Comparison of Quantum-Chemical Programs and Methods for the Calculation of Enthalpies of Formation of High-Energy Tetracyclic Compounds
DOI:
https://doi.org/10.14529/jsfi250205Keywords:
high-energy materials, tetracyclic compounds, enthalpy of formation, quantum chemical calculations, isodesmic reactions, atomization, IR spectra, high-performance computingAbstract
A comparative study was carried out on the thermochemical properties of a series of high-energy tetracyclic compounds containing amino, cyano, azido, and dinitrophenyl groups. Various quantum-chemical methods were employed to calculate the gas-phase enthalpies of formation, including the B3LYP functional with 6-311+G(2d,p) and cc-pVTZ basis sets, the composite G4MP2 method implemented in Gaussian 09, and a G4MP2-based scheme adapted for implementation in NWChem. The G4MP2 method was used as a reference for accuracy, against which the results of other approaches were evaluated. It is shown that the use of NWChem and reaction-based schemes yields enthalpy values close to those obtained by G4MP2, while significantly reducing computational costs. Structural factors affecting the enthalpy of formation are analyzed, along with differences in the IR absorption spectra. The results confirm the applicability of various theoretical levels for the thermochemical evaluation of promising high-energy materials.
References
Rice, B.M., Pai, S.V., Hare, J.: Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame 118, 445–458 (1999). https://doi.org/10.1016/S0010-2180(99)00008-5
Byrd, E.F., Rice, B.M.: Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J. Phys. Chem. A 110, 1005–1013 (2006). https://doi.org/10.1021/jp0536192
Muthurajan, H., Sivabalan, R., Talawar, M.B., et al.: Prediction of heat of formation and related parameters of high energy materials. J. Hazard. Mater. 133, 30–45 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.009
Zhong, L., Liu, D., Hu, M., et al.: First-principles calculations of solid-phase enthalpy of formation of energetic materials. Commun. Chem. 8, 1–7 (2025). https://doi.org/10.1038/s42004-025-01544-9
Larin, A.A., Muravyev, N.V., Pivkina, A.N., et al.: Assembly of tetrazolylfuroxan organic salts: Multipurpose green energetic materials with high enthalpies of formation and excellent detonation performance. Chem. Eur. J. 25, 4225–4233 (2019). https://doi.org/10.1002/chem.201806378
Luk’yanov, O.A., Parakhin, V.V., Shlykova, N.I., et al.: Energetic N-azidomethyl derivatives of polynitro hexaazaisowurtzitanes series: CL-20 analogues having the highest enthalpy. New J. Chem. 44, 8357–8365 (2020). https://doi.org/10.1039/D0NJ01453b
Gao, H., Zhang, Q., Sreeve, J.M.: Fused heterocycle-based energetic materials (2012–2019). J. Mater. Chem. A 8, 4193–4216 (2020). https://doi.org/10.1039/c9ta12704f
Wen, L., Wang, Y., Liu, Y.: Data-Driven Combinatorial Design of Highly Energetic Materials. Acc. Mater. Res. 6, 64–76 (2025). https://doi.org/10.1021/accountsmr.4c00230
Kuznetsova, A.N., Leonov, N.E., Anikin, O.V., et al.: Parent 1,4-dihydro-[1,2,3]triazolo[4,5-d][1,2,3]triazole and its derivatives as precursors for the design of promising high energy density materials. New J. Chem. 49, 311–320 (2025). https://doi.org/10.1039/D4NJ04427D
Feng, S., Li, Y., Lai, Q., et al.: A strategy for stabilizing of N8 type energetic materials by introducing 4-nitro-1,2,3-triazole scaffolds. Chem. Eng. J. 430, 133181 (2022). https://doi.org/10.1016/j.cej.2021.133181
Volokhov, V.M., Amosova, E.S., Volokhov, A.V., et al.: Quantum-chemical calculations of physicochemical properties of high enthalpy 1,2,3,4- and 1,2,4,5-tetrazines annelated with polynitroderivatives of pyrrole and pyrazole. Comparison of different calculation methods. Comput. Theor. Chem. 1209, 113608 (2022). https://doi.org/10.1016/j.comptc.2022.113608
Volokhov, V. M., Parakhin, V. V., Amosova, E. S., et al.: Quantum-Chemical Study of Gas-Phase 5/6/5 Tricyclic Tetrazine Derivatives. Supercomputing Frontiers and Innovations 10(3), 61–72 (2023). https://doi.org/10.14529/jsfi230306
Volokhov, V.M., Parakhin, V.V., Amosova, E.S.,et al.: Quantum-chemical calculations of the enthalpy of formation of 5/6/5 tricyclic tetrazine derivatives annelated with nitrotriazoles. Russ. J. Phys. Chem. B, 18(1), 28–36 (2024). https://doi.org/10.1134/S1990793124010196
Volokhov, V.M., Amosova, E.S., Parakhin, V.V., et al.: Quantum-Chemical Study of Some Tris(pyrrolo)benzenes and Tris(pyrrolo)-1,3,5-triazines. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2023. Lecture Notes in Computer Science, vol. 14388, pp. 177–189. Springer, Cham. (2023) https://doi.org/10.1007/978-3-031-49432-1_14
Volokhov, V., Amosova, E., Parakhin, V., et al.: Quantum-Chemical Simulation of Some Triimidazolobenzenes and Triimidazolo-1,3,5-Triazines. In: Sokolinsky, L., Zymbler, M., Voevodin, V., Dongarra, J. (eds) Parallel Computational Technologies. PCT 2024. Communications in Computer and Information Science, vol. 2241, pp. 292–303. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-73372-7_21
Volokhov, V.M., Parakhin, V.V., Amosova, E.S., et al.: Quantum-Chemical Study of Some Trispyrazolobenzenes and Trispyrazolo-1,3,5-triazines. Supercomput. Front. Innov. 11(3), 64–73 (2024). https://doi.org/10.14529/jsfi240304
Volokhov, V., Amosova, E., Parakhin, V., et al.: Quantum-chemical study of unsubstituted tris(triazolo)benzenes and 1,3,5-triazines. In: Parallel Computational Technologies. PCT 2025. Communications in Computer and Information Science (in print).
