Bacterial Mini Microtubule as a Minimal Model System for Exploring Dynamic Instability Using Molecular Dynamics Simulations

Authors

DOI:

https://doi.org/10.14529/jsfi250201

Keywords:

bacterial microtubule, Lomonosov-2, computational performance, multi-scale simulations, molecular dynamics

Abstract

Large scale computational modeling has been fruitfully applied to explore microtubules – an essential component of the cellular skeleton – for over two decades. In this paper, we describe simulations of a yet computationally unexplored minimalistic system of the bacterial mini microtubule, using the high performance resources of Lomonosov Moscow State University. We highlight similarities between the eukaryotic and bacterial microtubules at the protofilament level, the size and stability of the entire mini microtubule system and the computational benefits of using the bacterial mini microtubule as a minimal model to understand dynamic instability. Our results are discussed in the context of a bigger picture of the evolution of molecular dynamics simulations, aiming to understand microtubules, illustrating how the sophistication and scale of the computational efforts increased over the years.

References

Abraham, M.J., Murtola, T., Schulz, R., et al.: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

Alushin, G.M., Lander, G.C., Kellogg, E.H., et al.: High-resolution microtubule structuresreveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157(5), 1117–1129 (2014). https://doi.org/10.1016/j.cell.2014.03.053

Bowne-Anderson, H., Zanic, M., Kauer, M., Howard, J.: Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. BioEssays 35(5), 452–461 (2013). https://doi.org/10.1002/bies.201200131

Brouhard, G.J., Rice, L.M.: Microtubule dynamics: an interplay of biochemistry and mechanics. Nature Reviews Molecular Cell Biology 19(7), 451–463 (2018). https://doi.org/10.1038/s41580-018-0009-y

Deng, X., Fink, G., Bharat, T.A., et al.: Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability. Proceedings of the National Academy of Sciences 114(29), E5950–E5958 (2017). https://doi.org/10.1073/pnas.1705062114

Desai, A., Mitchison, T.J.: Microtubule polymerization dynamics. Annual Review of Cell and Developmental Biology 13(1), 83–117 (1997). https://doi.org/10.1146/annurev.cellbio.13.1.83

Fedorov, V.A., Kholina, E.G., Gudimchuk, N.B., Kovalenko, I.B.: High-Performance Computing of Microtubule Protofilament Dynamics by Means of All-Atom Molecular Modeling. Supercomputing Frontiers and Innovations 10(4), 62–68 (2023). https://doi.org/10.14529/jsfi230406

Fedorov, V.A., Kholina, E.G., Kovalenko, I.B., Gudimchuk, N.B.: Performance analysis of different computational architectures: Molecular dynamics in application to protein assemblies, illustrated by microtubule and electron transfer proteins. Supercomputing Frontiers and Innovations 5(4), 111–114 (2018). https://doi.org/10.14529/jsfi180414

Fedorov, V.A., Kholina, E.G., Kovalenko, I.B., et al.: Update on performance analysis of different computational architectures: Molecular dynamics in application to protein-protein interactions. Supercomputing Frontiers and Innovations 7(4), 62–67 (2020). https://doi.org/10.14529/jsfi200405

Fedorov, V.A., Orekhov, P.S., Kholina, E.G., et al.: Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability. PLoS Computational Biology 15(8), e1007327 (2019). https://doi.org/10.1371/journal.pcbi.1007327

Feenstra, K.A., Hess, B., Berendsen, H.J.: Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry 20(8), 786–798 (1999). https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B

Gebremichael, Y., Chu, J.W., Voth, G.A.: Intrinsic bending and structural rearrangement of tubulin dimer: molecular dynamics simulations and coarse-grained analysis. Biophysical Journal 95(5), 2487–2499 (2008). https://doi.org/10.1529/biophysj.108.129072

Grafm¨uller, A., Noya, E.G., Voth, G.A.: Nucleotide-dependent lateral and longitudinal interactions in microtubules. Journal of Molecular Biology 425(12), 2232–2246 (2013). https://doi.org/10.1016/j.jmb.2013.03.029

Grafm¨uller, A., Voth, G.A.: Intrinsic bending of microtubule protofilaments. Structure 19(3), 409–417 (2011). https://doi.org/10.1016/j.str.2010.12.020

