GPU Implementation of Zippel Method for Feynman Integral Reconstruction
DOI:
https://doi.org/10.14529/jsfi250202Keywords:
rational reconstruction, Zippel algorithm, Feynman integral, GPUAbstract
The Zippel algorithm performs a rational reconstruction of multivariate polynomials and aims specifically at the sparse case, where other approaches, such as iterative Newton and Thiele reconstructions, have a significantly higher complexity. It is applied in different fields of science, lately becoming an important step in Feynman integral reduction in elementary particle physics within the modular approach to reduction. For some cases with multiple variables the Zippel reconstruction might become a bottleneck for the whole evaluation so that different optimizations are required. In this paper, we describe how we ported the classical Zippel algorithm for polynomials together with its balanced version for rational functions to graphical processor units (GPUs), as well as carried out its performance evaluation on several types of GPUs. According to our information, this is the first publically available implementation of this algorithm on GPUs, and the results show speedup up to 14.5 times compared to CPU-based version.
References
Anastasiou, C., Lazopoulos, A.: Automatic integral reduction for higher order perturbative calculations. Journal of High Energy Physics 07, 046 (2004). https://doi.org/10.1088/1126-6708/2004/07/046
Belitsky, A.V., Smirnov, A.V., Yakovlev, R.V.: Balancing act: Multivariate rational reconstruction for IBP. Nucl. Phys. B 993, 116253 (2023). https://doi.org/10.1016/j.nuclphysb.2023.116253
Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing. p. 301–309. STOC ’88, Association for Computing Machinery, New York, NY, USA (1988). https://doi.org/10.1145/62212.62241
Chetyrkin, K.G., Tkachov, F.V.: Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops. Nucl. Phys. B 192, 159–204 (1981). https://doi.org/10.1016/0550-3213(81)90199-1
De Laurentis, G., Page, B.: Ans¨atze for scattering amplitudes from p-adic numbers and algebraic geometry. Journal of High Energy Physics 12, 140 (2022). https://doi.org/10.1007/JHEP12(2022)140
Hart, W.: Fast Library for Number Theory: An introduction. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software – ICMS 2010. Lecture Notes in Computer Science, vol. 6327, pp. 88–91. Springer (2010). https://doi.org/10.1007/978-3-642-15582-6_15
Hart, W., Johansson, F., Schultz, D., et al.: FLINT: Fast Library for Number Theory. http://www.flintlib.org/, version 2.9 (or your version), accessed: 2025-05-01
Kaltofen, E., Lee, W.s., Lobo, A.A.: Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation. p. 192–201. ISSAC ’00, Association for Computing Machinery, New York, NY, USA (2000). https://doi.org/10.1145/345542.345629
Klappert, J., Lange, F.: Reconstructing rational functions with FireFly. Comput. Phys. Commun. 247, 106951 (2020). https://doi.org/10.1016/j.cpc.2019.106951
Klappert, J., Lange, F., Maierh¨ofer, P., et al.: Integral reduction with Kira 2.0 and finite field methods. Comput. Phys. Commun. 266, 108024 (2021). https://doi.org/10.1016/j.cpc.2021.108024
Lange, F., Usovitsch, J., Wu, Z.: Kira 3: integral reduction with efficient seeding and optimized equation selection (2025), https://arxiv.org/abs/2505.20197
Laporta, S.: High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A 15, 5087–5159 (2000). https://doi.org/10.1142/S0217751X00002159
Laurentis, G., Maˆıtre, D.: Extracting analytical one-loop amplitudes from numerical evaluations. Journal of High Energy Physics 07, 123 (2019). https://doi.org/10.1007/JHEP07(2019)123
Lee, R.N.: Presenting LiteRed: a tool for the Loop InTEgrals REDuction (12 2012)
Lee, R.N.: LiteRed 1.4: a powerful tool for reduction of multiloop integrals. J. Phys. Conf. Ser. 523, 012059 (2014). https://doi.org/10.1088/1742-6596/523/1/012059
Magerya, V.: Rational Tracer: a Tool for Faster Rational Function Reconstruction (11 2022)
Maierh¨ofer, P., Usovitsch, J.: Kira 1.2 Release Notes (12 2018)
Maierh¨ofer, P., Usovitsch, J., Uwer, P.: Kira A Feynman integral reduction program. Comput. Phys. Commun. 230, 99–112 (2018). https://doi.org/10.1016/j.cpc.2018.04.012
von Manteuffel, A., Studerus, C.: Reduze 2 – Distributed Feynman Integral Reduction (2012), https://arxiv.org/abs/1201.4330
von Manteuffel, A., Schabinger, R.M.: A novel approach to integration by parts reduction. Phys. Lett. B 744, 101–104 (2015). https://doi.org/10.1016/j.physletb.2015.03.029
Peraro, T.: Scattering amplitudes over finite fields and multivariate functional reconstruction. Journal of High Energy Physics 12, 030 (2016). https://doi.org/10.1007/JHEP12(2016)030
Peraro, T.: FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs. Journal of High Energy Physics 07, 031 (2019). https://doi.org/10.1007/JHEP07(2019)031
Smirnov, A.V., Chuharev, F.S.: FIRE6: Feynman Integral REduction with Modular Arithmetic. Comput. Phys. Commun. 247, 106877 (2020). https://doi.org/10.1016/j.cpc.2019.106877
Smirnov, A.V., Smirnov, V.A.: FIRE4, LiteRed and accompanying tools to solve integration by parts relations. Comput. Phys. Commun. 184, 2820–2827 (2013). https://doi.org/10.1016/j.cpc.2013.06.016
Smirnov, A.V.: FIRE5: a C++ implementation of Feynman Integral REduction. Comput. Phys. Commun. 189, 182–191 (2015). https://doi.org/10.1016/j.cpc.2014.11.024
Smirnov, A.V., Zeng, M.: Feynman integral reduction: balanced reconstruction of sparse rational functions and implementation on supercomputers in a co-design approach. Numerical Methods and Programming 25(Special issue), 30–45 (2024). https://doi.org/10.26089/NumMet.2024s03
Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. pp. 216–226. Springer Berlin Heidelberg, Berlin, Heidelberg (1979)
Downloads
Published
How to Cite
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.