Volokhov, V.M., Parakhin, V.V., Amosova, E.S., et al.: Quantum-Chemical Study of High Energy Derivatives of Tris(triazolo)benzenes. Lobachevskii J. Math. 46(8), 3883–3894 (2025). https://doi.org/10.1134/S1995080225610100
Samsonov, V.A., Volodarskii, L.B., Korolev, V.L., Khisamutdinov, G.K.: Synthesis of benzotristriazole. 4-nitrobenzo[1,2-d:3,4-d’]bistriazole and 4,4’-dicarboxy-5,5’-1H-1,2,3-triazole. Chem. Heterocycl. Compd. 29, 1169–1171 (1993). https://doi.org/10.1007/BF00538063
Thottempudi, V., Forohor, F., Parrish, D.A., Shreeve, J.M.: Tris(triazolo)benzene and its derivatives: high-density energetic materials. Angew. Chem. Int. Ed. 51(39), 9881–9885 (2012). https://doi.org/10.1002/anie.201205134
Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT (2010).
Valiev, M., Bylaska, E. J., Govind, N., et al.: NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477 (2010). https://doi.org/10.1016/j.cpc.2010.04.018
Becke, A.D.: Densityfunctional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(4), 5648–5652 (1993). https://doi.org/10.1063/1.464913
Johnson, B.J., Gill, P.M.W., Pople, J.A.: The performance of a family of density functional methods. J. Chem. Phys. 98(4), 5612–5626 (1993). https://doi.org/10.1063/1.464906
Dunning, Th.H. Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989). https://doi.org/10.1063/1.456153
Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 127, 124105 (2007). https://doi.org/10.1063/1.2770701
Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gn theory. Comput. Mol. Sci. 1, 810–825 (2011). https://doi.org/10.1002/wcms.59
Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory. J. Chem. Phys. 126, 084108 (2007). https://doi.org/10.1063/1.2436888
CCCBDB Vibrational Frequency Scaling Factors. https://cccbdb.nist.gov/vsfx.asp, accessed: 2025-04-10
NIST-JANAF Thermochemical Tables. https://janaf.nist.gov/, accessed: 2025-04-10
Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008). https://doi.org/10.1039/b810189b
Yang, J.: Theoretical studies on the structures, densities, detonation properties and thermal stability of tris(triazolo)benzene and its derivatives. Polycycl. Aromat. Compd. 35(5), 387–400 (2015). https://doi.org/10.1080/10406638.2014.918888
Zeng, Q., Qu, Y., Li, J., Huang, H.: Theoretical studies on the derivatives of tris([1,2,4]triazolo)[4,3-a:4’,3’-c:4”,3”-e][1,3,5]triazine as high energetic compounds. RSC Adv. 6, 5419 (2016). https://doi.org/10.1039/c5ra22524h
Qu, Y., Zeng, Q., Wang, J., et al.: Synthesis and properties for benzotriazole nitrogen oxides (BTzO) and tris[1,2,4]triazolo[1,3,5]triazine derivatives. Int. J. Mater. Sci. Appl. 7(2), 49–57 (2017). https://doi.org/10.11648/j.ijmsa.20180702.13
Klap¨otke, T.M., Krumm, B., Martin, F.A., Stierstorfer, J.: New azidotetrazoles: structurally interesting and extremely sensitive. Chem. Asian J. 7, 214–224 (2012). https://doi.org/10.1002/asia.201100632
Voevodin, Vl.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: largescale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201
Nikitenko, D.A., Voevodin, V.V., Zhumatiy, S.A.: Deep analysis of job state statistics on Lomonosov-2 supercomputer. Supercomput. Front. Innov. 5(2), 4–10 (2019). https://doi.org/10.14529/jsfi180201
Downloads
Published
How to Cite
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.