases, the results show the average error in the end position over a set

of baseline particles, meaning that bigger numbers are worse. This error is normalized by the

size of a cell in each data set’s mesh.
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Summary

The new paradigm of transforming and reducing simulation data in situ and then exploring

data post hoc has received increased attention for the research community in recent years. This

paradigm appears to be responsive to the fundamental drivers in high-performance computing,

and has the potential to retain the important use case of data exploration, which is often the

activity that realizes the value of a simulation. Further, the access to increased temporal resolu-

tion creates the opportunity to do better analysis than was previously possible. The Lagrangian

technique described in this paper shows that the benefits from incorporating increased temporal

resolution can be substantial. For this example, the traditional method was unable to take ad-

vantage of increased spatio-temporal data, but the new method was — and the increased access

led to superior results.
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InfiniCloud is a geographically distributed, high performance InfiniBand HPC Cloud which

aims to enable borderless processing of genomic data as the part of the InfiniCortex project.

This paper provides a high-level technical overview of the architecture of InfiniCloud and how

it can be used for high performance computation of genomic data in geographically distant sites

by encapsulation of workflows/applications in Virtual Machines (VM) coupled with on-the-fly

configuration of clusters and high speed transfer of data via long range InfiniBand.

Keywords: Genomics, Cloud-Computing, InfiniBand, Trans-continental, Virtualization, SR-

IOV, OpenStack, HPC.

Introduction

The advent of big data has driven the need for flexible high performance computing platforms

in order to analyze large amounts of data using user defined reproducible workflows, particularly

in the emerging field of genomics and healthcare informatics. These workflows typically require

a specific stack of applications with their operating system specific dependencies, which can be

different for each pipeline and can frequently change over time as updates are released. In addi-

tion to the heterogenous nature of applications, such workflows demand high CPU performance

paired with large memory capability as well as a high-performance interconnect for analysis of

large genomic/healthcare datasets [9, 11].

In response to this growing need for high performance and flexible computing for analysis

of large datasets [8], A*CRC and NCI teams collaborated to define a new cloud computing

platform called InfiniCloud, which combines high performance cloud computing powered by

OpenStack [6] with the high speed InfiniBand network architecture. This platform was optimized

to provide high performance computing with minimal overhead within virtual instances, coupled

with native InfiniBand protocol to provide high speed interconnect and transfer of data between

the instances.

In cloud computing, resources are presented in a form of virtual machines (VMs). VMs are

an abstraction layer which allows hardware resources of a physical system to be presented as

number self-contained pools of virtual CPU cores, RAM, storage and network bandwidth that

are used to run isolated operating system instances. These resources can be dedicated or shared,

depending on performance requirements of the applications running in the cloud environment.

The operating image can be created, customized, and versioned by users to ensure that the

computing environment is reproducible and flexible. This is particularly important in the field

of genomics, where processing pipelines are highly interconnected and can be dependent on

a specific version of operating system, kernel, libraries and application binaries. This level of
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flexibility is typically difficult to achieve on a traditional High Performance Computing cluster

running multi-purpose system images.

Despite its advantages for reproducible and flexible computing, one major bottleneck in

traditional cloud computing platforms is the inefficient and slow transfer of large datasets, com-

monly encountered in genomic analysis. To address this, we extended the InfiniCloud platform to

address the need for efficient high speed transfers by leveraging on the long range Obsidian Long-

bow E100 InfiniBand extenders, enabling unprecedented high speed transfer of large datasets

and VM images across trans-Pacific distances between two geographically distant InfiniCloud

platforms in Singapore and Canberra. This capability enables borderless high performance cloud

computing by high speed transfer of large datasets together with workflows/applications encap-

sulated in VMs. The workflows/applications in VMs can be parallelized in virtual instances by

the on-the-fly setup of cluster compute nodes, thus opening the door for scaling up reproducible

computing environments beyond any one single HPC cloud computing site.

We envision that the InfiniCloud platform combined with long range InfiniBand as part of

a global fabric (InfiniCortex) [14] will enable seamless distributed high performance computing

amongst geographically distant InfiniCloud nodes, breaking down barriers to meet the challenge

of big data computing.

1. InfiniCloud Platform

The InfiniCloud platform was developed on the NCI and A*CRC hardware and is based on

OpenStack cloud computing software stack with custom modifications.

1.1. Hardware Components

Currently, InfiniCloud consists of two sites: one located at the NCI (National Computational

Infrastructure), in Canberra, Australia and the second at A*CRC, Singapore (fig. 1). The total

count of compute cores available is 264, supporting 3TB of memory and a local storage capacity

of 15TB (SSD and HDD). All instances are connected to the shared 56Gbit FDR IB fabric.

Figure 1. InfiniCloud sites (left: NCI, Canberra, right: A*CRC, Singapore)

1.1.1. Server Specifications

The overall design of each site is similar, utilizing a common InfiniBand interconnect. The

server configurations are detailed in tab. 1 and tab. 2.
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Table 1. NCI InfiniCloud configuration

Servers 10x Fujitsu PRIMERGY CX250

CPU Intel Xeon E5-2650

Memory 256GB

Interconnect Mellanox FDR

Local storage 1x Intel DCS3500 or 3x Intel DCS3500

Table 2. A*CRC InfiniCloud hardware configuration

Servers 6x SGI C1104-GP1

CPU Xeon E5-2680

Memory 128GB

Interconnect Mellanox FDR

Local storage 3x Intel DCS3500 or Micron M600

1.1.2. Local Area Network Components (each site)

The core of InfiniCloud is a global InfiniBand interconnect, which consists of a local FDR

switch at each site to connect the local compute nodes, combined with an Obsidian Strategics

Longbow E100 range extender connecting the AU and SG InfiniCloud network fabrics (tab. 3

and fig. 2).

Table 3. Network configuration

Switching FDR IB

Range extender Obsidian Strategics Longbow E100

Subnet manager OpenSM (active:AU; standby: SG)

1.1.3. Global Area Network

To enable the global InfiniBand connection, the A*CRC and NCI teams worked closely with

AARNet (AU), SingAREN (SG) and Pacific NorthWest GigaPop (PNWGP) in Seattle (USA)

to secure a dedicated 10Gbit/s layer 2 link between Canberra and Singapore using spare fibre

capacity. Due to the network topology connecting Australia (with the majority of the bandwidth

provided to the more densely populated East Coast of Australia), the link was routed via the

longer eastern path, crossing the Pacific Ocean twice through PNWGP in Seattle with an RTT

of 305ms. In contrast, while exhibiting better delay characteristics more direct western path

through Western Australia, Indian Ocean and Guam has limited capacity and is only capable

of providing a 1Gbit/s connection (fig. 3).

1.2. InfiniCloud Installation and Configuration

All InfiniCloud systems run the following operating system, drivers and applications stack

(tab. 4). Clusters consist of one dedicated management node, one dedicated controller node and
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Figure 2. InfiniCloud Network Topology

Figure 3. InfiniCloud wide-area networking

Table 4. InfiniCloud software stack

Operating System CentOS 6.6 x86 64

InfiniBand drivers Mellanox OFED 2.4

OpenStack version Icehouse + InfiniCloud specific patches
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a variable number of compute nodes (ranging from 4-8). All node classes are integrated to form

a fully featured HPC Cloud.

The management node is used for bare metal provisioning and cluster-wide configuration.

The controller node provides API, CLI and GUI access to the cloud and is responsible for

managing all the core areas of cluster operation: identity management, scheduling, VM image

storage, network management and providing an orchestration layer. Compute nodes provide

CPU, RAM, storage and high performance SR-IOV networking [12] to the virtual instances. SR-

IOV networking support is a requirement for enabling InfiniBand capability in virtual instances.

Building the InfiniCloud cluster required a high degree of customization in order to enable

native InfiniBand capability in virtual instances, as well as to provide access to the global

InfiniBand network connecting Australia and Singapore. Tab. 5 and fig. 4 show the list of these

modifications: (i) A custom virtual interface module adds support for SR-IOV virtual function

networking in the nova-compute component; (ii) an embedded switch module implements linking

virtual functions to guests and enforces network access restrictions; and (iii) a custom DHCP

server package adds InfiniBand support. On top of this, OpenStack out-of-tree patches were

necessary in order to force the use of a single partition key, as required by the global InfiniBand

fabric. After installing the additional modules and patches, compute nodes are configured to

directly connect the HCA to the upstream network, bypassing the layer 2 agent traditionally

present on OpenStack compute nodes, as this functionality is now provided by the embedded

switch.

Table 5. InfiniCloud OpenStack Customizations

Neutron Server enable SR-IOV and native IB capability

Neutron Networker enable EoIPoIB support

Nova Compute enable SR-IOV and native IB capability

Neutron Agent enable SR-IOV and native IB capability

DHCP enable IPoIB support

eswitchd enable InfiniCortex global IB connectivity

Figure 4. Overview of OpenStack components with customizations highlighted in red. Image

adapted from access.redhat.com
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2. InfiniCloud InfiniBand Capabilities

After cloud provisioning is complete and all the customizations required for global InfiniBand

communications are in place, the system has the ability to provide virtual instances on demand,

connected over InfiniBand with full ability to communicate with remote instances using RDMA

over a trans-Pacific 10Gbit/s network.

2.1. High bandwidth capability — local connectivity

A high bandwidth capability within a cluster allows for the efficient transfer of data to

compute nodes. Listing 1 demonstrates high bandwidth capability (∼6 GB/sec) between 2 virtual

instances, close to the line rate on the FDR interconnect:

Listing 1. Local interconnect performance between a pair of virtual machines hosted in

Singapore

------------------------------------------------------------------------------

RDMA_Write BW Test

Dual -port : OFF Device : mlx4_0

Number of qps : 1 Transport type : IB

Connection type : RC Using SRQ : OFF

TX depth : 128

CQ Moderation : 100

Mtu : 2048[B]

Link type : IB

Max inline data : 0[B]

rdma_cm QPs : OFF

Data ex. method : Ethernet

------------------------------------------------------------------------------

local address: LID 0x05 QPN 0x0a5e PSN 0x90c425 RKey 0xb8011700 VAddr (...)

remote address: LID 0x1a QPN 0x0cac PSN 0x94503d RKey 0x7001182b VAddr (...)

------------------------------------------------------------------------------

#bytes #iterations BW peak[MB/sec] BW average[MB/sec] MsgRate[Mpps]

65536 5000 5984.52 5976.36 0.095622

------------------------------------------------------------------------------

2.2. High bandwidth capability — global connectivity

Integral to the data transfer component is the use of the Obsidian Strategics dsync+ util-

ity [1] which utilizes the RDMA (Remote Direct Memory Access) capabilities to provide long

range InfiniBand RDMA transfers between InfiniBand-connected virtual instances. This high

performance transfer capability uncouples the need for the data to be located close to the com-

pute nodes, enabling the computing of data to scale beyond a single site.

As a proof-of-concept test of native InfiniBand transfers over long distances, we tested the

processing of a large genomic dataset [7] that could be accelerated using large memory compute

resources not readily available locally. Listing 2 shows the transfer of 381 GB of genomic data

in under 9 minutes from NCI (Canberra, Australia) to A*CRC (Singapore) via the 10G link

going through Seattle (∼30,000 km) using the dsync+ utility. In contrast, rsync transfer using

TCP/IP over the same 10G link took 3 hours [10].
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Listing 2. Global interconnect performance between a pair of virtual machines hosted in

Singapore and Australia

[root@test01 ~]# dsync --direct -io --option Xfer::RDMA::Buffer -Size =5368709120 \

--option Xfer::RDMA::IO-Block -Size =10485760 \

192.168.200.144:/ scratch/kuba/reference_dset/ /scratch/kuba -test/

Finished generating remote file list. 40 files , 3 directores , 381GB.

Finished checking local files. Need to get 40 files , 381GB.

Transfer xfer -ib-rdma network usage 3050B in 0s (10.0 kB/s)

Transfer xfer -ib-rdma network usage 381GB in 8m19s (764MB/s)

Done. Transferred 381GB in 8m27s (752MB/s)

The remarkable performance observed with long range InfiniBand RDMA provides a signif-

icant improvement (∼20 fold) over standard TCP/IP protocols.

3. Using InfiniCloud for Parallelized Workflows in Genomic

Analysis

The InfiniCloud platform provides a high performance cloud computing environment for

flexible workflows, coupled with unprecedented high speed transfer of big data sets over large

geographical distances. A key application that takes advantage of these high performance char-

acteristics is the analysis of genomic sequences which has seen an exponential growth in demand

with the advent of next generation sequencing technologies.

The rapid development of next generation of sequencing technologies has dramatically re-

duced the cost of sequencing genomes [13]. Previously, it took ∼USD $2.7 billion and 10 years

to sequence one human genome, but currently the cost has dropped several orders of magnitude

to ∼USD $1,000 per genome with the introduction of platforms such as the Illumina HiSeq X

sequencer. This drop in cost coupled with the ability to sequence a complete human genome in

a few days has driven the adoption of genomic sequencing in research labs as well as hospitals.

Although the cost and speed of sequencing has dramatically improved, the transfer and

computation of the genomic data remains a bottleneck in translating that data into the insights

needed for improving patient care [10]. Typically, sequencers are not colocated with the compute

resources and require the transfer of data in a timely manner. For example, a single Illumina

HiSeq X can sequence 32 whole human genomes a week, resulting in ∼6 TB of genomic data.

Such volume of data would take over six and a half days to transfer on a dedicated 100Mbps

TCP/IP network, assuming ideal conditions and 100 % efficiency. The same transfer could be

completed in just under three hours, using long distance InfiniBand [10]. This high performance

data transfer capability of native InfiniBand transport would provide the scalability to cope with

the growth of genomic data, given the increasing adoption of genomic sequencing in clinical and

research labs.

In addition, the computational analysis of genomic data for clinical use requires enforcement

of reproducibility standards in addition to the data provenance and security guarantees needed

to comply with ethical and legal privacy issues. A computational platform for clinical genomics

needs to meet the following challenges:

• High speed data transfers from sequencing data stores to the computational platform

• Reproducible and well documented workflows that can be run on different hardware plat-

forms
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• Easy provisioning of compute clusters for processing genomic data from multiple samples

using parallel workflows

• High CPU and network performance for rapid analysis of large datasets

• Mechanisms for data provenance and security (e.g. using ephemeral containers) for com-

putation at remote sites

3.1. Provisioning of instances and on-the-fly setup of cluster compute nodes

for parallel workflows

To address these challenges, we implemented a software stack on top of the InfiniCloud

platform that leverages the use of VM instances or containers to encapsulate workflows, together

with automated provisioning of virtual instances and the setup of virtual compute clusters for

parallelized workflows.

We adapted ElastiCluster [2] for use on InfiniCloud to enable easy provisioning of instances

and setup of virtual clusters for parallel workflows (fig. 5). In our configuration, ElastiCluster

was used to provision instances and set up a virtual cluster consisting of a frontend node and

a user-defined number of compute nodes. To enable cluster computing for parallel workflows,

we configured ElastiCluster to install and setup the SGE job scheduler [5], Ganglia monitoring

tools [3], and the IPython notebook interface [4]. The package versions used are listed in tab. 6.

Table 6. Cluster computing stack

IPython Notebook shell (BASH/Python/R); 2.4.1

IPython parallel engine

SGE Grid engine job scheduler 6.2u5

Ganglia Cluster monitoring (CPU/Memory/Network) 3.1.7

Figure 5. On-the-fly provisioning and setup of virtual clusters for parallelized workflows

In the final configuration, the setup provides SSH access, a web interface for cluster monitor-

ing using Ganglia (fig. 6), and a versatile IPython Web Notebook interface for BASH/Python/R

scripting (fig. 7).
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Figure 6. Ganglia cluster monitoring

Figure 7. IPython notebook
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3.2. Implementation of variant calling genome analysis pipeline

Next, we demonstrate how the on-the-fly provisioning and setup of virtual machines can

be used to parallelize a genomic analysis workflow. We chose a clinically relevant workflow,

called variant calling, that takes genomic sequences from cancer samples and detects mutations

in genes that could be used to determine the prognosis of a patient, or to identify potential

chemotherapy drugs that could be used for treatment. As each cancer sample can be analyzed

separately, the workflow is amenable to simple asynchronous parallelization without any inter-

process communication.

The implementation of genomic workflows typically involves several processing steps that

are run using different applications that may vary in complexity of the setup dependencies. The

ability to install and run them in a virtual instance allows the different applications to be set

up to interoperate properly, then replicated for parallel workflows.

In this workflow, genomic sequences are processed in a pipeline through a series of steps using

different applications to identify and annotate mutations (fig. 8). We use the pipeline application

to orchestrate the steps in processing and to distribute the processing to the compute nodes using

the SGE job scheduler:

1. Genomic sequences from each cancer sample are processed with an aligner — the applica-

tion that compares the sequences to a human reference genome sequence and identifies the

position and alignment of each sequence from the cancer samples.