Gudimchuk, N.B., Alexandrova, V.V.: Measuring and modeling forces generated by microtubules. Biophysical Reviews 15(5), 1095–1110 (2023). https://doi.org/10.1007/s12551-023-01161-7

Gudimchuk, N.B., Alexandrova, V.V., Ulyanov, E.V., et al.: Modeling microtubule dynamics on Lomonosov-2 supercomputer of Moscow State University: from atomistic to cellular scale simulations. Supercomputing Frontiers and Innovations 11(3), 107–116 (2024). https://doi.org/10.14529/jsfi240307

Gudimchuk, N.B., McIntosh, J.R.: Regulation of microtubule dynamics, mechanics and function through the growing tip. Nature Reviews Molecular Cell Biology 22(12), 777–795 (2021). https://doi.org/10.1038/s41580-021-00399-x

Gudimchuk, N.B., Ulyanov, E.V., O’Toole, E., et al.: Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Nature Communications 11(1), 3765 (2020). https://doi.org/10.1038/s41467-020-17553-2

Hemmat, M., Castle, B.T., Odde, D.J.: Microtubule dynamics: moving toward a multi-scale approach. Current Opinion in Cell Biology 50, 8–13 (2018). https://doi.org/10.1016/j.ceb.2017.12.013

Igaev, M., Grubm¨uller, H.: Microtubule assembly governed by tubulin allosteric gain in flexibility and lattice induced fit. eLife 7, e34353 (2018). https://doi.org/10.7554/eLife.34353

Igaev, M., Grubm¨uller, H.: Bending-torsional elasticity and energetics of the plus-end microtubule tip. Proceedings of the National Academy of Sciences 119(12), e2115516119 (2022). https://doi.org/10.1073/pnas.2115516119

Jenkins, C., Samudrala, R., Anderson, I., et al.: Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proceedings of the National Academy of Sciences 99(26), 17049–17054 (2002). https://doi.org/10.1073/pnas.012516899

Kalutskii, M., Grubm¨uller, H., Volkov, V.A., Igaev, M.: Microtubule dynamics are defined by conformations and stability of clustered protofilaments. bioRxiv (2024). https://doi.org/10.1101/2024.11.04.621893

Kliuchnikov, E., Klyshko, E., Kelly, M.S., et al.: Microtubule assembly and disassembly dynamics model: Exploring dynamic instability and identifying features of microtubules growth, catastrophe, shortening, and rescue. Computational and Structural Biotechnology Journal 20, 953–974 (2022). https://doi.org/10.1016/j.csbj.2022.01.028

MacKerell, A.D.J., Bashford, D., Bellott, M., et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B 102(18), 3586–3616 (1998). https://doi.org/10.1021/jp973084f

MacKerell Jr, A.D., Feig, M., Brooks, C.L.: Improved treatment of the protein backbone in empirical force fields. Journal of the American Chemical Society 126(3), 698–699 (2004). https://doi.org/10.1021/ja036959e

Manka, S.W., Moores, C.A.: The role of tubulin–tubulin lattice contacts in the mechanism of microtubule dynamic instability. Nature Structural & Molecular Biology 25(7), 607–615 (2018). https://doi.org/10.1038/s41594-018-0087-8

Michaels, T.C., Feng, S., Liang, H., Mahadevan, L.: Mechanics and kinetics of dynamic instability. eLife 9, e54077 (2020). https://doi.org/10.7554/eLife.54077

Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312(5991), 237–242 (1984). https://doi.org/https://doi.org/10.1038/312237a0

Mitra, A., Sept, D.: Localization of the antimitotic peptide and depsipeptide binding site on β-tubulin. Biochemistry 43(44), 13955–13962 (2004). https://doi.org/10.1021/bi0487387

Mitra, A., Sept, D.: Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophysical Journal 95(7), 3252–3258 (2008). https://doi.org/10.1529/biophysj.108.133884

Morozenko, A., Stuchebrukhov, A.: Dowser++, a new method of hydrating protein structures. Proteins: Structure, Function, and Bioinformatics 84(10), 1347–1357 (2016). https://doi.org/10.1002/prot.25081

Natarajan, K., Mohan, J., Senapati, S.: Relating nucleotide-dependent conformational changes in free tubulin dimers to tubulin assembly. Biopolymers 99(5), 282–291 (2013). https://doi.org/10.1002/bip.22153

