Numerical Study of Noise Sources Generated by Wing of Supersonic Business Jet in Landing Mode
DOI:
https://doi.org/10.14529/jsfi250108Keywords:
supercomputer simulation, supersonic business jet, acoustic source, computational fluid dynamics, computational aeroacoustics, numerical beamforming, monopole, dipole, turbulent flow, unstructured meshAbstract
The paper is devoted to the numerical study of wing noise for the prototype of supersonic business jet in landing mode. Near the wing, the acoustics is simulated using the CFD/CAA methods within the Delayed Detached Eddy Simulation approach. The Ffowcs Williams–Hawkings method is used for calculation of noise radiation in the far field. To localize the near-field acoustic sources, the advanced postprocessing including the numerical beamforming method is applied. The numerical beamforming formulated for monopole- and dipole-type sources allowed for detecting the main sources of the wing noise in the vicinity of leading and trailing edges. Analysis of the sound pressure level calculated for signals recorded on the Ffowcs Williams–Hawkings surface during the CFD simulations generally confirmed these results. Direct comparison of the noise spectra calculated by the Ffowcs Williams–Hawkings and numerical beamforming methods is provided for selected mid-field points. According to the presented noise radiation pattern, the far-field noise generated by the considered wing in landing mode has dominating dipole-type component for frequencies lower than 250 Hz and dominating monopole-type component for frequencies higher than 1 kHz.
References
Abalakin, I.V., Bakhvalov, P.A., Bobkov, V.G., et al.: NOISEtte CFD&CAA Supercomputer Code for Research and Applications. Supercomput. Front. Innov. 11(2), 78–101 (aug 2024). https://doi.org/10.14529/jsfi240206
Bakhvalov, P.A., Kozubskaya, T.K., Kornilina, E.D., et al.: Technology of predicting acoustic turbulence in the far-field flow. Math. Model. Comput. Simulations 4(3), 363–373 (may 2012). https://doi.org/10.1134/S2070048212030039
Bakhvalov, P.A., Surnachev, M.D.: Method of averaged element splittings for diffusion terms discretization in vertex-centered framework. J. Comput. Phys. 450, 110819 (feb 2022). https://doi.org/10.1016/J.JCP.2021.110819
Bakhvalov, P., Kozubskaya, T., Rodionov, P.: EBR schemes with curvilinear reconstructions for hybrid meshes. Comput. Fluids 239, 105352 (may 2022). https://doi.org/10.1016/J.COMPFLUID.2022.105352
Barad, M.F., Kocheemoolayil, J.G., Kiris, C.C.: Lattice Boltzmann and Navier-Stokes Cartesian CFD Approaches for Airframe Noise Predictions. In: 23rd AIAA Comput. Fluid Dyn. Conf. AIAA AVIATION Forum, American Institute of Aeronautics and Astronautics (jun 2017). https://doi.org/10.2514/6.2017-4404
Deck, S., Renard, N.: Towards an enhanced protection of attached boundary layers in hybrid RANS/LES methods. J. Comput. Phys. 400, 108970 (2020). https://doi.org/10.1016/j.jcp.2019.108970
Duben, A.P., Kozubskaya, T.K., Rodionov, P.V.: Wing Noise Simulation of Supersonic Business Jet in Landing Configuration. Supercomput. Front. Innov. 11(3), 74–92 (oct 2024). https://doi.org/10.14529/jsfi240305
Ferris, R., Sacks, M., Cerizza, D., et al.: Aeroacoustic Computations of a Generic Low Boom Concept in Landing Configuration: Part 1 – Aerodynamic Simulations. AIAA Aviat. Aeronaut. Forum Expo. AIAA Aviat. Forum 2021 (2021). https://doi.org/10.2514/6.2021-2195
Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 264(1151), 321–342 (may 1969). https://doi.org/10.1098/rsta.1969.0031
Gorobets, A.V., Duben, A.P., Kozubskaya, T.K., Rodionov, P.V.: Approaches to the Numerical Simulation of the Acoustic Field Generated by a Multi-Element Aircraft Wing in High-Lift Configuration. Math. Model. Comput. Simulations 15(1), 92–108 (feb 2023). https://doi.org/10.1134/S2070048223010088
Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers. Comput. Phys. Commun. 271, 108231 (feb 2022). https://doi.org/10.1016/J.CPC.2021.108231