2. The files from each cancer sample are processed by a variant caller program, which com-

pares the aligned sequences to the human reference genome sequence to identify variations

(substitutions, insertions, deletions) in the cancer samples.

3. The variant files from each cancer sample are annotated. A specialized application compares

each variation to multiple databases to identify what the potential effects of each mutation

have on regions in the genome.

The applications are pre-installed in the VM images together with their dependencies to

enable portability between InfiniCloud platforms. The reference datasets required by the aligner,

variant caller, and annotation tool are located in a data volume that can be mirrored between

InfiniCloud platforms. The genomic dataset is isolated in a separate volume which also stores

the results of the analysis (fig. 8); this isolation provides the flexibility for maintaining data

provenance and security.

Figure 8. Workflow for variant calling of genomic data from cancer samples
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3.3. Demonstration of genome analysis workflow for remote cloud computing

We demonstrate the computation of genomic sequences from multiple cancer samples on the

InfiniCloud platform in Canberra, Australia from Singapore by remote provisioning of instances,

setup of the cluster, and mounting of reference/data volumes (fig. 9).

• The VM images are mirrored from Singapore to Australia so that both sites have the same

application/workflow backends for genomic analysis

• The common reference volume is automatically mirrored from Singapore to Australia and

attached to the frontend and compute nodes

• The data volume is synchronized according to a user-defined workflow and attached to the

frontend and compute nodes

• Genomic data is transferred from Singapore to Australia for computation

• Results are transferred back from Australia to Singapore

• The data volume on remote site can be deleted in cases where genomic data cannot be

stored offsite for data provenance and security reasons

Figure 9. Borderless HPC cloud computing of genomic data across different sites for

scalability

For the analysis, the genomic data is first transferred from Singapore into the data volume

(Australia) using the dsync+ utility. Here, we achieve a transfer of ∼233 GB of data in 5.5

minutes (∼696 MB/sec) from Singapore to Australia via Seattle (∼30,000 km). The data from

multiple cancer samples is then analyzed with the variant calling pipeline. Fig. 10 and fig. 11

show the CPU and network resource utilization during the pipeline run.

As an illustration of the output from the variant calling pipeline, fig. 12 shows mutations

detected in a tumour suppressor gene (TP53) in a cancer sample which generally signifies a bad

prognosis.

In summary, the high speed data transfer between InfiniCloud platforms can be used to allow

scaling beyond a single site to speed up the parallel processing of data in cases where analysis

is time-sensitive and/or constrained by local resources. Furthermore, the encapsulation of data

and workflows within virtual machines provides one approach to maintain data provenance at

the site of origin while harnessing the high performance computational resources at remote sites.
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Figure 10. Aggregate CPU load

Figure 11. Aggregate network utilization

Figure 12. Mutations detected in the DNA sample
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Conclusions

We present a new cloud computing platform called InfiniCloud, which combines high per-

formance cloud computing powered by OpenStack [6] with the high speed/low latency of an

InfiniBand network architecture. This platform delivers high performance computing with min-

imal overhead within virtual instances, coupled with native InfiniBand protocol for high speed

interconnect transfer of data between the instances.

In addition, the InfiniCloud platform incorporates long range InfiniBand extension and en-

ables unprecedented high speed transfers of large datasets such as genomic data and VM images

across global distances. This capability enables borderless high performance cloud computing

that integrates high speed transfer of large datasets together with workflows/applications encap-

sulated in VMs. This encapsulation allows easy parallelization of virtual instances and on-the-fly

instantiation of cluster compute nodes using ElastiCluster.

We envision that the InfiniCloud platform combined with long range InfiniBand as part

of the InfiniCortex global InfiniBand fabric [14], will enable seamless distributed cloud-based

high performance computing amongst geographically distant InfiniCloud nodes, breaking down

borders and illuminating the path to exascale computing to meet the challenge of supporting

current and future big data computing needs.
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tional Infrastructure (NCI), which is supported by the Australian Government.

This work was supported by the A*STAR Computational Resource Centre through the use
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This paper aims to establish a performance baseline of an HPC installation of OpenStack. We

created InfiniCloud - a distributed High Performance Cloud hosted on remote nodes of InfiniCor-

tex. InfiniCloud compute nodes use high performance Intel (R) Haswell and Sandy Bridge CPUs,

SSD storage and 64-256GB RAM. All computational resources are connected by high performance

IB interconnects and are capable of trans-continental IB communication using Obsidian Longbow

range extenders.

We benchmark the performance of our test-beds using micro-benchmarks for TCP bandwidth,

IB bandwidth and latency, file creation performance, MPI collectives and Linpack. This paper

compares different CPU generations across virtual and bare-metal environments.

The results show modest improvements in TCP and IB bandwidth and latency on Haswell;

performance being largely dependent on the IB hardware. Virtual overheads were minimal and

near-native performance is possible for sufficiently large messages. From the Linpack testing, users

can expect the performance in their applications on Haswell-provisioned VMs more than twice. On

Haswell hardware, native and virtual performance differences is still significant for MPI collective

operations. Finally, our parallel filesystem testing revealed virtual performance coming close to

native only for non-sync/fsync file operations.

Keywords: Cloud-Computing, InfiniBand, Trans-continental, Benchmarking, Virtualization,

SRIOV, BeeGFS, OpenStack, HPC.

Introduction

Cloud computing offers resources on-demand as an Infrastructure-as-a-Service (IaaS) plat-

form, providing good flexibility in resource allocation and usage that can be easily managed by

both end-users and administrators. This brings the benefits of isolated, user-customised software

and hardware environments that enable software reproducibility and turn-key solutions and ap-

plications regardless of the underlying physical computing hardware. Over the past few years,

there has been a shift in utilising such cloud computing services and its associated benefits to

address the needs of the HPC scientific community [7].

Since 2009, the National Computational Infrastructure (NCI) in Australia have been pro-

viding a cloud computing platform service for compute and I/O-intensive workloads to their big

data research community [2]. NCI Cloud services provide computational resources in the form

of virtual machines (VM) provisioned by the OpenStack4 cloud operating system platform. The

bare-metal (BM) backend consists of high-spec Intel CPUs, SSDs for storage and started off

with 10Gb Ethernet for networking. Encouraged by rapid adoption of the Cloud services, NCI

enhanced the interconnect from 10Gb to 56Gb Ethernet using Mellanox hardware together with

Single Root IO Virtualisation (SR-IOV) as a first phase. This brings significant performance

improvements to traditional HPC applications that typically require a fast interconnect. As the

same Mellanox hardware was capable of 56Gb InfiniBand (IB) and SR-IOV, A*CRC and NCI

1A*STAR Computational Resource Centre, Singapore
2National Computational Infrastructure, ANU, Canberra, Australia
3Jan Kochanowski University, Kielce, Poland
4OpenStack cloud computing platform - http://www.openstack.org
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teams worked together to build InfiniCloud, a native IB OpenStack Cloud prototype which was

completed in October 2014 and demonstrated at SC14 in New Orleans, as a part of the In-

finiCortex project [11]. In February 2015 A*CRC and NCI teams further enhanced InfiniCloud

by addition of six SGI servers located in Singapore. They consist of the latest Intel Haswell

CPU models, DDR4 memory, SSD storage and the same Mellanox 56Gb ConnectX-3 hardware.

The servers at both NCI and A*CRC can communicate with each other with native InfiniBand

through range-extender equipment from Obsidian Strategics. InfiniCloud users can quickly and

easily make use of compute resources located at either location, despite the bare-metal hardware

residing on a remote site. This allows to distribute the processing of user data, as well as utiliz-

ing additional capacity and unique capabilities of hardware located at each site. For example,

users can opt for top-performance CPUs in Singapore or larger available memory fat-nodes in

Australia.

In this paper we aim to provide an insight into the improved performance that users can

expect when moving from the NCI SandyBridge hardware to A*CRC’s Haswell servers. Thus we

present bandwidth, latency and MPI micro-benchmarks to gauge the VM network performance,

storage benchmarks to test the VM storage backend and Linpack benchmarks to gauge real

HPC application performance.

The paper is presented as follows. Section 1 explores any past work done and how this

paper’s work relates to that. Section 2 explains the hardware and software configuration as well

as details of the benchmarks performed. Section 3 presents the results obtained, followed by

concluding remarks in the last section.

1. Background and Related Work

In the past, virtualised environments incurred significant overheads so that their use for

intensive workloads came with significant performance degradation. This started to improve,

starting with the introduction of Intel VT to better share resources and improving the perfor-

mance of CPU, memory virtualisation and more. However, network I/O remained a challenge to

obtain near-native performance amongst virtual machines due to the packet processing, switch-

ing and CPU interruptions involved. These overheads become very significant when attempting

to make use of high speed interconnects that typical HPC workloads require and their associated

features such as RDMA that needed to work effectively in virtual environments.

To solve the network I/O problem, the SR-IOV technology was drawn up by the PCI

Special Interest Group. This is the hardware-based virtualisation method that allows near-native

performance of network interfaces to be realised, where network I/O can bypass the hypervisor

to avoid involvement of the CPU. This works for both Ethernet and InfiniBand. Amazon Web

Services provide SRIOV-enabled Gigabit Ethernet (GigE) for their C3 instances5, the feature

marketed as “Enhanced Networking” and there have been numerous performance studies for

SRIOV-enabled Gigabit Ethernet and InfiniBand usage [3, 6, 8–10].

Today there exists a number of virtual environment installations utilising InfiniBand, ours

included. Citing other examples:

• A private cloud platform, “FermiCloud”, was used to study SRIOV-enabled, IB-

interconnected virtual hosts provisioned using OpenNebula and conducting MPI micro-

5Announcing New Amazon EC2 Compute Optimized Instances - http://aws.amazon.com/about-aws/whats-

new/2013/11/14/announcing-new-amazon-ec2-compute-optimized-instances
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benchmarks and HPL [3]. The hardware used in the study were Intel Westmere CPUs and

DDR InfiniBand hardware.

• An in-depth performance study on SRIOV-enabled FDR InfiniBand for virtual clusters ex-

amined the behaviour of virtual IB under differing combinations of resource subscriptions,

IB progression modes and parallel programming languages [8].

• The San Diego Supercomputing Center will host a Pflop-capable HPC resource with a key

aim to

“Provide a virtualized environment to support development of customized soft-

ware stacks, virtual environments, and project control of workspaces” [10]

For our exercise, we use the OpenStack cloud operating system to provision resources and

test the performance of a SRIOV-enabled InfiniBand virtual cluster on SandyBridge & Haswell

CPUs with FDR InfiniBand.

2. Setup

In this section we detail the hardware and software setup and provide details of the bench-

marking configuration.

2.1. Setup of NCI SandyBridge and A*CRC Haswell VMs

The hardware details of both bare-metal server types are summarised in tab. 1.

Table 1. Summary of NCI and A*CRC server specifications, provisioned and

managed by the OpenStack Icehouse release

OpenStack (IceHouse) provisioned

Location NCI, Australia A*CRC, Singapore

CPU 2x Intel E5-2650 8-core 2x Intel E5-2680v3 12-core

SandyBridge (SB) Arch. Haswell (HW) Arch.

Memory 256GB 1333MHz DDR3 128GB 2133MHz DDR4

Storage 6x 10k RPM Seagate HDD Intel DC S3500 SSD

Network Mellanox Mellanox

Connect-X3 FDR Connect-X3 FDR

Operating System CentOS 6.5 CentOS 6.5

# of compute 4 (2 + 2: BM-BM 4 (2 + 2: BM-BM

servers used and VM-VM) and VM-VM)

To compare native and virtual performance, the four servers were used as two pairs, one for

BM testing whilst the other was used with one VM instance each. Mellanox OFED6 drivers v2.4

were used to provide the hardware-based SR-IOV virtualisation of the InfiniBand interface in the

form of virtual functions that can be dedicated to particular VM instances. As of March 2015,

SR-IOV is a requirement for running InfiniBand in virtual instances on OpenStack. In stan-

dalone KVM, non-OpenStack virtualized environments, it is possible to assign the entire HCA

to a single virtual machine, enabling InfiniBand connectivity without using SR-IOV. The main

6Mellanox OFED - http://www.mellanox.com/page/products dyn?product family=26
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drawback of such approach is no support for running multiple InfiniBand guests concurrently on

a single compute node. For above reasons, this paper focuses on SR-IOV based approach. More

information on the direct PCIe passthrough performance compared to SR-IOV can be found

from Lockwood’s blog [9].

Both resources at NCI and at A*CRC were provisioned by using the OpenStack interface

to setup both environments. A major part of the setup effort was for OpenStack to play nicely

with the InfiniBand interfaces. To make this possible, three additional modules were installed:

A custom virtual interface module adds support for SR-IOV virtual function networking in the

nova-compute component. An embedded switch module implements linking virtual functions to

guests and enforces network access restrictions. A custom DHCP server adds InfiniBand support.

On top of this, a few OpenStack out-of-tree patches were necessary in order to force the use

of a single partition key, as required by the InfiniBand range extenders. After installing the

additional modules and patches, compute nodes are configured to directly connect the HCA

to the upstream network, bypassing the layer two agent traditionally present on OpenStack

compute nodes — this functionality is now provided by the embedded switch.

In addition for Haswell servers, CPU passthrough was enforced instead of OpenStack default-

ing to the Nehalem CPU architecture. This resulted in a 3-fold speedup in Linpack performance

due to the AVX, AVX2 and FMA feature flags present in Haswell over Nehalem.

In addition to the two OpenStack provisioned setups, we utilised an existing non-OpenStack

virtual cluster at A*CRC that was already setup using virt-manager and hosts a BeeGFS parallel

filesystem [5]. This was used to test the parallel filesystem’s performance using both native and

virtual metadata & storage target backends on Haswell hardware and was also used for MPI

micro-benchmarks.

Each cluster was interconnected to a Mellanox SX-6036 36-port switch and all servers utilised

KVM/QEMU as the virtual machine monitor.

2.2. Benchmarking and VM configuration

This subsection details each benchmarking application used in this exercise we used together

with the VM configuration for each one where appropriate. To present the possible worst-case

scenarios, the highest recorded benchmarks out of several runs on native BM hardware were used

whilst the lowest for VMs were recorded. The exceptions are the MPI and storage benchmarks,

where we reported the average values.

2.2.1. iperf TCP performance

iperf was used to test the TCP bandwidth available between a pair of nodes. The test was

multi-threaded, utilising all cores available on each server (24 on Haswell and 16 on SandyBridge)

to saturate the available bandwidth. For the virtual test, each node hosted a single VM with all

available cores allocated. The aggregate bandwidth achieved was recorded at the end.

2.2.2. InfiniBand write performance and latency

The ib write bw and ib write lat, part of the OFED perftools package, were used to test

the RDMA bandwidth performance and latency of the InfiniBand interconnect in both native

and virtual instances. The server and VM setup was the same as that for the iperf test. For the

bandwidth and latency tests, 64k and 2-byte messages transfers were used respectively.
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2.2.3. Linpack

Used to rank supercomputer installations in the Top500, the Linpack benchmark is used

to ascertain the performance of a typical HPC application involving computation and commu-

nication by solving a dense linear system of equations [4]. Two Linpack benchmark types were

used:

• A local Linpack application, namely the Intel Optimized SMP Linpack binary, was used

to test on-node performance by solving a problem size with leading dimension of 60k

elements. The virtual test used one VM with all cores allocated.

• An MPI-distributed Linpack, namely HPL, was tested on a pair of BM and VM servers. In

this case, one MPI process per node was used with multi-threading enabled to utilise all the

available cores available within each node. Hence for VM testing, one VM communicated

with the other on distinct nodes, giving an idea of the communication performance through

the IB interconnect in a virtual setting. A problem size with leading dimension of 120k

elements was used together with a blocking size of 168 elements.

2.2.4. MPI Ping-Pong, Alltoall and Barrier microbenchmarks

Using the Intel MPI Benchmarks v4.0.0 package7, we looked at the performance of message-

exchange for a range of message sizes using the Ping-Pong test and the performance of MPI

collective operations that involve the synchronisation of many MPI processes on Haswell hard-

ware.

For this benchmark, three non-OpenStack servers were used where each VM was allocated

one CPU socket of 12 cores and 64GB memory. The bare-metal test utilised the other, unallo-

cated CPU socket and 64GB of memory available. Tab. 2 summarises the allocated resources.

Table 2. Summary of server specifications of the

non-OpenStack A*CRC machines allocated to a VM or BM

instance

VM Manager virt-manager

CPU Intel E5-2680v3 12-core

Haswell (HW) Arch.