Nogales, E., Wolf, S.G., Downing, K.H.: Erratum: Structure of the αβ tubulin dimer by electron crystallography. Nature 393(6681), 191–191 (1998). https://doi.org/10.1038/34465

Olsson, M.H., Søndergaard, C.R., Rostkowski, M., Jensen, J.H.: PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation 7(2), 525–537 (2011). https://doi.org/10.1021/ct100578z

Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 52(12), 7182–7190 (1981). https://doi.org/10.1063/1.328693

Pavelites, J.J., Gao, J., Bash, P.A., Mackerell Jr, A.D.: A molecular mechanics force field for NAD+ NADH, and the pyrophosphate groups of nucleotides. Journal of Computational Chemistry 18(2), 221–239 (1997). https://doi.org/10.1002/(SICI)1096-987X(19970130)18:2<221::AID-JCC7>3.0.CO;2-X

Peng, L.X., Hsu, M.T., Bonomi, M., et al.: The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery. PLoS Computational Biology 10(2), e1003464 (2014). https://doi.org/10.1371/journal.pcbi.1003464

V.A. Fedorov, E.G. Kholina, N.B. Gudimchuk, I.B. Kovalenko 2025, Vol. 12, No. 2 15

Sahoo, A., Hanson, S.M.: Martini without the twist: Unveiling a mechanically correct microtubule through bottom-up coarse-graining in Martini 3. bioRxiv (2024). https://doi.org/10.1101/2024.05.29.596440

Stewman, S.F., Tsui, K.K., Ma, A.: Dynamic instability from non-equilibrium structural transitions on the energy landscape of microtubule. Cell Systems 11(6), 608–624 (2020). https://doi.org/10.1016/j.cels.2020.09.008

Tong, D., Voth, G.A.: Microtubule simulations provide insight into the molecular mechanism underlying dynamic instability. Biophysical Journal 118(12), 2938–2951 (2020). https://doi.org/10.1016/j.bpj.2020.04.028

Ulyanov, E.V., Vinogradov, D.S., McIntosh, J.R., Gudimchuk, N.B.: Brownian dynamics simulation of protofilament relaxation during rapid freezing. PLoS ONE 16(2), e0247022 (2021). https://doi.org/10.1371/journal.pone.0247022

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

Walker, R.A., O’Brien, E.T., Pryer, N.K., et al.: Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. Journal of Cell Biology 107(4), 1437–1448 (1988). https://doi.org/10.1083/jcb.107.4.1437

Webb, B., Sali, A.: Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics 47(1), 5.6.1–5.6.32 (2014). https://doi.org/10.1002/0471250953.bi0506s47

Wells, D.B., Aksimentiev, A.: Mechanical properties of a complete microtubule revealed through molecular dynamics simulation. Biophysical Journal 99(2), 629–637 (2010). https://doi.org/10.1016/j.bpj.2010.04.038

Wu, J., Dasetty, S., Beckett, D., et al.: Data-driven equation-free dynamics applied to many-protein complexes: The microtubule tip relaxation. Biophysical Journal (2025). https://doi.org/10.1016/j.bpj.2025.01.009

Yutin, N., Koonin, E.V.: Archaeal origin of tubulin. Biology Direct 7(1), 10 (2012). https://doi.org/10.1186/1745-6150-7-10

Zakharov, P., Gudimchuk, N., Voevodin, V., et al.: Molecular and mechanical causes of microtubule catastrophe and aging. Biophysical Journal 109(12), 2574–2591 (2015). https://doi.org/10.1016/j.bpj.2015.10.048

Zhang, R., Alushin, G.M., Brown, A., Nogales, E.: Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162(4), 849–859 (2015). https://doi.org/10.1016/j.cell.2015.07.012

Zhang, R., LaFrance, B., Nogales, E.: Separating the effects of nucleotide and eb binding on microtubule structure. Proceedings of the National Academy of Sciences 115(27), E6191–E6200 (2018). https://doi.org/10.1073/pnas.1802637115

Downloads

Published

2025-10-08

How to Cite

Fedorov, V. A., Kholina, E. G., Gudimchuk, N. B., & Kovalenko, I. B. (2025). Bacterial Mini Microtubule as a Minimal Model System for Exploring Dynamic Instability Using Molecular Dynamics Simulations. Supercomputing Frontiers and Innovations, 12(2), 5–16. https://doi.org/10.14529/jsfi250201

Most read articles by the same author(s)