Guseva, E.K., Garbaruk, A.V., Strelets, M.K.: An automatic hybrid numerical scheme for global RANS-LES approaches. J. Phys. Conf. Ser. 929(1), 012099 (nov 2017). https://doi.org/10.1088/1742-6596/929/1/012099
Karakulev, A., Kozubskaya, T., Plaksin, G., Sofronov, I.: Ffowcs Williams–Hawkings analogy for near-field acoustic sources analysis. International Journal of Aeroacoustics 21(5-7), 457–475 (2022). https://doi.org/10.1177/1475472X221107367
Khorrami, M.R., Fares, E.: Simulation-based airframe noise prediction of a full-scale, full aircraft. 22nd AIAA/CEAS Aeroacoustics Conf. 2016 (2016). https://doi.org/10.2514/6.2016-2706
Khorrami, M.R., Shea, P.R., Winski, C.S., et al.: Aeroacoustic Computations of a Generic Low Boom Concept in Landing Configuration: Part 3 – Aerodynamic Validation and Noise Source Identification. AIAA Aviat. Aeronaut. Forum Expo. AIAA Aviat. Forum 2021 (2021). https://doi.org/10.2514/6.2021-2197
Kozubskaya, T., Plaksin, G., Sofronov, I.: Statement of the beamforming problem and a method of its solution for the localization of an acoustic source based on computational experiment data. Comput. Math. Math. Phys. 61, 1864–1885 (11 2021). https://doi.org/10.1134/S0965542521110129
Kozubskaya, T., Plaksin, G., Sofronov, I.: On numerical beamforming for correlated dipoletype sources. Computational Mathematics and Mathematical Physics 63, 2162–2175 (12 2023). https://doi.org/10.1134/S0965542523110131
Liu, Y., Quayle, A., Dowling, A., Sijtsma, P.: Beamforming correction for dipole measurement using two-dimensional microphone arrays. The Journal of the Acoustical Society of America 124, 182–191 (07 2008). https://doi.org/10.1121/1.2931950
Mockett, C., Fuchs, M., Garbaruk, A., et al.: Two Non-zonal Approaches to Accelerate RANS to LES Transition of Free Shear Layers in DES. In: Prog. Hybrid RANSLES Model., vol. 130, pp. 187–201. Springer Verlag (2015). https://doi.org/10.1007/978-3-319-15141-0_15
Nicoud, F., Toda, H.B., Cabrit, O., et al.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (aug 2011). https://doi.org/10.1063/1.3623274
Plaksin, G.M., Kozubskaya, T.K., Sofronov, I.L.: On numerical beamforming for acoustic source identification basing on supercomputer simulation data. Dokl. Math. 110, 435–441 (2024). https://doi.org/10.1134/S1064562424601550
Ribeiro, A.F., Ferris, R., Khorrami, M.R.: Aeroacoustic Computations of a Generic Low Boom Concept in Landing Configuration: Part 2 – Airframe Noise Simulations. AIAA Aviat. Aeronaut. Forum Expo. AIAA Aviat. Forum 2021 (2021). https://doi.org/10.2514/6.2021-2196
Shur, M.L., Spalart, P.R., Strelets, M.K.: Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests. Int. J. Aeroacoustics 4(3), 213–245 (jul 2005). https://doi.org/10.1260/1475472054771376
Shur, M.L., Spalart, P.R., Strelets, M.K.: Noise Prediction for Increasingly Complex Jets. Part II: Applications. Int. J. Aeroacoustics 4(3), 247–266 (jul 2005). https://doi.org/10.1260/72054771385
Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows. Flow, Turbul. Combust. 95(4), 709–737 (jun 2015). https://doi.org/10.1007/S10494-015-9618-0
Sijtsma, P.: Acoustic beamforming for the ranking of aircraft noise. Tech. rep., National Aerospace Laboratory NLR (2012), https://api.semanticscholar.org/CorpusID:60149502
Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. In: AIAA Pap. 92-0439 (1992). https://doi.org/10.2514/6.1992-439
Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput. Front. Innov. 6(2), 4–11 (jun 2019). https://doi.org/10.14529/jsfi190201
van der Vorst, H.A.: Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992). https://doi.org/10.1137/0913035
Zaytsev, M.Y., Kopiev, V.F., Velichko, S.A., Belyaev, I.V.: Localization and ranking of aircraft noise sources in flight tests and comparison with acoustic measurements of a large-scale wing model. Acoust. Phys. 69(2), 182–192 (2023). https://doi.org/10.1134/S1063771023700562
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.