Memory 64GB 2133MHz DDR4

Storage 3x 512GB Micron M600 SSD

1x 1TB 10k RPM WD HDD

Network Mellanox Connect-X3 FDR

Operating System CentOS 6.5

# of servers 3: Arranged as 3 VM or BM instances,

each with the resources stated above

The Ping-Pong test used one MPI process on two distinct nodes whilst all available cores

were used for the MPI collectives with 36 MPI processes. The average latency or time to com-

pletion was recorded.

7Intel MPI Benchmarks - https://software.intel.com/en-us/articles/intel-mpi-benchmarks
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2.2.5. Filesystem benchmarking with fs mark

We used the fs mark v3.3 benchmark utility8 for this test to measure the rate of file creation

on a given filesystem. This was executed via the Phoronix Test Suite9 framework and the average

result is specified in terms of number of files created per second. We looked at the performance

of the BeeGFS parallel filesystem using the three non-OpenStack Haswell nodes each with 3

Micron SSDs. Each SSD is a storage target formatted with the XFS filesystem and a 16GB ext4

partition on one of the SSDs was used as a metadata target. The filesystem client was a spare

bare-metal server that executed fs mark on the filesystem mountpoint. Four benchmark tests

were conducted:

• Creating 1000 1MB files using 16 threads with and without the use of sync/fsync.

• Creating 4000 1MB files spread across 30 subdirectories using 16 threads with and without

the use of sync/fsync.

For conducting the native BM test, the SSDs were mounted outside the VM and the BeeGFS

meta and storage software daemons were running natively whilst the virtual test involved at-

taching the block devices to the VMs and the BeeGFS daemons running inside the VM. In both

cases, raw disk data mode was used i.e. the XFS/ext4 filesystems were readable when mounted

outside the VM.

The stripe setting was set to one storage target with a chunksize of 512k bytes. Hence

the individual 1M files are assigned to one SSD in a round robin fashion. With three metadata

targets, the second test involving 30 subdirectories round-robins each subdirectory to a metadata

target.

3. Results

Tab. 3 shows a summary of the benchmarks obtained on OpenStack-provisioned Sandy-

Bridge and Haswell hardware and also comparing both native and virtual environments to

determine the total virtualisation overheads on both architectures. The filesystem benchmarks

are recorded in tab. 4.

Table 3. Summary table of NCI-A*CRC InfiniCloud OpenStack

performance benchmarks

Benchmark (units) SB, native / virtual HW, native / virtual

iperf (Gbits/s) 43.20 / 39.48 47.08 / 43.18

ib write bw (MB/s) 6003.99 / 5901.84 6075.36 / 5963.20

ib write lat (µs) 0.94 / 1.43 0.88 / 1.30

Local Linpack (Gflops) 279.15 / 268.41 779.45 / 654.39

MPI Linpack (Gflops) 506.02 / 476.11 1332.41 / 1329.18

3.1. Latency, bandwidth and linpack results on OpenStack InfiniCloud

Fig. 1 illustrates the IB RDMA write latency test and the measured virtualisation overhead

for writing a 2-byte chunk of data. The overhead is slightly less on Haswell but both are relatively

8The fs mark benchmark - http://sourceforge.net/projects/fsmark
9Phoronix Test Suite - http://www.phoronix-test-suite.com
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Table 4. Summary table of parallel filesystem performance on file

creation, comparing native and virtual storage backends

FS-Mark Benchmark Native (files/s) Virtual (files/s)

1k files 1992 981

1k files, no sync 4335 4168

4k files in 30 subdirs 2039 1172

4k files in 30 subdirs, no sync 3450 3074
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Figure 1. Bargraph showing the IB write latency measurements between native and virtual

instances on both Intel architectures for 2-byte messages

significant when comparing native and virtual environments. It has been known from previous

works that for small data sizes, the VM latency lags behind native latency [8, 9]. A possible

reason is the way small messages are packaged in virtual functions.

When the IB RDMA write bandwidth is tested and shown in fig. 2, we see little overhead

as we move to larger message sizes. Haswell is slightly ahead, although the noise encountered

whilst executing the benchmark runs means any combination of VM/BM and CPU architecture

can win. Since this benchmark is RDMA and should not involve much of the CPU, this shows

the performance of the Mellanox interconnect and showing near identical performance between

native and virtual instances.

For the TCP iperf test, the overheads for both architectures is greater than that for RDMA

due to more involvement of the CPU in processing TCP packets and this illustrates the CPU

virtualisation overhead as a result. We see that Haswell pulls ahead due to more processing

power over SandyBridge.

For the local Linpack results in fig. 3, the Haswell virtual result shows around 84% perfor-

mance relative to the native result. We believe that a large fraction of the overhead is due to

the CPU virtualisation and this particular benchmark run was taxing the CPU cores. The CPU
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Figure 2. Bargraph showing the IB and TCP bandwidth measurements obtained using the

ib write bw and iperf micro-benchmark programs respectively on both architectures
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Figure 3. Bargraph showing the performance of both local and MPI Linpack on both CPU

architectures

virtualisation overhead was found to be about 10% relative to native performance if no com-

munication is involved [3]. For the other three results, little overhead is shown between virtual

and native performance, showing near-identical performance for the communication part and it

is likely all three cases were communication-bound. In the example of Haswell with MPI Lin-

pack, more Haswell cores could complete the computational part more quickly hence more time
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spent communicating. Comparing to the SandyBridge cases, users can expect more than double

the performance improvement due to the superior Haswell architecture and more cores avail-

able. This should translate into comparable performance for real-world applications on Cloud

computing platforms, as long as it is not heavy in collective communications as we illustrate

next.

3.2. MPI microbenchmarks

When benchmarking the time taken to send a message back and forth between two processes,

there is a difference for small messages until we reach 1M sized messages, shown in fig. 4. This

is expected due to the lack of optimisation in the virtual functions packaging small messages,

confirmed in previous studies [3], although we do not see any effect of inlining small messages in

the native case. But the performance in virtual environments is far better than what is achieved

using TCP on InfiniBand through IPoIB mode.
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Figure 4. Graph showing a logarithmic plot of the time taken to complete a message

pingpong between two MPI processes on distinct nodes against message sizes. The

performance ratio between native and virtual RDMA is also shown

When testing MPI collective operations in fig. 5 and 6, we still see inferior performance

compared to native mode, even on Haswell hardware. The time for all 36 MPI processes to sync

to a barrier is 5.73µs compared to 20.92µs in VMs. For MPI Alltoall in fig. 6, the overheads

increase the time by around 2.5 to 3 times, before settling around 1.2 times the native result

for larger messages. The sharp jump in the ratio highlights the occurrence of the virtual result

jumping to a higher completion time between message sizes 512 and 1024 bytes before the

same phenomenon occurring in the native case between 1024 to 2048 bytes. This work confirms

similar results from a detailed study on SR-IOV InfiniBand where collective operations are not

as optimised on the virtual interfaces [8].
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Figure 6. Graph showing a logarithmic plot of time taken to complete an MPI Alltoall

collective amongst all 36 MPI processes against message sizes. The performance ratio between

native and virtual RDMA is also shown

3.3. Parallel FS performance on native and virtual Haswell servers

Fig. 7 shows the BeeGFS parallel filesystem performance for native and virtual metadata

and storage backends. When file syncing is enforced, the difference is about 50% whereas if

no syncing is used, the filesystem performance is comparable between native and virtual. We
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believe that there is further scope for filesystem tuning to improve performance as well as future

improvements in the Mellanox virtual functions.
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Conclusions

We have setup a pair of native and virtual nodes interconnected using SRIOV-enabled FDR

InfiniBand and utilising SandyBridge hardware at NCI and Haswell over at A*CRC. These were

provisioned using OpenStack with customised patches for InfiniBand and the suite of benchmark

tests were conducted to test the network bandwidth, latency and application performance on

native and virtual hosts. Later, a three node cluster was utilised to further test the native and

virtual performance using MPI microbenchmarks and filesystem benchmarks. In summary, we

found that:

• In terms of IB write bandwidth throughput, the difference is negligible for sufficiently

large messages on both CPU architectures. For TCP bandwidth, there is an increased

CPU virtualisation overheads on both architectures at around 9% with Haswell slightly

increasing the throughput due to improved processing power.

• For IB write latency, we see an overhead of around 50 - 60% for 2-byte messages. This con-

firms previous work that virtual function interfaces are less-optimized for small messages.

Haswell does seem to reduce the latency but the effect is minimal.

• For the local and MPI Linpack results, in three cases we see near-native performance. We

believe this is due to the particular run not being CPU-bound and that the 168-element

block setting ensured sufficiently large messages were exchanged to minimize the virtual

overheads. The fourth case may indicate the run was CPU-bound and previous studies

confirm a CPU virtualisation overhead of around 10% with no network message exchanges
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involved. Clearly, A*CRC’s Haswell nodes can offer InfiniCloud end-users a typical speedup

of around 2.5 times over NCI’s SandyBridge nodes.

• When using MPI collective benchmarks, a significant overhead exists when synchronizing

MPI processes and this is still present on Haswell hardware, hence a network hardware

limitation and already explored in previous studies.

• When examining parallel filesystem performance using native and virtual backends on

Haswell servers and SSD storage, the difference is reduced when not enforcing sync or

fsync, otherwise the performance difference is 2 times over for file creation rates. This

is a quick look at performance and we believe there is room for filesystem and network

parameter tuning.

Despite the overheads are involved, we believe that virtual environments are suitable for

typical compute and I/O-intensive workloads whilst providing the benefits of software and re-

source management that virtualisation can offer. One such example on NCI-A*CRC’s InfiniCloud

platform is a genetic biological workflow [1] that can immediately take advantage of increased

performance now from Haswell servers and from new technology in the future with little or

no required adaptation of the software. In the future we would like to see continued effort in

overhead reduction, especially for intensive, collective-based communication patterns common in

scientific applications using FFTW for example. We believe that technologies such as Docker10

and Linux Containers are an interesting proposition. Finally, it would be interesting to see how

the performance varies on a larger HPC system and not restricted to the small prototype used.
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The L-CSC cluster: Optimizing power efficiency to become

the greenest supercomputer in the world in the Green500 list
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The L-CSC (Lattice Computer for Scientific Computing) is a general purpose compute clus-

ter built with commodity hardware installed at GSI. Its main operational purpose is Lattice QCD

(LQCD) calculations for physics simulations. Quantum Chromo Dynamics (QCD) is the phys-

ical theory describing the strong force, one of the four known fundamental interactions in the

universe. L-CSC leverages a multi-GPU design accommodating the huge demand of LQCD for

memory bandwidth. In recent years, heterogeneous clusters with accelerators such as GPUs have

become more and more powerful while supercomputers in general have shown enormous increases

in power consumption making electricity costs and cooling a significant factor in the total cost of

ownership. Using mainly GPUs for processing, L-CSC is very power-efficient, and its architecture

was optimized to provide the greatest possible power efficiency. This paper presents the cluster

design as well as optimizations to improve the power efficiency. It examines the power measure-

ments performed for the Green500 list of the most power-efficient supercomputers in the world

which led to the number 1 position as the greenest supercomputer in November 2014.

Keywords: L-CSC, HPL, Linpack, Green500, GPU, Energy Efficiency, HPC, LQCD.

Introduction

Quantum Chromo Dynamics (QCD) is the physical theory of the strong force, which de-

scribes the interaction between quarks and gluons, the fundamental constituents of hadronic

matter in the universe. It is a highly nonlinear theory where perturbative methods are only

applicable in a small regime. Lattice QCD (LQCD) uses a discretization in a space time grid,

and it is the only general a priory approach to QCD computations. LQCD requires the inver-

sion of the Dirac operator, which is usually performed by a conjugate gradient algorithm, which

involves a sparse matrix-vector-multiplication called 6D. This 6D operator is the computational

hotspot of LQCD applications and therefore is responsible for a majority of the runtime of the

program. The bottleneck in 6D is usually not the compute performance but the memory band-

width, because sparse matrix-vector-multiplications require many memory loads per compute

operation compared to other matrix operations with dense matrices like DGEMM. Hence, for a

compute cluster with LQCD as primary focus, a large memory bandwidth is paramount.

Supercomputers are inevitable in today’s research. Scientific challenges demand the fastest

possible supercomputers, but it is prohibitively expensive to acquire more and more compute

power through the use of more and more electricity. In order to use the available resources to

the maximum, computers have to become more power-efficient. During the last several years,

heterogeneous HPC clusters combining traditional processors with special accelerators such as

GPUs or the Xeon Phi have been proven to deliver both superior compute performance and

energy efficiency. In an effort to raise awareness for power efficiency, the Green500 list [8] provides

a list of supercomputer power efficiencies and presents the “greenest” supercomputers in the

world.
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This paper presents L-CSC (Lattice Computer for Scientific Computing), which is built

with commodity hardware and features four high-performance GPUs per compute node. It is

organized as follows: Section 1 describes the hardware of the cluster and why it is suited for

LQCD. The section outlines the design decisions for good power efficiency. Section 2 illustrates

some optimizations we applied to achieve the best efficiency in the Linpack benchmark. Finally,

section 3 describes the efforts required to obtain an accurate and reasonable power measurement

for the Green500 list and presents the results.

1. The L-CSC cluster

In order to access a broad variety of hardware and reduce acquisition costs, L-CSC is based

on off-the-shelf components. Its design follows the LOEWE-CSC and Sanam [7] clusters, which

have proven the validity of the commodity hardware approach for GPU accelerated HPC clusters.

L-CSC is a general purpose cluster that can run any kind of software, although its main focus

is LQCD.

L-CSC continues a trend of increasing performance and memory density of compute nodes

as set by its predecessors, LOEWE-CSC and Sanam. Tab. 1 illustrates this trend. The increased

memory size enables larger HPC tasks to be executed on a single node and the increased pro-

cessing power shortens the wall time. Consequently, this reduces the number of nodes and the

size of the network in the cluster, which reflects positively on power efficiency and acquisition

cost.

Table 1. Comparison of LOEWE-CSC, Sanam and L-CSC nodes (all numbers are

aggregate values per compute node)

Component LOEWE-CSC Sanam L-CSC

CPU cores 24 32 40

GPUs 1 4 (2x dual-GPU) 4

System memory 64 GB 128 GB 256 GB

GPU stream processors 1600 7168 11264

GPU memory 1 GB 12 GB 64 GB

GPU peak memory bandwidth 153.6 GB/s 960 GB/s 1280 GB/s

Peak Performance [fp64 GFLOPS] 745.6 3661 10618

The most important criteria for a supercomputer with LQCD-focus are memory bandwidth

and memory capacity. Memory bandwidth defines the compute performance and memory ca-

pacity defines the maximum lattice size. The performance of 6D depends more or less linearly

on the memory bandwidth and it is possible to use a large fraction of the theoretically available

bandwidth in the application (Bach et al. [2] show more than 100 GFLOPS which translates to

about 80% of the peak memory bandwidth with the OpenCL application employed on L-CSC).

The demands with respect to memory capacity are a bit more complex. It is mandatory that

the lattice fits in GPU memory. If it does fit, no additional memory can be used at all. Hence,

memory should not be chosen too large in the first place. For L-QCD calculations, the extent

of the time dimension of the lattice is anti-proportional to the temperature. Thermal lattices

(T > 0) need much less memory than lattices with T ≈ 0. As a different aspect, the distance

of the lattice points can be decreased for better accuracy requiring more memory, but this also
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slows down the program. Hence, the answer to the question of how much memory is needed

depends on the actual problem. A memory of 3 GB is already enough for most thermal lattice

sizes (T > 0) [7], but has some limitations. By and large, we consider 16 GB of L-CSC’s S9150

cards sufficient for almost all lattices.

To make things even more complex, one can distribute the lattice over multiple GPUs or even

over different compute nodes. Tests on the Sanam cluster have shown a performance decrease

on the order of 20%, when more than one GPU is used. The paradigm for L-CSC is to run most

lattices on a single-GPU only, while there is still the possibility of using multiple GPUs for very

large ones. Still, multiple GPUs inside a compute node can be fully used in parallel to compute

independent lattices. Since LQCD needs a lot of statistic, involving a great deal of lattices, this

approach is very efficient.

Overall, the design goal was four GPU boards per node with maximum aggregate GPU

memory bandwidth - under the constraint of sufficient memory per GPU. Two GPU types have

been chosen: The AMD FirePro S9150 GPU, featuring a capacity of 16 GB and a bandwidth

of 320 GB/s. And the AMD FirePro S10000 dual-GPU (i.e. eight GPU chips per node), with

a capacity of 2 × 6 GB (6 GB per GPU chip) and a bandwidth of 2 × 240 GB/s, thus with a

higher aggregate bandwidth than S9150. Besides the higher memory capacity, the S9150 has the

additional advantage of being able to reduce the wall time for small jobs compared to the S10000

due to the higher per-GPU-chip bandwidth. This is important for application development and

testing, when a quick answer is needed. L-CSC runs all larger lattices on the S9150, and the

smaller latices on both S10000 and S9150. Very large lattices can span multiple S9150 cards,

having access to 64 GB of GPU memory per node.

L-CSC consists of 160 compute nodes with 48 S10000 GPUs and 592 S9150 GPUs. Each

compute node consists of an ASUS ESC4000 G2S/FDR server, two Intel Ivy-Bridge-EP ten-core

CPUs, and 256 GB of DDR3-1600 memory. In order to offer more flexibility for general purpose

applications on the CPUs in parallel, two CPU models are used: 60 nodes have 3 GHz CPUs

for applications with high CPU demands and 90 nodes have 2.2 GHz CPUs. The interconnect

is 56 GBit FDR InfiniBand with half bisectional bandwidth and fat-tree topology. Our main

OpenCL LQCD application is CL2QCD.3 It achieves around 135 GFLOPS per S9150 GPU in

6D, which is the core routing of LQCD, and the aggregate 6D performance of the entire cluster

is 89.5 TFLOPS [6]. We had optimized it for the Sanam cluster and it performs very well on the

new S9150 GPUs of L-CSC without additional modifications. The theoretical peak performance

of L-CSC of around 1.7 PFLOPS is in fact much higher than what we achieve in CL2QCD

because LQCD is memory bound [6].

2. Optimizing for best power efficiency in Linpack

The Linpack benchmark is the standard benchmark for measuring the performance of super-

computers. The Green500 list presents the most power-efficient supercomputers in the world [8].

Its ranking is determined by the GFLOPS achieved in the Linpack normalized by the average

electricity consumption during the Linpack run.

Even though L-CSC consists of commodity hardware, there are no unnecessary components

that drain power. The main contributors are the CPUs, GPUs, memory, chipset, network, and

remote management. Power consumption of the hard disk with scratch space in each node and of

3https://github.com/CL2QCD/cl2qcd

D. Rohr, J. Nesković, V. Lindenstruth
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other components are comparatively small, given that each node features four GPUs with 275 W

each. Universal Serial Bus (USB) contributes significantly with up to 20 W. L-CSC uses full USB

suspend which amounts to the same savings as if USB were switched of completely, so USB does

not play a role here.

Some additional optimizations boost L-CSC’s power efficiency during the Linpack run for the

Green500. An InfiniBand-based network boot allows switching off hard disks, SATA controller,

and all Ethernet LAN ports completely. We have investigated the effects of hardware parameters

such as fan speed as well as voltage and frequency of GPU and CPU on both power consumption

and performance in detail. Fig. 1 shows some of our measurements.

Fig. 1a shows the performance achieved in DGEMM (single-GPU) and HPL (single-node,

i. e. quad-GPU) at the stock clocks of 900 MHz and HPL performance at the most efficient

clock rate of 774 MHz. The x-axis represents the voltage of the employed GPUs at 900 MHz

and it is obvious that the GPUs with higher voltage by trend throttle more and achieve less

performance.3 Fig. 1b shows how the power consumption of the full server varies with GPU

temperature, GPU voltage, and FAN Speed.4
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Figure 1. Performance (a) and power (b) measurements of L-CSC nodes, S9150 GPUs, and

system Fans

Due to fluctuations in the manufacturing process every ASIC is a bit different and the ven-

dors account for this by programming individual voltage IDs into their chips. This means that

3 In the measurements for HPL performance, every measurement point corresponds to one compute node. For

each node, we have selected four GPUs of identical voltage ID and plugged these GPUs into the node, such

that the GPU voltage on the x-axis defines the voltage of each of the four GPUs in the node. Consider that

the x-axis shows the voltage ID of the GPUs at 900 MHz. Running at 774 MHz, the GPUs operate at a lower

voltage. For the x-position of the 774 MHz measurements, we still use the voltage ID of the high frequency in

order to identify the compute nodes. (774 and 900 MHz measurements of the same compute nodes are shown at

the same x-position.)
4 For these measurements, we always locked all settings to a fixed value (e. g. deactivated power saving features

and automatic fan speed adjustments) and used GPU clocks of 774 MHz to avoid throttling. The workload is a

continuous DGEMM loop. For the power versus GPU fan speed measurement, we removed all GPUs from the

servers to exclude GPU temperature effects and measure only the change in fan power. The power v.s. temperature

curve is measured by letting the system heat up over a period of several minutes under load while the measurement

is taken. The GPU power consumption measurements for the right plot were performed on an ASUS ESC8000

server, the eight-GPU cousin of the L-CSC servers, to increase the fraction of the GPU power consumption in

the total system power consumption.
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every individual GPU runs only at the voltage its particular chip needs and especially different

GPUs even of the same type operate at different voltages. Today, CPUs and GPUs have a TDP

limit and they will throttle their clock frequency under high load if their power consumption

would exceed this limit otherwise. Since GPUs operating at different voltages drain different

power, the GPUs with lower voltage will hit this limit less frequently and hence operate on aver-

age at a higher frequency yielding better performance. Fig. 1a on the left visualizes this aspect in

single-GPU DGEMM (matrix-matrix multiplication) and multi-GPU HPL benchmarks. In the

DGEMM case at 900 MHz, the GPUs that can operate at the lowest voltage of 1.1425V achieve

an average DGEMM performance of 1250 GFLOPS compared to only 950 to 1100 GFLOPS

for the slowest GPUs that operate at 1.2V. HPL Performance at 900 MHz varies between 6175

and 6280 GFLOPS. Because multi-node HPL distributes the workload evenly among all

compute nodes, the slowest compute nodes dictate the performance. In this case, it is very

unfavorable if the compute nodes achieve different performances due to different GPU voltages.

Using an exhaustive search in the parameter space of GPU voltage, GPU and CPU frequencies,

fan speed settings, and settings for the HPL-GPU benchmark, we have identified the parameter

set that we believe delivers the best power efficiency. The optimal GPU frequency is 774 MHz.

Fig. 1a (left) shows a completely flat performance profile for this energy-efficient configuration

with 774 MHz, i. e. no GPUs throttle and all nodes achieve the same performance.

An interesting observation in this context is that the highest clock rate of 900 MHz does not

deliver the highest performance. Due to the throttling, the GPU oscillates between the 900 MHz

frequency and lower frequencies. This is less efficient than constant operation at the highest

possible frequency that does not throttle. For instance, running with default GPU power man-

agement settings on L-CSC, we see higher constant DGEMM performance at a GPU frequency

of 820 MHz than with 900 MHz.

The fig. 1b (right) shows the dependency of the power consumption on fan speed, GPU

voltage, and GPU temperature. Obviously, the largest contribution by far comes from the GPU

voltage. For the final Linpack run, we have used the minimum voltage required for stable opera-

tion of all GPUs at the target frequency of 774 MHz. Now, it is clear that one cannot operate at

the lowest possible temperature and on low fan speeds at the same time because low fan speeds

cause higher temperatures. The power curve for different fan speeds shows a stronger slope for

fan speeds above 40% and we have found 40% to be the optimum during the high-load phase

of the Linpack benchmark. Toward the end of a Linpack run, the load reduces significantly. We

account for this by employing a curve that defines different FAN duty cycles for different load

levels / temperatures, which ensures that the FANs always run only at the minimum speed

required. This reduces further power consumption.

For running the Linpack benchmark we employed our HPL-GPU6 [1] implementation of the

benchmark, which we have developed and used for the LOEWE-CSC and Sanam clusters before.

It provides two operating modes: One optimized for maximum performance, and an alternative

mode that sacrifices a small fraction of the performance to reduce the power consumption re-

sulting in better net power efficiency. This alternative efficiency-optimized mode was developed

further for L-CSC and has been used for the Green500 result [6].

6https://github.com/davidrohr/hpl-gpu/wiki
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3. Measuring the power consumption for the Green500 list

The Green500 ranking is determined by the quotient of the achieved performance in the

Linpack benchmark divided by the average power consumption during Linpack execution. Due

to late installation of the system, only 56 nodes with S9150 GPUs were available for the Linpack

benchmark in November 2014, which were connected by three InfiniBand switches in a ring-

configuration. We did not repeat the Linpack measurements on the full system which has gone

in production operation meanwhile. From scalability tests of HPL-GPU on the Sanam cluster and

on subsets of L-CSC [6], we assume the full system would achieve an almost identical power effi-

ciency. The current Green500 measurement methodology revision 1.2 is defined by [3]. Tab. 2 lists

three measurement levels defined in this methodology document yielding different accuracies.

Table 2. Measurement levels for Green500 with different accuracy

Level Components Measured fraction of system Duration

1 Only compute nodes At least 1
64 of the system At least 20% of the

middle 80% of the run

2 Full cluster with network At least 1
8 Full runtime

(network estimated)

3 Full cluster with network Full system Full runtime

(network measured)

Level 1 is provided for facilities without sufficient equipment for higher level measurements.

Unfortunately, the level 1 specifications are exploitable such that one can create measurements

which show a higher power efficiency than actually achieved [6]. Thus, higher levels are preferred.

The L-CSC installation had only one revenue grade power meter available (see [3] for power

meter requirements), and it was thus impossible to measure a larger fraction of the system at

the accuracy required for level 2 or level 3. Thus, only a level 1 measurement was feasible. All

measures were taken to make the result as accurate as possible. Our measurement for L-CSC

includes the entire Linpack run and we measured the entire cluster with the network. Due to

the lack of more revenue grade power measurement equipment, only two compute nodes could

be measured. However, in order to obtain the most accurate result, we have taken additional

measures to mitigate the effect of measuring not the full system. Power consumption variability

of nodes can be estimated by measuring the efficiency of several individual nodes during single-

node Linpack runs, which yielded the following values on seven randomly chosen nodes:

5154.1, 5260.1, 5248.4, 5245.5, 5125.1, 5301.2, 5169.3 [MFLOPS/W].

The results show a relatively small variation of only ±1.2%. In order to deliver the most accu-

rate result, we used nodes with middle power consumption among the nodes we had measured

individually before. Hence, the difference to the full level three measurement is small. The only

aspect not fulfilling level 3 is the number of measured nodes. With a deviation of less than 1.2%

between the nodes, and due to the fact that we have chosen average nodes for the final mea-

sument, we assume that our efficiency result is off by less than 1% from a full level three

measurement. (Surprisingly for us, the three switches only contribute with 257 W to the power

consumption.) In contrast, many other top ranked Green500 systems (e. g. the ExaScaler sys-

tems and TSUBAME-KFC currently ranked on places 1, 2, 3, and 5 of the June 2015 list) do not

take measures to ensure exact measurements but instead only measure a period with low power
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consumption according to level 1 [5]. We have shown that in case of L-CSC such a measurement

overestimates the real efficiency by up to 30% [6], currently corresponding to the margin of

the first over the fourth rank in the Green500 list. This greatly deteriorates the comparability.

Accordingly, the newly released power measurement specification 2.0 RC 1 [4] for the Green500

list prohibit such course of action and will lead to better comparability of new measurements.

4. Results and Conclusion

The 56 nodes used for the measurement achieved a Linpack performance of 301.5 TFLOPS

expending on average 57.2 kW and yielding an average efficiency of 5271.8 MFLOPS/W with

a measurement error of less than 1.2%. With this result, L-CSC was awarded 1st place in

the Green500 list of November 2014 as the most power-efficient supercomputer in the world.

We have selected lower clocks and voltages to achieve optimal performance. The performance

decrease is not very large in applications like Linpack that reach close to the peak performance

because under such high load the GPUs cannot maintain the maximum clocks over a long

time. Essentially, when the GPU operates at its power limit, the achieved performance depends

linearly on the power efficiency and we have seen that a slight decrease in clock speed can even

lead to a better performance. The energy efficiency improvements we observe are also applicable

to our application. Our LQCD 6D kernel in particular is memory bound and little sensitive to

frequency. It suffers less than 1.5% performance decrease with the efficiency-optimized settings.

We would like to thank Advanced Micro Devices, Inc. (AMD) and ASUSTeK Computer Inc.

(Asus) for their support. A part of this work was funded by HIC for FAIR.
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Exascale systems will require new approaches to performance observation, analysis, and

runtime decision-making to optimize for performance and efficiency. The standard “first-person”

model, in which multiple operating system processes and threads observe themselves and record

first-person performance profiles or traces for offline analysis, is not adequate to observe and

capture interactions at shared resources in highly concurrent, dynamic systems. Further, it does not

support mechanisms for runtime adaptation. Our approach, called APEX (Autonomic Performance

Environment for eXascale), provides mechanisms for sharing information among the layers of the

software stack, including hardware, operating and runtime systems, and application code, both new

and legacy. The performance measurement components share information across layers, merging

first-person data sets with information collected by third-person tools observing shared hardware

and software states at node- and global-levels. Critically, APEX provides a policy engine designed

to guide runtime adaptation mechanisms to make algorithmic changes, re-allocate resources, or

change scheduling rules when appropriate conditions occur.

Keywords: ParalleX, HPX, exascale, performance measurement, adaptive runtimes.

Introduction

The transition to extreme-scale computing poses new challenges in performance analysis

and optimization because of the anticipated high concurrency and dynamic operation that will

be required to make extreme-scale systems operate efficiently. Increasingly heterogeneous hard-

ware, deeper memory hierarchies, reliability concerns, and constraints posed by power limits will

contribute to a dynamic environment in which hardware and software performances may vary

considerably during the application’s execution. Furthermore, emerging exascale programming

models will emphasize message-driven computation and finer-grained parallelism, resulting in

more asynchronous computation. It is no longer reasonable to expect that a post-mortem per-

formance measurement and analysis methodology will suffice to optimize applications in such

an environment.

Rather, there is a strong need for runtime performance observation that merges in real time

first-person (application perspective) with third-person (resource perspective) introspection, and

for in situ performance analytics to identify bottlenecks and their impact on specific sections of

code. This information can drive online dynamic feedback and adaptation techniques that can

be integrated with an exascale software stack. The goal is to create an autonomic capability in

the exascale system that can direct the application performance to more productive execution

outcomes. In this paper, we describe our prototype implementation of an Autonomic Perfor-

mance Environment for eXascale (APEX) that is the part of the OpenX integrated software

stack being developed in the DOE XPRESS project [9] (see Section 1). The APEX prototype

supports both introspection and policy-driven adaptation for performance and power optimiza-

tion objectives. We describe the APEX design and development in Section 2. Section 3 shows

several examples that demonstrate the effects of APEX-enabled execution. This focuses on mak-
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2Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27517, USA
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ing guided adjustments to thread-scheduling controls for different policy objectives. Section 5

discusses the next steps in our research work.

1. XPRESS Project

The XPRESS project is organized into four major elements: system software, programming

models and languages, applications and cross-cutting issues. The HPX-3 runtime system [3, 18,

35] serves as a starting point as programming tools and runtime system target at the beginning

of the XPRESS project. This has been complemented by the development of HPX-5, which is

being developed to add functionality for fault tolerance and power management, and to provide a

robust open-source runtime system. The LXK lightweight kernel operating system based on the

advanced Kitten operating system [7, 31] is being developed in response to the new requirements

for billion-way concurrency, introspective management of faults and power, and management of

a protected and dynamic global virtual name space. It targets projected future directions of

system architectures while running efficiently on near term systems. LXK is co-designed with

HPX around the centrepiece of the RIOS interface between the runtime and operating system

software. This interface will share information in both directions between the two major software

layers for performance, reliability and control of power consumption. The OpenX software stack

is shown in fig. 1.
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Figure 1. Major components of the OpenX architecture stack. APEX is the cross-cutting

instrumentation component

Two programming methods are employed to provide early means of conducting application

and kernel-driven experiments, as well as to the facilitate ease of programming and portability.

In addition to the native programming API provided by HPX-3 and HPX-5 and potentially

wrapped by Domain Specific Languages (DSLs), a low-level imperative programming interface,

XPI is being developed to expose the semantic constructs comprising the ParalleX execution

model [18] embodied in the experimental HPX runtime systems. The project is exploring legacy

mitigation to ensure the seamless transition to the OpenX software stack of codes written with

the help of MPI or OpenMP. The approach is to develop XPI interfaces for these programming
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models, thus provide interoperability between software modules in both forms, and provide a

path for incrementally extending parallelism within the MPI and OpenMP frameworks. APEX

provides performance instrumentation interfaces compatible with XPI, DSL, and legacy codes.

Essential cross-cutting functions include automatic control and introspection, resilience,

power management and heterogeneity. Power-management software in combination with antic-

ipated energy-efficient hardware will achieve much greater resource utilization per joule while

reducing data movement dramatically, a major source of power consumption through active

locality management. APEX represents the initial research prototype for introspection and dy-

namic control required for the XPRESS project.

2. APEX Design

2.1. Overview

APEX aims to enable autonomic behavior in software by providing the means for applica-

tions, runtimes, and operating systems to observe and control their performance. Autonomic

behavior requires performance awareness (introspection) and performance control/adaptation.

APEX is designed around these two main components. APEX provides introspection from both

top-down and bottom-up perspectives, including node-wide resource utilization data, energy

consumption, and health information, all accessed in real-time. The introspection results are

combined and associated with policy rules in order to provide the feedback control mechanism.
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Figure 2. APEX design

2.2. Introspection

APEX collects top-down introspection data from a runtime system, library, or high-level

application through an event-based inspector API. The software to be controlled is instrumented

with this event API. APEX recognizes several types of logistic events such as initialization,

termination, setting a process rank (e.g., an MPI rank, or HPX locality ID), and creating a new

thread. For measurement, APEX has instrumented timer-start and timer-stop calls, as well as

sampled counter values (e.g., bytes transferred, queue length, idle rate). These API calls enter

APEX as events. Internally, APEX has several event listeners that perform actions based on the

types of events that are passed in to APEX. Events are either handled by listeners immediately

using synchronous code execution or are handled using asynchronous method invocation. For the

asynchronous processing, the event is stored internally on a queue for background processing, and

the execution control is quickly returned to the code that called the APEX API. Custom events
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are also available to trigger specific policy engine rules. Further explanation of this behavior is

presented in Section 2.4.

Bottom-up introspection data is collected from the operating system and hardware using

periodic sampling. These measurements do not use events, but some additional OS threads

are spawned to periodically read values directly from available sources. On Unix-like systems,

the /proc virtual filesystem files provide access to CPU, memory, network, disk, process, and

operating system statistics. Resource Centric Reflection (RCR) [21, 22] provides a user-level

API to access any counter available through PAPI, PERF EVENTS, or a hardware instruction.

RCRdaemon runs on protection ring 0 and supplies information about hardware resources shared

by more than one core (e.g., energy consumption, Last Level Cache events, or memory-controller

usage) in a data structure that can be read at user-level. RCRdaemon uses a self-describing

hierarchical data structure in a shared memory region to transmit protected counter values in

an application-agnostic manner. The power interface reads these values and can be used by any

application to acquire power/energy information. RCR calipers can be placed around any code

region (up to the entire application) to measure energy used by that region. On Cray systems

the access to the protection level 0 is denied, but the Cray PM Counters [23] facility is available.

RCRdaemon was therefore modified to get its data from this source. The values were then placed

into the same data structure previously used. The user API was unchanged. Updates occur at

the same rate as Cray updates /proc.

2.3. Event Listeners

As mentioned in Section 2.2, APEX events are processed by event listeners. Each listener

is implemented as a C++ class, and as events pass through APEX, each instantiated listener

is given access to the event object. The listeners implement handler methods for each event

type available in the system. Notable event listeners in APEX include the Profiling Listener,

the Concurrency Listener, the Policy Engine Listener, and the TAU Listener.

The profiling listener implements timer and counter measurement back-end processing

in APEX. The salient events processed by the profiling listener include the timer start,

timer stop, and sample value events. When the profiling listener gets a timer start event,

it creates a profiler object, generates a timestamp, and returns a handle to the profiler object.

When the profiling listener gets a timer stop event, it takes a second timestamp, puts the

profiler object in a single-producer-single-consumer (spsc) queue for back-end processing, and

returns. Each OS thread in the process has its own spsc queue to avoid contention. Similarly,

when the profiling listener gets a sample value event, it creates a profiler object, puts it in

the spsc queue for back-end processing, and returns. The profiling listener has a background

consumer thread that waits for a signal that indicates that data has been pushed onto one of

the queues. When the consumer thread has been signalled, it clears all of the spsc queues of

pending work by removing a profiler object from the queue and updates the per-thread and

per-process statistical profile for the running application. The current executing profile can be

queried subsequently at runtime through an introspection API. The optional TAU listener is

similar to the profiling listener with the exception that all processing is done synchronously

through the TAU measurement library in order to generate a detailed profile or trace for offline,

post-mortem performance analysis.

The concurrency listener works as follows. The salient events processed by the profiling

listener are the timer start and timer stop events. When the concurrency listener gets a

An Autonomic Performance Environment for Exascale

52 Supercomputing Frontiers and Innovations



timer start event, it pushes the timer ID onto a thread-specific stack, and returns. When the

profiling listener gets a timer stop event, it pops a timer ID off of the thread-specific stack. The

concurrency listener also has a background consumer thread that periodically examines the top

of each thread’s timer stack and builds a histogram reporting the task currently being executed

by each thread during that time quantum. At the end of execution, the histograms are written

to files on disk and gnuplot [37] is used to visualize a concurrency graph of the application.

Fig. 3–7 are examples of concurrency graphs. The concurrency listener does not have a role in

runtime adaptation and is instantiated only when concurrency graphs are desired.

2.4. The Policy Engine

The most important listener component in APEX is the Policy Engine. The policy engine

provides autonomic controls to an application, library, runtime, or operating system using the

introspection measurements described in Section 2.2. Policies are rules that decide on outcomes

based on the observed state captured by APEX. The rules are encoded as callback functions

that are registered with APEX and are either triggered or periodic. Triggered policies are invoked

by an APEX event, whereas periodic policies, by definition, are executed at set intervals. The

policy rule functions have access to the APEX API in order to request profile values from any

measurement collected by APEX. Using these values to make logical decisions, the functions

can change the behavior of the application by whatever means available, such as throttling

threads, changing task granularity, or triggering data movement such as mesh refinement or

repartitioning. In this way, the policy engine enables runtime adaptation using introspection

data, engages actuators across stack layers, and can be used to invoke online auto-tuning support.

2.5. Global Performance Views

Thus far in the discussion performance introspection has been limited to local node obser-

vations. No performance information from remote nodes or processes is available implicitly to

the local policy functions. However, there are situations in which global performance informa-

tion is necessary to make runtime adaptation decisions for problems such as load balancing.

In those cases, APEX provides a skeleton interface for exchanging local information in a dis-

tributed application scenario. The global exchange of local performance data in APEX is similar

to that provided by TAUg [16], in which TAU performance data collected by an MPI application

was exchanged using MPI functions. Rather than be tied directly to a specific communication

infrastructure, APEX provides a skeleton interface to be populated using the distributed com-

munication library used in the application to be controlled. Examples implemented so far include

HPX-3, HPX-5 and MPI. The interface that the runtime has to implement includes two func-

tions: action apex get value() – each node gets local data to be reduced and performs an

optional put (if implementing a push model) and action apex reduce() – each node performs

an optional get (if implementing a pull model), all remote node data is aggregated at root node,

and an optional push broadcasts the aggregated result back out to the non-root nodes. Ideally,

puts and gets are performed using one-sided communication such as remote distributed memory

accesses (RDMA) or by using a Global Address Space (PGAS or AGAS).
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2.6. HPX Integration

APEX is integrated with operating systems, runtime systems, libraries, and applications

by instrumenting the code with calls to the APEX introspection API, as well as by registering

desired policy functions and global communication. Because both HPX-3 and HPX-5 are task-

based runtime systems, we added the instrumentation in the respective task schedulers, placing

timer start/stop calls just before and after task functions are executed, taking special care to

avoid measuring internal lightweight tasks such as “no-op”. Sample value() calls were added to

capture internal runtime statistics (i.e., number of yields, steals, spins, etc.) and we added other

instrumentation for initialization, thread creation and termination. Where applicable, we wrote

policy functions and added the code to register the policy functions to perform adaptation of the

runtime system. All the examples described in Section 3 modify runtime behavior in the same

way, by setting a cap on the maximum number of active worker threads, so we also modified

the HPX thread scheduler loop for worker threads to check the cap value and de-activate the

worker thread if the number of active threads is greater than the thread cap. Even though we are

measuring nearly every task executed by the runtime, our measurements show that the overhead

introduced by APEX does not exceed 2% and is usually less than 1%, depending on the granu-

larity of the executed tasks. We believe that this is due to our asynchronous profile-processing

combined with the small but sufficient amount of available processing capacity headroom when

executing on many-core nodes. Global performance data is exchanged in HPX using the Active

Global Address Space (AGAS).

3. Experimental Results

In order to demonstrate the features and capabilities of APEX, we integrated it with two

distinct but related runtimes, HPX-3 and HPX-5. We implemented a variety of policy rules, and

we present a selection of them here, along with the applications that best demonstrate them. In

this section we present the following examples:

• HPX-3 1-D stencil code, runtime optimized for best performance

• HPX-5 Single-source, shortest-path benchmark, runtime optimized for highest throughput

• HPX-5 LULESH kernel, runtime modified to stay under a user-specified power cap

• HPX-3 miniGhost kernel, runtime modified to stay under a user-specified power cap

All of the experiments described below were conducted on Edison, a Cray XC30 system deployed

at NERSC [36]. Edison has 5576 nodes with two 12-core Intel “Ivy Bridge” processors operating

at 2.4 GHz, with a total of 48 threads per node (24 physical cores w/hyperthreading). The

network on Edison is a Cray Aries interconnect with Dragonfly topology, with 23.7 TB/s global

bandwidth. As LXK hadn’t been integrated with HPX yet, the applications were executed on

the Compute Node Linux (CNL) operating system.

3.1. HPX-3 1-D Stencil Code

The 1D stencil code is a simple, iterative heat-diffusion solver using a 3-point stencil, used

as an example code for HPX-3, and for which multiple versions are available with different

optimizations applied. The simplest version represents the computation for each data point as

an individual future, but the performance of this version is extremely poor as the task granularity

is far too small. The version with good performance partitions the data into a user-configurable

number of equally-sized chunks, with the computation on each chunk being represented as a
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future. Within a node, performance initially increases with an increasing number of worker

threads, but then decreases.

Fig. 3a shows the runtime (blue line) of the 1D stencil code as function of number of worker

threads from 1 to 24, which is the number of physical cores available on Edison nodes. It also

shows that runtime is highly correlated with the average thread queue length (red line), which

is a counter exposed by the HPX-3 runtime representing the number of tasks waiting to execute

on worker threads. APEX can query the thread queue length while the program is executing

and adjust dynamically the number of worker threads allocated to minimize runtime.

Fig. 3b shows the concurrency graph for the execution of the 1D stencil code run on

100,000,000 elements partitioned into 1000 chunks with 48 worker threads, which is the number

of logical cores available on the Edison node with hyperthreading enabled. Actual concurrency

is substantially lower, as many tasks wait on dependencies to complete before become eligible to

run, and there is a substantial variability in actual concurrency over time. This execution takes

138 seconds to run. Fig. 3c shows the concurrency graph for an execution of the same problem

size but with 12 worker threads, which produces the shortest runtime of any number of worker

threads. That execution takes 61 seconds to run.

Fig. 3d shows the concurrency graph for the same problem size and an initial number of

worker threads of 48, but using discrete hill-climbing search to minimize the average thread

queue length. It converges on 13 worker threads (vs. the optimal value of 12) and acts in an

enough quick way so that the overall runtime is nearly as fast (64 seconds) as starting with the

optimal number.

3.2. HPX-5 SSSP benchmark

The Single Source, Shortest Path graph search benchmark (SSSP) 5 is a candidate for in-

clusion in the Graph500 6 benchmark kernels. Given an initial graph, the SSSP benchmark

computation finds the shortest distance from a given starting vertex to every other vertex in the

graph. In the HPX-5 implementation, a large graph is loaded and distributed across localities, a

point is selected at random, and the shortest path between it and all other points is found. The

search runs for a fixed length of time and terminates when the accumulated time performing

searches exceeds the specified length of time. Key constraints of the benchmark are that only

one initial vertex search is performed at a time, and no memoization between searches is allowed.

The dataset used in this example is the Random4-n.10 dataset, executed for 60 seconds worth

of timed searches. For this benchmark, the metric of interest is total throughput, not time to

completion. The code was run on 10 nodes, using 24 threads per node (no hyperthreading).

The APEX Policy rule used for optimization of SSSP was the maximization of the number of

calls to handle queue action(), used as proxy for the “throughput” metric. The primary met-

ric for this benchmark is Traversed Edges Per Second (TEPS), and the queue contains vertices

to be explored. The policy function adjusts the thread concurrency to maximize throughput,

using the Parallel Rank Order search strategy provided by the auto-tuning and optimization

search framework Active Harmony [10]. The initial value for the thread cap was set at 24, with

a minimum value of 6. The policy function was registered to execute on a periodic basis (1Hz),

adjusting the thread cap to a new value as specified by the optimization search.

5http://hpx.crest.iu.edu/applications
6http://www.graph500.org
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Figure 3. 1D Stencil

Fig. 4a shows the cumulative concurrency graph across all 10 nodes for the baseline execu-

tion. The concurrency charts show a stacked bar chart with the periodic (1Hz) instantaneous

status of all threads. The red line indicates the maximum total number of threads (fixed at 240),

and the black line is the instantaneous power measurement for each sample. In this run, 1962

searches are performed in 60 seconds. The graph shows that nearly all 240 threads are busy, and

power consumption is about 240 W per node.

Fig. 4b shows the cumulative concurrency graph across all 10 nodes for the throttled execu-

tion using the policy engine. The total maximum number of threads starts at 240, but is throttled

while Active Harmony is searching for an optimal number of active threads to maximize trans-

action throughput. As in the baseline figure, the evolving thread cap is the red line and the
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instantaneous power for each sample is the black line. In this execution, 6929 searches were per-

formed in 60 seconds. When the search converges, only 61 (6 threads on 9 nodes, 7 threads on one

node) threads are active. As a side-effect, power consumption is much lower, about 150 W per

node. Most importantly, the number of searches done in the 60 seconds is several times higher.

Fig. 4c shows the correlation between the throughput (total calls to handle queue action())

and the evolving thread cap.

Tab. 4d shows a comparison of key metrics between the baseline and the runtime optimized

executions of SSSP. In the throttled execution, the total cycles and instruction counts are re-

duced, while the number of L2 cache misses increases slightly. Because the graph is distributed,

visiting remote vertices requires network communication. The network request causes a worker

thread to yield the task waiting on the network request to perform other work, rather than block

and wait on the result. The yield process is implemented using locks, so increased requests for

the network lead to lock contention in the runtime. The yield algorithm also includes a small

amount of “busy work”, which explains the reduction in instructions. Essentially, this appli-

cation implementation appears to be network-bound, so reducing the number of active worker

threads decreases the contention for yielded tasks. As it can be seen in the table, the TEPS

metrics are increased considerably by throttling, resulting in greater throughput. It is important

to note that the problem is not with the runtime, but with the nature of the implementation.

Because the graph is distributed, the threads contend while waiting on remote actions.
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Figure 4. SSSP Benchmark
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3.3. HPX-5 LULESH kernel

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) bench-

mark is one of the proxy applications for the US Department of Energy co-design efforts for

exascale. LULESH is an application from the Lawrence Livermore National Laboratory (LLNL)

that is used to model and study hydrodynamics, the motion of materials relative to each other

when subject to forces. The HPX-5 LULESH implementation was written by the HPX-5 re-

searchers at Indiana University. Because LULESH is CPU bound in most implementations, it is

an interesting test case to demonstrate what happens when executed under a power cap. As it is

CPU bound, reducing the power consumption typically involves using fewer threads or slowing

down the CPU clock speed, which will affect performance.

For this example, we developed an APEX policy for maintaining power draw within a

high/low range. The policy will periodically check the power draw, and if the current power

draw is greater than the high power cap, the thread cap will be reduced. If the power draw

is lower than the low power cap, the thread cap will be increased. The policy rule is a simple

hill-climbing algorithm with hysteresis, using a running average of the last N observations. In

our tests, we set N = 3. We modified the HPX-5 thread scheduler algorithm to check the thread

cap on every iteration of the main worker loop. If a thread is not holding any resources and

the number of active workers is greater than the current thread cap, the thread goes into an

idle state until signaled to resume work. If the number of active workers is less than the cap,

an active worker signals an idle thread to resume working. A quiescent node of Edison draws

approximately 40W, whereas a fully loaded node draws as much as 300W. We used a high power

cap of 220W and a low cap of 200W. We executed LULESH with 8000 sub-domains, nx = 64,

for 100 iterations on 334 nodes of Edison (8016 total cores).

Fig. 5a shows the cumulative concurrency graph across all 334 nodes for the baseline exe-

cution. The total runtime of the application is 118 seconds. The red line shows the maximum

concurrency, 8000 threads (fixed). The black line shows the cumulative power draw across all

334 nodes. The power consumption has peaks around 9.3kW, about 278W per node. The aver-

age power draw per node was around 236W. The total energy usage was measured as 9.327MJ

(megajoules). The stacked bar chart shows which tasks were executing when APEX sampled

them with a 4Hz period.

Fig. 5b shows the cumulative concurrency graph across all 334 nodes for the throttled

execution using the policy engine. The key difference between the two executions is that the

total energy draw for the throttled execution was only 8.180MJ (approximately 12.3% less)

while the execution time was not affected. The red line shows the thread cap as it is modified

by the policy. The black line shows the reflected reduction in power draw with some localized

fluctuations. The average power draw per node for this run was 207 W. Once the search had

converged, this execution used approximately 3/4 of the number of threads, but runtime was

unaffected.

Like the SSSP benchmark, the throttled version of LULESH does not yield tasks as much

as the original. A sampled TAU profile showed much less time spent in yielding activity – when

a worker thread surrenders its task in order to stay busy while waiting on a remote result. Our

conclusion is that the assignment of sub-domains to localities in HPX does not maintain spatial

locality, but rather assigns them round-robin to distribute the work. The HPX-5 implementation

is being rewritten in order to exploit spatial locality and put less pressure on the network.
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Figure 5. LULESH Benchmark

3.4. HPX-3 miniGhost kernel

MiniGhost [5], developed as part of the Mantevo project [14], is a finite difference miniapp

simulating heat diffusion over a three-dimensional domain. The original version uses OpenMP

intra-node and MPI inter-node. It has been ported to HPX-3 [2]; this version uses HPX for

both intra- and inter-node parallelism. The HPX version provides better performance than the

original OpenMP version.

Fig. 6 shows that there are diminishing returns from allocating additional worker threads to

MiniGhost. This suggests that we can throttle the application by cutting back on the number

of worker threads to reduce energy usage while avoiding substantial performance degradation.
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Fig. 7a shows the concurrency with 48 worker threads, the number of logical cores on an Edison

node. While not all available worker threads are used, the application will often use slightly

more than 24 available physical cores. With 48 worker threads, MiniGhost runs in 92 seconds

and uses about 275 Watts of power. Fig. 7b shows the concurrency when the initial number of

worker threads is set to 48 but the thread cap is dynamically adjusted to keep power at or below

200 Watts. APEX converges on the thread cap of 20, yielding 200 Watts of power usage, a 33%

of reduction in power, and the runtime of 103 seconds, 12% of increase in runtime.
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4. Related Work

Several performance tools use measurement for the purposes of offline performance analysis,

including TAU [32], HPCToolkit [1], Scalasca [38], Vampir [20], Extrae [27] and others. All

are powerful and capable tools in their own right. These tools, however, were designed for

offline performance analysis and tuning, focusing on first-person performance measurement of

tied tasks on a per-thread (OS thread) basis. New and emerging exascale programming models

present technical challenges that the designers of those measurement systems had not considered,

such as untied task execution and migration, runtime thread control and execution, third-person

observation, and runtime performance tuning. Also, as these tools are inescapably intrusive, they

are not designed to be integrated permanently into an application for continuous performance

introspection, but rather to be used in an iterative execute-analyze-tune cycle. In contrast,

APEX is designed to perform asynchronous first- and third-person measurement for the sole

purpose of supporting runtime introspection and performance adaptation.

One of the most active research areas in HPC is to reduce energy consumption while main-

taining and even improving performance. For example, Curtis-Maury et al. [11] demonstrated

the ability to build a runtime-adaptable optimization that both converges on the best perform-

ing configuration and reduces power consumption. This result is due to the observation that

some parallel applications have diminishing returns with respect to scalability, and additional

hardware merely consumes more power without improving performance. Rountree et al. [30]

demonstrate the use of dynamic voltage scaling to save energy while minimizing impact on the

performance. Their Adagio approach attempts to scale computation and communication in dis-

tributed MPI applications using only local information acquired and applied at runtime in order

to eliminate slack at synchronization points. Rountree et al. [29] have subsequently explored the
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inherent variation among processors and the range of effects that placing a hard power cap has

on applications with different characteristics.

With respect to runtime thread scheduling, Olivier et al. [26] demonstrated that a hierar-

chical, cache-aware thread scheduler performs better than a flat task scheduling in conjunction

with load balancing (via task stealing) within cache and/or NUMA domains. While this is a

form of runtime adaptation, it is an approach targeting one issue and does not react to runtime

measurements, but rather uses thread affinity and memory hierarchy information at startup.

Similarly, Charm++ [19, 39] has mechanisms for distributed dynamic load-balancing based on

runtime information. Other researchers have used Charm++ as a platform for developing ad-

ditional runtime load-balancing strategies [17] both between nodes and within a node using

cache/memory hierarchical information. PICS [34] allows runtime adaptivity in Charm++ by

allowing the application to register control points [12] specifying what effect application parame-

ters have on various categories of performance-effecting properties. For example, the application

can register that a variable controlling the size of a subproblem will change the grain size and

degree of parallelism. Based on runtime performance measurement, the system selects a property

to adjust and adjusts registered control points accordingly.

The OmpSs runtime system has demonstrated the ability to schedule an appropriate kernel

implementation based on available heterogeneous hardware choices [13, 28]. In this implemen-

tation, DGEMM tasks are scheduled on either CPU or GPU resources depending on the input

size, available hardware, and prior performance results.

The Open Tool for Parameter Optimization [8] tunes parameters exposed by the OpenMPI

runtime. In OpenMPI, many runtime tasks are delegated to modules, which implement differ-

ent versions of communication algorithms (such as collectives) and map MPI operations onto

lower-level network operations (such as for TCP, InfiniBand, Cray Gemini/Aries, etc.). These

modules expose a set of tunable parameters, called MCA parameters, as the result of which a

typical installation will have several hundred. OTPO searches for parameters giving the best

performance, as measured by latency or bandwidth of network operations.

The AutoTune project [24] is developing the Periscope Tuning Framework, an extension to

the earlier Periscope [6] performance analysis and diagnosis tool which allows plugins to provide

new functionality. PTF has been used for runtime energy tuning using DVFS and for tuning of

MPI runtime parameters [25], and it has been integrated with several parallel pattern libraries

to tune parameters such as how many CPU cores and acclelerators to use in heterogenous codes

and what scheduling policies to use [4]. APEX differs from PTF in being more deeply integrated

with runtimes and in providing tuning capabilities based on a global performance view.

Hoffman et al. [15] have developed an interface for diverse applications to report a perfor-

mance measure in a generic way so that operating systems and runtimes can adapt themselves

to optimize application performance. In their Application Heartbeats framework, applications

signal a “heartbeat” as they make progress in a computation; for example, a video-encoding

application could signal a heartbeat each time it processes a frame. The system then tries to

optimize the observed “heart rate”. They provide examples of optimizations purely within an

application, such as a video encoder switching algorithms and altering parameters to algorithms

to meet a target frame rate, and outside applications, such as a computer-vision application

that adjusts the number of cores that it uses to find the smallest number of cores necessary to

achieve real-time video processing.
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5. Conclusion

The quest for exascale brings fundamentally new challenges to performance and productiv-

ity. The solutions that will likely usher in the exascale era will require software designers and

users to embrace performance heterogeneity and variability. We believe that any successful im-

plementation will have to integrate performance introspection, in situ analysis and adaptation

in an exascale system stack. The XPRESS project has developed a prototype of APEX inte-

grated with HPX-3 and HPX-5 for use in OpenX. We have demonstrated APEX with several

benchmark examples, and we believe that the APEX framework is generally applicable to other

X-stack runtime efforts.

There is considerable work that can be done with respect to APEX. In the short term,

we would like to conduct more robust application experiments and to explore behavior larger

scales on different platforms. As more applications are developed using HPX, we hope to have

a greater opportunity to demonstrate the APEX capabilities for runtime adaptation. With that

in mind, new applications will present more and better policy (optimization) rules, both for

specific applications and to generalize them in the operating system and runtime libraries. In

particular, we are interested in possible policy rules that address heterogeneous HPX-3 code

that can be executed on GPGPUs, as well as many-core architectures such as the Intel Phi. We

plan to develop more policy rules that specifically address the SLOWER design principles of the

ParalleX model [33]. We soon will be exploring the multi-objective optimization opportunities

available in the development branch of Active Harmony. With that support, we can tune with

respect to both performance and energy efficiency, as well as to any other application-specific

metrics. Finally, we believe that APEX has applications outside of the XPRESS project, and that

it can be successfully integrated into other runtime systems and parallel execution models with

controllable parameters, including OpenMP, MPI, and OmpSs. It can serve as a framework for

triggering application-specific optimizations such as adaptive mesh refinement, load balancing,

and other dynamic behavior.
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10. Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active harmony: Towards

automated performance tuning. In 2002 ACM/IEEE Conference on Supercomputing, SC

’02, pages 1–11, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

11. Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S.

Nikolopoulos. Online power-performance adaptation of multithreaded programs using hard-

ware event-based prediction. In 20th Annual International Conference on Supercomputing,

ICS ’06, pages 157–166, New York, NY, USA, 2006. ACM. DOI: 10.1145/1183401.1183426.

12. Isaac J Dooley. Intelligent runtime tuning of parallel applications with control points. PhD

thesis, University of Illinois at Urbana-Champaign, 2011.
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based introspective control system to steer parallel applications. In International Workshop

on Runtime and Operating Systems for Supercomputers, ROSS ’14, pages 5:1–5:8, New York,

NY, USA, 2014. ACM. DOI: 10.1145/2612262.2612266.

35. Alexandre Tabbal, Matthew Anderson, Maciej Brodowicz, Hartmut Kaiser, and Thomas

Sterling. Preliminary design examination of the ParalleX system from a software and hard-

ware perspective. SIGMETRICS Performance Evaluation Review, 38:4, Mar 2011.

36. The National Energy Research Scientific Computing Center (NERSC). Edison. https:

//www.nersc.gov/users/computational-systems/edison/, April 2015.

37. Thomas Williams and Colin Kelley. Gnuplot homepage. http://www.gnuplot.info, April

2015.

38. Felix Wolf, Brian J. N. Wylie, Erika Abraham, Daniel Becker, Wolfgang Frings, Karl

Furlinger, Markus Geimer, Marc-Andre Hermanns, Bernd Mohr, Shirley Moore, Matthias

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 65



Pfeifer, and Zoltan Szebenyi. Usage of the scalasca toolset for scalable performance anal-

ysis of large-scale parallel applications. In Tools for High Performance Computing, pages

157–167. Springer Berlin Heidelberg, 2008.

39. Gengbin Zheng, E. Meneses, A. Bhatele, and L.V. Kale. Hierarchical load balancing

for charm++ applications on large supercomputers. In Parallel Processing Workshops

(ICPPW), 2010 39th International Conference on, pages 436–444, Sept 2010. DOI:

10.1109/ICPPW.2010.65.

Received June 7, 2015.

An Autonomic Performance Environment for Exascale

66 Supercomputing Frontiers and Innovations



Visualization for Exascale: Portable Performance is Critical
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Researchers face a daunting task to provide scientific visualization capabilities for exascale

computing. Of the many fundamental changes we are seeing in HPC systems, one of the most pro-

found is a reliance on new processor types optimized for execution bandwidth over latency hiding.

Multiple vendors create such accelerator processors, each with significantly different features and

performance characteristics. To address these visualization needs across multiple platforms, we are

embracing the use of data parallel primitives that encapsulate highly efficient parallel algorithms

that can be used as building blocks for conglomerate visualization algorithms. We can achieve per-

formance portability by optimizing this small set of data parallel primitives whose tuning conveys

to the conglomerates. In this paper we provide an overview of how to use data parallel primitives

to solve some of the most common problems in visualization algorithms. We then describe how

we are using these fundamental approaches to build a new toolkit, VTK-m, that provides effi-

cient visualization algorithms on multi- and many-core architectures. We conclude by reviewing

a comparison of a visualization algorithm written with data parallel primitives and separate ver-

sions hand written for different architectures to show comparable performance with data parallel

primitives with far less development work.

Keywords: scientific visualization, exascale, performance portability, data parallel primitives.

Introduction

Although the basic architecture for high-performance computing platforms has remained

homogeneous and consistent for over a decade, revolutionary changes are coming. Power con-

straints and physical limitations are impelling the use of new types of processors, heterogeneous

architectures, and deeper memory and storage hierarchies. Such drastic changes propagate to

the design of software that is run on these high-performance computers and how we use them.

The predictions for extreme-scale computing are dire. Recent trends, many of which are

driven by power budgets, which max out at 20 MW [18], indicate that future high-performance

computers will have different hardware structure and programming models to which software

must adapt. The predicted changes from petascale to exascale are summarized in tab. 1.

A particularly alarming feature of tab. 1 is the increase in concurrency of the system: up

to 5 orders of magnitude. This comes from an increase in both the number of cores as well as

the number of threads run per core. (Modern cores employ techniques like hyperthreading to

run multiple threads per core to overcome latencies in the system.) We currently stand about

halfway through the transition from petascale to exascale and we can observe this prediction

coming to fruition through the use of accelerator or many-core processors. In the November 2014

Top500 supercomputer list, 75 of the computers contain many-core components, including half

of the top 10 computers.

A many-core processor achieves high instruction bandwidth by packing many cores onto a

single processor. To achieve the highest density of cores at the lowest possible power requirement,

these cores are trimmed of latency-hiding features and require careful coordination to achieve

peak performance. Although very scalable on distributed memory architectures, our current

parallel scientific visualization tools, such as ParaView [2] and VisIt [6], are inadequate on these

machines.
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Table 1. Comparison of a petascale supercomputer to an expected exascale

supercomputer [1]

Exascale (Prediction)

System Parameter Petascale Swim Lane 1 Swim Lane 2 Factor Change

System Peak 2 PF 1 EF 500

Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32–64 PB 100–200

Node Performance 125 GF 1 TF 10 TF 8–80

Node Core Count 12 1,000 10,000 83–830

Core Concurrency 1 10 100 10–100

Node Concurrency 12 10,000 1,000,000 830–83,000

System Size (nodes) 18700 1,000,000 100,000 50–500

Total Concurrency 225 K 1 B×10 1 B×100 40,000–400,000

Network BW 1.5 GB/s 100 GB/s 1,000 GB/s 66–660

I/O Capacity 15 PB 300–1,000 PB 20–67

I/O BW 0.2 TB/s 20–60 TB/s 100–300

Overhauling our software tools is one of the principal visualization research challenges to-

day [7]. A key strategy has been the use of data parallel primitives, since the approach enables

simplified algorithm development and helps to achieve portable performance.

1. Data Parallel Primitives

Data parallelism is a programming model in which processing elements perform the same

task on different pieces of data. Data is arranged in long vectors, and the base tasks apply

an operation across all the entities in one or more vectors. Using a sequence of data parallel

primitives simplifies expressing parallelism in an algorithm and simplifies porting across different

parallel devices. It takes only a few select data parallel primitives to efficiently enable a great

number of algorithms [5].

Scientific visualization algorithms typically use data parallel primitives like map, scan, re-

duce, and sort, which are commonly available in parallel libraries [4, 16]. Several recent research

projects for visualization software on next-generation architectures such as Dax [13], PISTON [9],

and EAVL [11] use this data parallel approach to execute algorithms [17]. Based on this core

similarity, a new project — VTK-m — is combining their respective strengths in execution and

data models into a unified framework.

2. Patterns for Data Parallel Visualization

Using data parallel primitives greatly simplifies the process of implementing algorithms on

highly-threaded machines and makes these algorithms performance portable. However, imple-

menting many scientific algorithms in terms of data parallel primitives like scan and sort is not

straightforward. Fortunately, many scientific visualization algorithms follow familiar algorithmic

structures [14], and common patterns emerge.
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543

Figure 1. Mesh for contour algorithm examples

Three very common patterns in scientific visualization are stream compaction, reverse index

lookup, and topology consolidation. In this section we describe these patterns using a Marching-

Square-like algorithm applied to the simple example mesh shown in fig. 1.

2.1. Stream Compaction

One common feature of visualization algorithms is that the size of the output might depend

on the data values in the input and cannot be determined without first analyzing the data. For

example, in the mesh of fig. 1 we note that there is no contour in cells 0 and 2, a single contour

line in cells 1, 3, and 5, and two contour lines in cell 4. When generating these contour segments

in parallel, it is not known where to place the results. We could allocate space assuming the

worst case scenario that every cell has the maximum number of contour segments, but that

guess tends to be much larger than the actual required memory. Instead, we want to pack the

result tightly in an array. This process is known as stream compaction. Stream compaction can

be performed in two data parallel operations, which are demonstrated in fig. 2 (adapted from

Lo, Sewell, and Ahrens [9]).

0 1 2 3 4 5

0 1 1210

0 0 4211

Original Cells

Output Cell Count
Map Classi�cation Function

Output Array Location
Exclusive Pre�x Sum of Cell Count

Write New Cells
Scatter based on location and count

(0,0)

x
(1,0)

x
(0,1) (1,1) (2,2) (4,1)

Figure 2. Steps to perform the stream compaction pattern using data parallel primitives

Firstly, a mapping operation is performed to count the size of the output per cell. Secondly,

an exclusive prefix sum (scan) operation is performed. The result of the prefix sum for each

entry is the sum of all output up to that point. This sum can be directly used as an index into

the compact output array. A final map of the per-element algorithm can now run, placing its

results into the appropriate location of the output array.
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2.2. Reverse Index Lookup

Directly using the indices from the stream compaction operation results in a scatter oper-

ation where each thread takes data from an input element and writes to one or more output

elements using random access. Although the scatter done by the basic stream compaction is

functionally correct, it is known that current many-core processors tend to perform better with

gather operations where each thread is assigned a single output element but can access ran-

dom input elements [19]. The steps to reverse the index lookup from a scatter to a gather are

demonstrated in fig. 3.

0 1 2 3 4 5

0 1 1210

0 1 5421

Original Cells

Output Cell Count
Map Classi�cation Function

Output Array Location
Inclusive Pre�x Sum of Cell Count

Write New Cells
Gather based on location and visit

Output Indices
Implicit Counting Array

0 1 2 3 4

Input Array Location
Find Output Index in Location Array

1 3 4 4 5

Group Start Location
Find Input Location in Itself

0 1 2 2 4

1 3 4 4 5

Visit Index
Subtract group start from index

0 0 0 1 0
(1,0) (3,0) (4,0) (4,1) (5,0)

Figure 3. Steps to perform a reverse lookup after stream compaction using data parallel

primitives

We start with an array that maps each input to the location in its corresponding output

location. However, we generate this output array location using an inclusive scan rather than an

exclusive scan. This has the effect of shifting the array to the left by one to make the indexing of

the next step work better. The next step is to search for the upper bound of the array location

for each output element index. The upper bound will be the first entry greater than the value

we search for. This search requires the target array location indices to be sorted, which it is

assuredly because it is generated from a prefix sum. The search for every index can be done

independently in parallel.

The results from the upper bound give the reverse map from output index to input index.

However, a problem that arises is that multiple output elements may come from the same input

elements but are expected to produce unique results. In this example input cell 4 produces two
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contour elements, so two entries in the output array point to the same input cell. How are the

two threads running on the same input cell know which element to produce? We solve this

problem by generating what we call a visit index.

The visit indices are generated in two steps. First, we perform a lower bound search of each

value in the input array location map into the same map. The lower bound search finds the last

entry less than or equal to the value we search for in parallel. The result is the index to the first

entry in the input array location map for the group associated with the same input element.

Then we take this array of indices and subtract them from the output index to get a unique

index into that group. We call this the visit index. Using the pair from input array location map

and the visit index, each thread running for a single output element can uniquely generate the

data it is to produce.

2.3. Topology Consolidation

Another common occurrence in visualization algorithms is for independent threads to re-

dundantly create coincident data. For example, output elements 0 and 3 from fig. 2 and fig. 3

come from cells 1 and 4, respectively, in fig. 1 and share a vertex. This shared vertex is inde-

pendently interpolated in separate threads and the connection of these output elements is lost.

It is sometimes required to consolidate the topology by finding these coincident elements and

merging them.

The general approach to topology consolidation is to define a simple hash for each element

that uniquely identifies the element for all instances. That is, two hash values are equal if and

only if the associated elements are coincident. Once hashes are generated, a sort keyed on the

hashes moves all coincident elements to be adjacent in the storage arrays. At this point it is

straightforward to designate groups of coincident elements and reduce the groups to a single

element in parallel.

For the specific case of merging vertices, Bell [3] proposes using the point coordinate triple as

the hash. However, that approach is intolerant to any numerical inaccuracy. A better approach is

to use integer-based hashes, which can usually be derived from the input topology. For example,

contour algorithms like Marching Cubes always define contour vertices on the edges of the input

mesh. These edges (and therefore the vertices) can be uniquely defined either by an enumerated

index or by the pair of indices for the edge’s vertex endpoints. Miller, Moreland, and Ma [12]

show this approach is faster than using point coordinates and can also be applied to topological

elements other than vertices.

3. Building a Framework

We are taking the concepts of data parallel primitives and the patterns built on top of

them and using them to build a visualization toolkit for multi- and many-core systems called

VTK-m. VTK-m is a separate project from the similar VTK software and has a very different

organization although the two toolkits can be used together to great effect.

At its core, VTK-m uses data parallel primitives to achieve performance portability. VTK-m

defines a unit named a device adapter on which all parallel features within VTK-m are based.

The device adapter of course provides the basic routines necessary to control the device such

as allocating memory, transferring data, and scheduling parallel jobs. Additionally, the device

adapter comes replete with the data parallel primitives scan, sort, and reduce with several
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variations. It is typical for these data parallel primitives to have very different implementations

on different architectures, and while the implementation of efficient versions on each architecture

can be challenging, this ultimately comprises only a small section of the code within VTK-m.

Also, these data parallel primitives are very general, so the VTK-m implementation often shares

the implementation provided elsewhere for more general purposes.

The patterns discussed in Section 2, which build upon data parallel primitives to form

common visualization operations are also well utilized within VTK-m, but elsewhere in the

framework. Rather, a unit called a dispatcher stands in between the device adapter and a specific

algorithm implementation, and this is where these design patterns are employed. A dispatcher

is responsible for analyzing the needs of an algorithm (inputs and outputs as well as execution

requirements) and builds the necessary infrastructure to allow the algorithm to run without

concern about parallel operation.

Depending on the type of algorithm a dispatcher is invoking, it might implement any number

of these patterns. For example, if an algorithm does not have a one-to-one mapping between

input and output values, the dispatcher will likely require the use of the stream compaction and

reverse index lookup patterns. If an algorithm is generating new topology, it likely will have

replicated elements that will benefit from the topology consolidation pattern.

4. Results

One of the promises of using data parallel primitives to build scientific visualization algo-

rithms is performance portability. That is, a single implementation using data parallel primitives

should work well across computing devices with vastly different performance characteristics from

traditional latency-optimized multi-core CPUs to bandwidth-optimized many-core GPUs. Fur-

thermore, portable data parallel primitive implementations should have close to the performance

of a non-portable algorithm designed and optimized specifically for a particular device. Recent

research indicates that data parallel primitive algorithms are in fact quite performance portable.

Maynard et al. [10] compare a threshold algorithm written with data parallel primitives

across many devices. The algorithm shows good performance on both multi-core CPU and

many-core GPU devices. Interestingly, the data parallel primitive algorithm running serially on

a single CPU core still beats the equivalent VTK implementation.

Lo, Sewell, and Ahrens [9] demonstrate the performance of a Marching Cubes algorithm

implemented with data parallel primitives. Their algorithm is compared with the equivalent

CUDA reference implementation optimized for that architecture. The two implementations get

comparable performance. The data parallel primitive implementation is also shown to get good

performance and scalability on multi-core CPUs.

But perhaps the most encouraging evidence comes from a recent performance study con-

ducted by Larsen et al. [8] for ray tracing in the context of data parallel primitives. Ray tracing

is a challenging use case since it is computationally intense and contains both regular and irreg-

ular memory access patterns. Moreover, this is an algorithm with “guaranteed not to exceed”

standards, in the form of Intel’s Embree [20] and NVIDIA’s OptiX [15]. These products each are

supported by teams of developers and have been under development for multiple years. Further,

they make full use of architectural knowledge, including constructs like intrinsics, and tune for

Intel and NVIDIA products, respectively.

Larsen implements his ray tracer within EAVL and provides a performance study against

OptiX on multiple NVIDIA GPUs and against Embree on Intel Xeon and Xeon Phi architectures.
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Figure 4. Rendering from ray tracing study on an isosurface of 650,000 triangles

His study includes both scientific data sets and standard ray tracing data sets (e.g., Stanford

dragon). Fig. 4 shows one of the scientific data sets.

Encouragingly, the performance comparison finds that the EAVL ray tracer is competitive

with the industry standards. It is within a factor of two on most configurations and does par-

ticularly well on the scientific data sets. In fact, it even outperforms the industry standards on

some older architectures (since the industry standards tend to focus on the latest architectures).

Overall, this result is encouraging regarding the prospects for portable performance with

data parallel primitives, in that a single, architecture-agnostic implementation was comparable

to two highly-tuned, architecture-specific standards. Although the architecture-specific stan-

dards are clearly faster, the gap is likely acceptable for our use case. Further, the data parallel

primitive approach is completed by a graduate student in a period of months whereas the in-

dustry standards take experts years (or more); the encumbrence from data parallel primitives

could actually be even smaller given additional effort and expertise.

5. Conclusion

Visualization software will need significant changes to excel in the exascale era, both to deal

with diverse architectures and to deal with massive concurrency within a node. Recent results

show that data parallel primitives are a promising technology to deal with both challenges.

Firstly, exploration into multiple algorithms have shown recurring trends, and will hopefully

serve as a precursor to porting many of our community’s algorithms reusing these same trends.

Secondly, studies comparing performance with architecture-specific implementations have shown

that the performance is very good. Researchers in this area — including the authors of this

paper — are so encouraged that they have banded together to form a new effort, VTK-m, in an

endeavor to provide production visualization software to the HPC community.
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A Case for Energy-Efficient Acceleration of Graph Problems

using Embedded FPGA-based SoCs

Pradeep Moorthy 1,2, Nachiket Kapre 1,3
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Sparse graph problems are notoriously hard to accelerate on conventional platforms due to

irregular memory access patterns resulting in underutilization of memory bandwidth. These bot-

tlenecks on traditional x86-based systems mean that sparse graph problems scale very poorly, both

in terms of performance and power efficiency. A cluster of embedded SoCs (systems-on-chip) with

closely-coupled FPGA accelerators can support distributed memory access with better matched

low-power processing. We first conduct preliminary experiments across a range of COTS (commer-

cial off-the-shelf) embedded SoCs to establish promise for energy-efficiency acceleration of sparse

problems. We select the Xilinx Zynq SoC with FPGA accelerators to construct a prototype 32-

node Beowulf cluster. We develop specialized MPI routines and memory DMA offload engines to

support irregular communication efficiently. In this setup, we use the ARM processor as a data

marshaller for local DMA traffic as well as remote MPI traffic while the FPGA may be used as

a programmable accelerator. Across a set of benchmark graphs, we show that 32-node embedded

SoC cluster can exceed the energy efficiency of an Intel E5-2407 by as much as 1.7× at a total

graph processing capacity of 91–95 MTEPS for graphs as large as 32 million nodes and edges.

Keywords: energy efficiency, sparse graphs, embedded SoCs, FPGAs.

Introduction

During the pioneering years of HPC, computer architects built systems exclusively from

specialized vector hardware; such as the Cray-I [1] and other bespoke machines like the NEC

SX-3 and Fujitsu Numerical Wind Tunnel. The early 90s saw x86-based systems rise in popularity

due to their low cost, simplicity and standardization of the ISA/floating-point system (Intel 8087

was an early example of IEEE-754 compliant processor hardware). Beowulf clusters of these x86

platforms began as low cost hobbyist alternative to state-of-art HPC systems. Based on the idea

of connecting relatively inexpensive COTS computers to solve a particular problem collectively,

the first such cluster was developed in 1994 by connecting 16 Intel DX4 processors with 10Mbps

Ethernet. This eventually paved way for the creation of the first cluster based supercomputer

in 1997, the ASCI Red, which employed 7,246 Intel x86 Pentium Pro processors linked using a

custom-interconnect architecture. Peaking the TOP500 list for nearly three years, it set out the

foundation for the dominance of x86 cluster systems we see today.

The same era saw the introduction of Reduced Instruction Set Architecture (RISC) based

systems in place of Complex Instruction Set Architecture (CISC) machines in the form of Pow-

erPC processors used in the IBM BlueGene. This supercomputer series was launched in 2004 to

exploit the low power capabilities of RISC instead of CISC chips by combining multiple Pow-

erPC processors onto each chip. Thus, the usage of multiple low power processors, typically RISC

based, in place of a single power hungry “fat” processor was recognized as a way to improve en-

ergy efficiency. In lieu of PowerPC hardware, ARM chips have been gaining more interest in the

research community since they are fabricated extensively in mobile devices to deliver low power

at low cost. The largest ARM-based cluster studied was the Tibidabo cluster [2], which consisted
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Figure 1. Zedwulf Cluster: 32 Zynq Z7020 SoC boards

of 192 NVIDIA Tegra-2 SoCs, interconnected using 1GbE network. The study concluded the

lack of high-bandwidth I/O interfaces such as 10GbE/InfiniBand and the absence of hardware

support for interconnection protocols on the Tegra-2’s ARM Cortex-A9 processor as the sole

limiting factors in adopting the SoC for HPC usage. While the present day performance gap

between HPC-grade x86 processors and commercial ARM processors can be as high as an order

of magnitude, large graph problems with low spatio-temporal locality can eliminate the perfor-

mance gap between the two architectures while retaining the energy efficiency advantages. To

investigate this claim, we prototype a Beowulf cluster composed of 32 Xilinx FPGA-based Zynq

SoC boards, interconnected using a Gigabit Ethernet Switch. We map sparse-graph oriented

irregular computations of varying dimensions to stress the memory and network throughputs of

the cluster nodes. Fig. 1 shows a photograph of our “Zedwulf” (ZedBoard+Beowulf) cluster.

In this paper, we make the following key contributions:

• Microbenchmarking of COTS SoCs: We analyze the memory potential and network

characteristics of various embedded SoCs using micro-benchmarking tools.

• Prototype a 32-node Zynq SoC cluster: We prototype physically a 32-node Zynq

SoC cluster using the Xilinx Zedboard and Microzed platforms.

• Communication optimization for sparse-graph access on the Zynq cluster: We

develop customized Message Passing Interface (MPI) routines and DMA engines optimized

for irregular access exhibited by graph problems.

• Performance and power evaluation of the Zynq cluster vs an x86 server node:

We benchmark our cluster for a few representative sparse graphs and compare against the

Intel E5-2407 CPU.

1. Microbenchmarking COTS SoC Platforms

We first evaluate a range of COTS embedded SoC-based platforms listed in tab. 1 to assess

their feasibility for scaling to larger-scale systems. Our characterization experiments focus on a
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single chip and measure raw compute throughput, memory performance as well as MPI support

for these systems.

Table 1. Comparing datasheet specifications and microbenchmarking of various COTS SoCs

Zedboard Microzed Parallella Intel Galileo 2 Raspberry Pi Beaglebone
Black

Technology 28nm 28nm 28nm 32nm 40nm 45nm
SoC Xilinx Xilinx Xilinx Intel Broadcom TI

Zynq 7020 Zynq 7010 Zynq 7010 Quark X1000 BCM2835 AM3359
Processor ARMv7, FPGA ARMv7, FPGA ARMv7, FPGA, i586 ARMv6 ARMv7

Epiphany III
Clock Freq. 667 MHz CPU 667 MHz CPU 667 MHz CPU 400 MHz 700 MHz 1 GHz

250 MHz FPGA 250 MHz FPGA 250 MHz FPGA
On-chip 32 KB L1 32 KB L1 32 KB L1 16 KB L1 16 KB L1 32 KB L1
Memory 512 KB L2 512 KB L2 512 KB L2 128 KB L2 256 KB L2

560 KB FPGA 560 KB FPGA 240 KB FPGA -
Off-chip 512 MB 1024 MB 1024 MB 256 MB 512 MB 512 MB
Memory 32b DDR3-1066 32b DDR3-1066 32b DDR3-1066 32b DDR3-800 32b DDR2-400 16b DDR3-606

DMIPS 1138 1138 1138 237 862 1778
Coremark 1591 1591 1782 526 1314 2457
Network4 57 MB/s 59 MB/s 32 MB/s 18 MB/s 10 MB/s 21 MB/s
L1 B/W 7.7 GB/s 7.7 GB/s 7.5 GB/s 2.8 GB/s 2.7 GB/s 7.6 GB/s
L2 B/W 1.4 GB/s 1.4 GB/s 1.4 GB/s - 1.4 GB/s 3.4 GB/s
DRAM Seq. 654 MB/s 641 MB/s 537 MB/s 270 MB/s 187 MB/s 278 MB/s
DRAM Rnd. 32 MB/s 32 MB/s 28 MB/s 12 MB/s 10 MB/s 11 MB/s
Power 5 Watts 3.6 Watts 7.5 Watts 4 Watts 3.75 Watts 3.25 Watts

Recent academic studies have examined the feasibility of HPC systems based on mobile

SoCs [3] for HPC-oriented workloads and investigated the status of networking support in these

SoCs. Additionally, there are many contemporary hobbyist clusters built from Apple TV [4],

Raspberry Pi [5], and Beagleboard xM [6] that use off-the-shelf devices for delivering proof-

of-concept systems with high power efficiency. These studies are insightful but it remains to be

seen if pure ARM-based SoCs have future prospects in the cluster computing space.

Our preliminary experiments on the Intel Galileo 2 platform indicate the Quark SoC would

not be competitive at this stage with its under-powered 400 MHz 32b CPU when compared to

ARM-based embedded SoC platforms. It reported the lowest DMIPS score of 237 and had poor

Ethernet throughput of 10 MB/s (100M Ethernet NIC). Occupying the lower-end of the ARM

spectrum, the Raspberry Pi reported a 3x higher DMIPS/Coremark score than the Galileo

2. Nevertheless, its relatively slower DDR2 memory limits the overall performance gains. The

Beaglebone Black further doubles the compute performance to 1778 DMIPS. However, the

16b 400 MHz DDR3 memory barely keeps up with its superior compute capabilities constraining

overall performance. Besides, these devices are also limited by 100 Mb/s network links. The Zynq

SoC-based platforms (Zedboard, Microzed and Parallella) overcome some of these shortcomings

by coupling the Zynq SoC to a 1 Gb/s network link and a respectable 32b DDR3 1066 MHz

memory. The Zedboard and Microzed delivered the highest sequential and random access

memory bandwidths. Complemented by the Gigabit Ethernet connectivity, these platforms av-

eraged bi-directional network throughput at a high 60 MB/s. Nonetheless, that corresponds

only to a network efficiency of 24%. This behavior is attributed to the slower clock rate of the

ARM cores (35% slower ARM CPU relative to the Beaglebone running at 1 GHz). In addition

to the Zynq SoC, the Adapteva Parallella [7] platform also attaches an Epiphany floating-

4 Intel MPI Benchmark Suite result for MPI Sendrecv for all systems in 2-node configurations
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Figure 2. A Zynq node (Zedboard) with peak and achieved bandwidths

point co-processor as a separate chip thereby improving its compute capability substantially. We

recorded comparable DMIPS and memory bandwidth scores on the Zedboard/Microzed, but the

network throughput saturated at a disappointing 32 MB/s. The high local DRAM and remote

MPI throughputs suggest that the Zedboard can become a viable candidate for energy-efficient

operation for sparse irregular workloads. It is worth noting that these Zynq platforms are de-

velopment systems with extraneous supporting logic for audio, video and configurable IOs that

can be eliminated in a pure datacenter/HPC-focused design.

2. Zedwulf Organization

The Zedwulf cluster is composed of 32 Zedboards (Rev. D) or 32 Microzed (eval. kit),

interconnected using a Netgear GS748T 48-port Gigabit Smart Switch. With a rated switching

capacity of 96 Gb/s, the switch can sustain 2 Gb/s duplex bandwidth per 1GbE Ethernet link

connecting each Zedboard. We powered the system using a Seasonic Platinum 1KW PSU from

the PCIe EPS12 power rail with fuse protection. We stacked the Zedboards on top of each other

in three columns with 10/11 boards on each column. We provided air cooling from 2 fans placed

on either sides of the stack (4 fans total) as shown in fig. 1. While every Zedboard has a SanDisk

Ultra 32 GB SD card attached to host the OS, the master node has an additional Samsung

840 Pro SSD attached to the USB2 port using a SATA-USB adapter. We setup the SSD as

the primary secondary storage device for our cluster to hold our large graphs and it offers a

convenient lower latency solution for quickly loading and distributing sub-graphs. A single Zynq

node with various interface bandwidths is shown in fig. 2. We also built a 32-node Microzed

cluster by simply replacing the Zedboard with Microzeds.

The Zynq is a heterogeneous multicore system architecture consisting of a dual-core ARM

Cortex-A9 on the Processing System (PS) and a FPGA fabric on the Programmable Logic (PL).

Residing on the same chip, the PS and PL are interconnected using AXI on-chip buses. This

contrasts to traditional FPGA implementations, whereby the latter is connected to an x86 host

using PCIe buses. This approach allows ARM processors to benefit from low-latency links to

the FPGA which allow tightly-coupled CPU-based control of FPGA operation.

We configured each Zedboard to run Xillinux-1.3a, an Ubuntu-12.04 based Linux distribu-

tion with Xillybus drivers to communicate with the FPGA using an AXI 2.4 GB/s channel. We
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compiled software libraries such as MPI and other utilities with gcc-4.6.3 with appropriate

optimization flags enabled. We use NFS (Network File System) to synchronize files (graphs)

across all 32 nodes. We setup MPI to use Myrinet Open-MX patch to deliver a marginal im-

provement in network latency. We also choose MPICH over OpenMPI as it provided a 20–30%

lower latency and higher bandwidth in our initial stress benchmarks.

3. Communication Optimization

Graph processing is a communication-dominated algorithm that can often be organized

as lightweight computations on vertices and message-passing along edges. We map bulk-

synchronous parallel (BSP) graph computations of the style used in neural network evaluation,

page-rank calculations, and sparse matrix-vector multiplication. We map these evaluations to

our cluster by careful optimization of local communication (irregular memory access) and re-

mote communication (MPI access) and compare it against simple x86-based implementations

that leverage multi-threading and compiler optimizations.

3.1. MPI Optimization

Partitioning the graph structure to fit across multiple Processing Elements (PEs) creates

network traffic which connect local vertices to vertices present in other PEs. Unlike local edges,

which connect vertices present within the same PE, updating remote edges is typically an order

of magnitude slower as the data needs to be transferred from the origin PE to the target PE using

the ARM CPUs to handle network packet transfers. Hence, there is an inherent need to reduce

the time spent in fulfilling the network operations for maximizing performance gains while using

distributed systems. We designed an optimized graph-oriented global scatter technique [8] using

the Message Passing Interface (MPI) library.

FPGA Logic

ARMv7 CPU

MPI
Handler

Streaming 
Datapath

Recv.
MPI
Handler

Send
Recv.

Send

1ACP

FPGA Logic

ARMv7 CPU

Streaming 
Datapath

ACP

2

3

Zynq SoC Zynq SoC

MPI/Ethernet

Figure 3. Sequence of steps for synaptic communication along edge of sparse graph. Step 1©
and Step 3© operate over the ACP links, while Step 2© is managed by the MPI library over

Ethernet

Our approach leveraged coalesced data transfers between PEs to take advantage of the

network bandwidth, rather than being limited by the high network latencies. The high-level

packet flow in the system is shown in fig. 3. We used MPI type indexed API to encode the send
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and receive buffer displacements in an MPI friendly manner. We then employed MPI Sendrecv

as the building block of our scatter routine. The send-recv operations were scheduled in a periodic

fashion to avoid network contention across MPI nodes. This coalesced approach of edge updates

offered the speedup of 60× when compared to performing fine-grained message transfers. We

show a simplified code sketch of our MPI optimization in fig. 4.

// build MPI data structure from graph

for(j=0:total_proc-1) {

send_type=MPI_Datatype();

recv_type=MPI_Datatype();

MPI_Type_indexed(send_count, send_addr,send_type);

MPI_Type_indexed(recv_count, recv_addr,recv_type);

MPI_Type_commit(send_t);

MPI_Type_commit(recv_t);

}

// Loop over multiple bulk-synchronous steps

for(BSP steps) {

// Manage local messages

// Send MPI data between nodes

for(j=0:total_proc-1) {

// scheduling to avoid conflicts

int target = (rank+j)%total_proc

int source = (total_proc+rank-j)%total_proc;

MPI_Sendrecv (send_buf, recv_buf, ...);

}

MPI_Barrier();

// Do compute stuff

}

Figure 4. Basic MPI Communication Skeleton that shows how the MPI Datatype is built and

the mechanism of using MPI SendRecv for sparse communication

First, we translate the sparse graph adjacency lists into MPI-compatible data types that

encode the graph structure as a series of addresses and counts for send and receive between

all-possible pairs of MPI nodes. This is done for those edges that cross compute node (SoC

board) boundaries. We perform a coalesced transfer to one MPI target in a single function

call to avoid MPI overheads of finer-grained messages. To achieve this coalesced transfer, we

setup the MPI Datatype using MPI Type indexed to encode a custom sequence of blocks with

source and destination positions. We employ the Passive Target Communication paradigm here,

using MPI Win lock and MPI Win unlock functions for executing Remote Memory Access (RMA)

calls. We exploit opportunities for overlapping communication in the system by (1) having

simultaneous epoch sessions in progress, ensuring load-balanced scheduling of message transfers

in a cyclic fashion, and (2) replacing local MPI Put with simple array-indirection.
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Figure 5. MMU Optimization: Scatter-Gather operation

3.2. Memory Access Optimization

For each vertex in the graph, the graph processor needs to fetch adjacent vertex data from

local memory wherever possible. The graph data is conventionally stored in a compressed sparse

format (row based or column based), which is a memory storage optimization for sparse graph

structures. However, memory access patterns can still result in frequent cache misses under this

memory organization scheme.

While the FPGA on the Zedboard has 560KB of on-chip memory, they can barely accom-

modate 100-1000s of graph vertex and edges. Using the off-chip DRAM memory carelessly would

result in poor DRAM bandwidth utilization. Hence, we designed a Memory Management Unit

(MMU) for Zedwulf to optimize irregular data transfers. We configure the AXI DMA IP block

to use low-level AXI descriptor chains to encode the sparse graph access sequence. With our

approach we are able to improve random DRAM access throughput for graph operations by as

much as 3–4×.

We operate the MMU in optimized Scatter-Gather mode [9]. This allows the AXI DMA engine

to avoid requiring frequent assistance from the CPU and enables somewhat independent oper-

ation. In this mode, instead of programming the internal registers for each DMA transfer, the

CPU only needs to construct a one-off linked list of AXI descriptor commands for the complete
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series of transfers. This can be done once at the start and reused repeatedly for iterative BSP-like

graph algorithms. The descriptor chain is stored locally on the FPGA fabric in BlockRAMs and

coupled to the AXI DMA engines over an AXI-HP interface. It can even be constructed on-the-fly

based on the compressed sparse-row representation of the graph, but we do not explore this at

present.

XScuGic InterruptController;

struct axi_desc_t {

u32 next;

u32 base_addr;

u32 control;

u32 status;

};

struct axi_desc_t axi_desc[GRAPH_ACCESSES];

// Initialize graph access pattern as DMA descriptor chain

for (i=0; i<GRAPH_ACCESSES; i++) {

// create an entry in linked list

axi_desc[i].base_addr = base_addr[i];

axi_desc[i].control = length[i];

Xil_Out32(BRAM_ADDR + i*ALIGN + NXTDESC, axi_desc[i].next);

// copy other fields to BRAM

}

// Initialize DMA engine

Xil_Out32(DMAREG_ADDR + MM2S_CURDESC, BRAM_ADDR );

Xil_Out32(DMAREG_ADDR + MM2S_DMASR, 0x0000000);

Xil_Out32(DMAREG_ADDR + MM2S_DMACR, 0x5001);

// Perform DMA on the descriptor chain

Xil_Out32(DMAREG_ADDR + MM2S_TAILDESC, BRAM_ADDR + (GRAPH_ACCESSES-1)*ALIGN);

Figure 6. Scatter-Gather-Mode AXI DMA device driver

In fig. 5 we show the three-step configuration flow for the Scatter-Gather DMA mode.

In scatter-gather mode we represent the irregular list of accesses as a linked list of

<base addr>,<length> tuples stored in local on-chip FPGA BlockRAM. We instruct the DMA

engine to get length bytes starting from base addr location of the graph representation. Instead

of forcing the interrupt after each transfer, we are able to perform a set of back-to-back transfers

directly without interrupting the host until after the full sequence has been transferred. This

ability to avoid frequent CPU interrupts coupled with FPGA-based storage of AXI descriptor

chain provides low-latency turnaround times between consecutive DMA transactions. This is

loaded once at the start over AXI-GP ports from the CPU. We represent this in fig. 6 in the

InitializeDescriptors function. The address of the next descriptor is specified in each de-

scriptor. The head and tail descriptors are provided to the DMA engine and it will process one

descriptor after another.
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Figure 7. Performance-Power Tradeoffs across embedded SoCs platforms (4-node and 2-node

SoCs) and a single x86 node (“-arm 4” versions exclude FPGA and only use ARM). Graph

size is 32 million vertices and 32 million edges

4. Results

We analyze the performance and energy-efficiency of various embedded clusters for sparse

graph processing. We perform bulk-synchronous evaluation on randomly-generated graphs

(Erdos-Renyi [10] technique) with upto 32 million vertices and 32 million edges that can safely

fit within the limited memory available on the embedded platform. For the first experiment,

we setup 4-node clusters of each unique embedded platform (except Parallella with 2 nodes)

and compare it against one x86 node. We scale our setup for the second experiment where we

compare the 32-node Zedboard and 32-node Microzed clusters against a single x86 node. The

code running on the single x86 node is parallelized using OpenMP pragmas to use all available

cores (4 cores for the E5-2407). For completeness, our power measurements include the Ethernet

switch and PSU along with the Zynq boards.

In fig. 7 we plot processing efficiency (MTEPS/W) across various embedded and x86 plat-

forms. The Galileo 2 and Raspberry Pi clusters have the lowest performance while demanding

high power usage. The Beagle cluster doubles the performance achieved while consuming 10%

less power, thereby improving the power efficiency. The 2-node Parallella cluster nearly matches

the performance of the 4-node Beaglebone but it needs more power for the extra Epiphany

co-processor. The Zedboard and Microzed boards offer the highest energy efficiency when using

the FPGA accelerators instead of simply relying on their ARM CPUs. The Microzed stands out

with its 30% less power use over the Zedboard as it eschews unnecessary development support

(audio, video, IO chips) in favor of a low-cost implementation.

In fig. 8 we show the performance (in MTEPS, millions of traversed edges per second) of the

x86 node and the Zynq clusters plotted against their measured power consumption. We are able

to marginally exceed the energy efficiency of the x86 node (0.48 MTEPS/W vs. 0.58 MTEPS/W)

when using the Zedboard cluster. However, the lower-power and cheaper Microzed-based cluster

is able to deliver a 1.7× improvement in energy efficiency (0.83 MTEPS/W) due to its lean

design.

This measured 0.83 MTEPS/W energy efficiency figure is within striking distance of the

1.89 MTEPS/W6 possible in the SMALL DATA category of the Green Graph500 list. We look

6http://green.graph500.org/lists.php, July 2015 list, University of Luxembourg
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forward to implementing the Graph500 benchmarks on larger problem sizes with larger cluster

of Zynq nodes in the near future that builds upon this work.

5. Conclusions

We show how to use the Zynq SoC with ARMv7 32b CPUs supported by FPGA-accelerators

to prototype energy-efficient HPC systems for sparse graph acceleration. For a range of graphs

up to 32 million nodes and edges, we are able to deliver a performance of 91–95 MTEPS at

an energy-efficiency of 0.58 MTEPS/Watt (32-node Zedboard), and 0.83 MTEPS/Watt (32-

node Microzed) which exceeds the x86 efficiency of 0.48 MTEPS/Watt by as much as 1.7×.

While the Zynq SoC we evaluated in this study is promising, performance gains were limited

by (1) slow 1G Ethernet speeds of 50% peak, (2) limited DRAM capacity per node 512 MB, (3)

poor CPU-FPGA link bandwidth of 400 MB/s, and (4) extraneous devices and interfaces for

audio/video processing. Upgraded Zynq SoCs optimized for data-center processing that address

these concerns can further improve performance and energy efficiency of these systems.

6. Future Work

While the Zynq SoC we evaluated in this study is promising, performance gains were limited

by a variety of factors. The slow network transfers that saturate at only 50% of peak 1G Ethernet

speed and MPI stack overheads result in a communication time that is roughly 2× worse than

network performance of the x86. The limited DRAM capacity of 512 MB per node constrained the

size of the largest graphs we could evaluate in this study. The poor CPU-FPGA link bandwidth

of 400 MB/s meant that data-transfer time dominated FPGA runtimes. The Zedboard platform

chosen in this study contains extraneous devices and interfaces that can be removed for HPC-like

scenarios that reduces size, power and cost to be a better candidate for a future study. It may

even be prudent to evaluate the smaller Z7010 SoC (cost $56/chip compared to $100/chip for the

Z7020) with a smaller FPGA fabric for better balanced design. To improve the programmability

of the FPGA design, the use of arrays of soft-processor tiles [11] overlayed on top of the FPGA

but fully-customized to particular graph problems would be a promising approach. The Parallella
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platform with specialized high-performance I/O banks could be used as a superior interconnect

alternative to Ethernet for sparse low-latency communication between SoC chips.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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